Optimal Supply Networks II: Blood, Water, and Truthicide

Last updated: 2019/02/07, 17:04:52

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

References

29 Q 1 of 126

These slides are brought to you by:

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

onclusion

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat ☑

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

onclusion

References

99€ 3 of 126

Outline

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Conclusion

References

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

Stories—The Fraction Assassin:

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

References

9 a @ 5 of 126

Law and Order, Special Science Edition: Truthicide Department

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage. This is one of their stories."

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Correlation

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

 $P = {\sf basal} \; {\sf metabolic} \; {\sf rate}$ $M = {\sf organismal} \; {\sf body} \; {\sf mass}$

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

onclusion

$P = c M^{\alpha}$

Prefactor *c* depends on body plan and body temperature:

Birds	39– 41° <i>C</i>
Eutherian Mammals	36– 38° <i>C</i>
Marsupials	34- 36° <i>C</i>
Monotremes	30– 31° <i>C</i>

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

References

9 a € 8 of 126

What one might expect:

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

$$P \propto S \propto V^{2/3} \propto M^{2/3}$$

- Assumes isometric scaling (not quite the spherical cow).
- Lognormal fluctuations: Gaussian fluctuations in $log_{10}P$ around $\log_{10} cM^{\alpha}$.
- Stefan-Boltzmann law for radiated energy:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma\varepsilon S T^4 \propto S$$

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by

fractions

exponents River networks

Farlier theories

Geometric

argument

The prevailing belief of the Church of Quarterology:

$$\alpha = 3/4$$

 $P \propto M^{3/4}$

Huh?

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

conclusion

The prevailing belief of the Church of Quarterology:

Most obvious concern:

$$3/4 - 2/3 = 1/12$$

- An exponent higher than 2/3 points suggests a fundamental inefficiency in biology.
- Organisms must somehow be running 'hotter' than they need to balance heat loss.

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

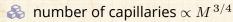
Death by fractions

exponents

River networks

Farlier theories

Geometric argument



Related putative scalings:

Wait! There's more!:

 $\red{solution}$ time to reproductive maturity $\propto M^{1/4}$

 \clubsuit heart rate $\propto M^{-1/4}$

 \red cross-sectional area of aorta $\propto M^{3/4}$

 \triangle population density $\propto M^{-3/4}$

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

The great 'law' of heartbeats:

Assuming:

- $\red{\$}$ Average lifespan $\propto M^{\beta}$
- Average heart rate $\propto M^{-\beta}$
- Irrelevant but perhaps $\beta = 1/4$.

Then:

Average number of heart beats in a lifespan ≃ (Average lifespan) × (Average heart rate) $\propto M^{\beta-\beta}$

 $\propto M^0$

Number of heartbeats per life time is independent of organism size!

≈ 1.5 billion

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

From PoCS, the Prequel to CocoNuTs:

"How fast do living organisms move: Maximum speeds from bacteria to elephants and whales"

Meyer-Vernet and Rospars, American Journal of Physics, **83**, 719–722, 2015. [35]

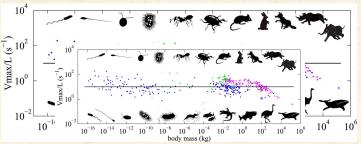


Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127 swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed [Eq. (13)] estimated in Sec. III. The human word records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by François Meyer).

@networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

onclusion

Hirt et al.,

Nature Ecology & Evolution, **1**, 1116, 2017. [23]

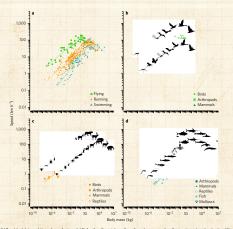


Figure 2 [Empirical data and time-dependent model fit for the allometric scaling of maximum speed, a, Comparison of scaling for the different to conceive modes (1994), gruenting, swimming). be 4. Taxonomic differences are illustrated separately for hymogic for = 450, smining (c = 458) and smining (c = 458)

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric

onclusion

"A general scaling law reveals why the largest animals are not the fastest"

Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [23]

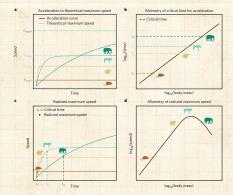


Figure 1 [Concept of time-dependent and mass-dependent realized maximum speed of animals. A Acceleration of animals follows a saturation curve (social lineal) approaching the theoretical maximum speed (dotted lineal) depending on body mass (color uscolo). B The time available for acceleration increases with body mass following a power law. 6.4 This critical time determines the realized maximum speed (c), yielding a hump-shaped increase of maximum speed with body mass (d). COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Theoretical story:

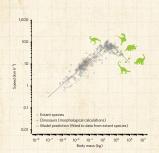


Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters

swimming animals.

Maximum speed increases with size: $v_{\text{max}} = aM^b$

Takes a while to get going: $v(t) = v_{\max}(1 - e^{-kt})$

Literature: $0.75 \lesssim d \lesssim 0.94$

Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim q \lesssim 1.27$

 $v_{\text{max}} = aM^b \left(1 - e^{-hM^i} \right)$

3 i = d - 1 + g and h = cf

COCONUTS @networksvox

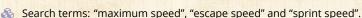
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

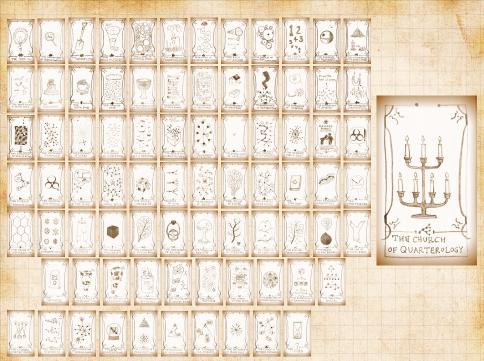
exponents

River networks


Farlier theories

Geometric argument

References



Literature search for for maximum speeds of running, flying and

A theory is born:

1840's: Sarrus and Rameaux [44] first suggested $\alpha = 2/3$.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

A theory grows:

1883: Rubner [42] found $\alpha \simeq 2/3$.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

nclusion

Theory meets a different 'truth':

1930's: Brody, Benedict study mammals. [6] Found $\alpha \simeq 0.73$ (standard).

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

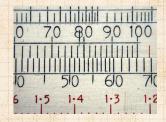
Death by fractions

exponents

River networks

Earlier theories

Geometric argument


onclusion

Our hero faces a shadowy cabal:

- 🚓 1932: Kleiber analyzed 13 mammals. [25]
- \Leftrightarrow Found $\alpha = 0.76$ and suggested $\alpha = 3/4$.
- Scaling law of Metabolism became known as Kleiber's Law (2011 Wikipedia entry is embarrassing).
- 3 1961 book: "The Fire of Life. An Introduction to Animal Energetics". [26]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

onclusion

When a cult becomes a religion:

1950/1960: Hemmingsen [20, 21] Extension to unicellular organisms. $\alpha = 3/4$ assumed true.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

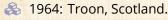
exponents

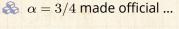
River networks

Earlier theories

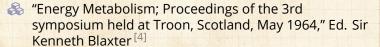
Geometric argument

onclusion




Quarterology spreads throughout the land:

The Cabal assassinates 2/3-scaling:


3rd Symposium on Energy Metabolism.

...29 to zip.

But the Cabal slipped up by publishing the conference proceedings ...

COCONUTS @networksvox

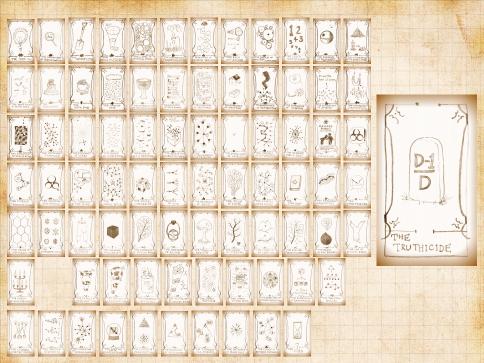
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents River networks

Farlier theories


Geometric argument

References

24 of 126

An unsolved truthicide:

COCONUTS @networksvox

Optimal Supply Networks II

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?

Or was the truth killed by just a lone, lowly hypothesis?

Does this go all the way to the top? To the National Academies of Science?

Is 2/3-scaling really dead?

Could 2/3-scaling have faked its own death?

What kind of people would vote on scientific facts?

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

Modern Quarterology, Post Truthicide

3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield

But: much controversy ...

See 'Re-examination of the "3/4-law" of metabolism' by the Heretical Unbelievers Dodds, Rothman, and Weitz [14], and ensuing madness ...

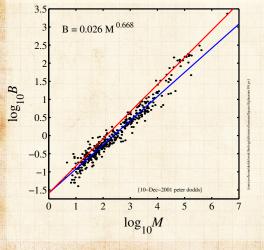
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks


Farlier theories

Geometric argument

Some data on metabolic rates

Heusner's data $(1991)^{[22]}$

391 Mammals

Blue line: 2/3

Arr (B=P)

COCONUTS @networksvox

Optimal Supply Networks II

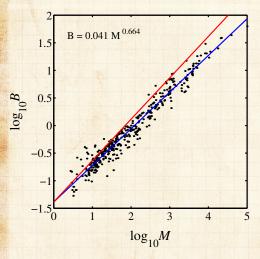
Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories


Geometric argument

Some data on metabolic rates

Bennett and Harvey's data (1987) [3]

398 birds

🙈 blue line: 2/3

red line: 3/4.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

Passerine vs. non-passerine issue ...

Linear regression

Important:

- Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i,y_i)\}$ when we know the x_i are measured without error.
- \Leftrightarrow Here we assume that measurements of mass M have less error than measurements of metabolic rate B.
- Linear regression assumes Gaussian errors.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

onclusion

Measuring exponents

More on regression:

If (a) we don't know what the errors of either variable are,

or (b) no variable can be considered independent, then we need to use Standardized Major Axis Linear Regression. [43, 41] (aka Reduced Major Axis = RMA.) COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Measuring exponents

For Standardized Major Axis Linear Regression:

 $\mathsf{slope}_{\mathsf{SMA}} = \frac{\mathsf{standard} \; \mathsf{deviation} \; \mathsf{of} \; y \; \mathsf{data}}{\mathsf{standard} \; \mathsf{deviation} \; \mathsf{of} \; x \; \mathsf{data}}$

- Very simple!
- Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.
- The only linear regression that is Scale invariant
 ∴.
- Attributed to Nobel Laureate economist Paul Samuelson , [43] but discovered independently by others.
- #somuchwin

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

References

Measuring exponents

Relationship to ordinary least squares regression is simple:

$$\begin{aligned} \mathsf{slope}_{\mathsf{SMA}} &= r^{-1} \times \mathsf{slope}_{\mathsf{OLS}\, y \, \mathsf{on}\, x} \\ &= r \times \mathsf{slope}_{\mathsf{OLS}\, x \, \mathsf{on}\, y} \end{aligned}$$

where r =standard correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Groovy upshot: If (1) a paper uses OLS regression when RMA would be appropriate, and (2) r is reported, we can figure out the RMA slope. [41, 29]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

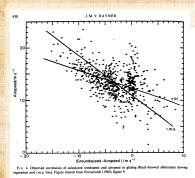
Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument


Conclusion

References

少 a @ 33 of 126

LINEAR RELATIONS IN BIOMECHANICS

TABLE II

Calculated statistics of airspeed V_s and windspeed V_w in the Black-browed albatross Diomedea melanophris in gliding flight, after Pennycuick (1982)

number of data n	737		
means x, y	-3.14	13-35	ms - 1
variances S_{xx} , S_{yy}	13.91	8.218	(ms-1)2
covariance S	-4.653		,
correlation p	-0.435		

model of speed correction: $V_a = \alpha + \beta V_w$

0.224
-0.334 -0.384 to -0.284
-0.769 -0.894 to -0.66
-1.766 -2.076 to -1.536
-0.855 -0.997 to -0.733
-0.560 -0.648 to -0.479
-0.431 -0.496 to -0.367
-

Solution Disparity between slopes for y on x and x on y regressions is a factor of r^2 (r^{-2})

 \Leftrightarrow (Rayner uses ρ for r.)

Here: $r^2 = .435^2 = 0.189$, and $r^{-2} = .435^{-2} = 2.29^2 = 5.285$.

See also: LaBarbera [29] (who resigned ...)

@networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Heusner's data, 1991 (391 Mammals)

range of M	N	\hat{lpha}
$\leq 0.1~\mathrm{kg}$	167	0.678 ± 0.038
$\leq 1 \text{ kg}$	276	0.662 ± 0.032
$\leq 10 \text{ kg}$	357	0.668 ± 0.019
$\leq 25~\mathrm{kg}$	366	0.669 ± 0.018
_		
$\leq 35~\mathrm{kg}$	371	0.675 ± 0.018
$\leq 350~\mathrm{kg}$	389	0.706 ± 0.016
<u> </u>		
$\leq 3670~\mathrm{kg}$	391	0.710 ± 0.021
Annual Committee of the		

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Bennett and Harvey, 1987 (398 birds)

$M_{\sf max}$	N	\hat{lpha}
≤ 0.032	162	0.636 ± 0.103
≤ 0.1	236	0.602 ± 0.060
≤ 0.32	290	0.607 ± 0.039
≤ 1	334	0.652 ± 0.030
≤ 3.2	371	0.655 ± 0.023
≤ 10	391	0.664 ± 0.020
≤ 32	396	0.665 ± 0.019
≤ 100	398	0.664 ± 0.019

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

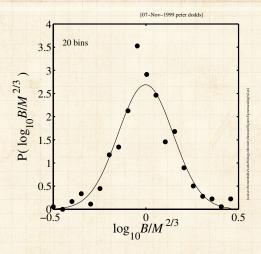
Measuring

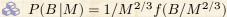
exponents

River networks

Earlier theories

Geometric argument Conclusion


References



少 Q ← 36 of 126

Fluctuations—Things look normal ...

🙈 Use a Kolmogorov-Smirnov test.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

References

20 € 37 of 126

Hypothesis testing

Test to see if α' is consistent with our data $\{(M_i, B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

- Assume each ${\bf B}_i$ (now a random variable) is normally distributed about $\alpha' \log_{10} M_i + \log_{10} c$.
- Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom.
- \Leftrightarrow Calculate a p-value: probability that the measured α is as least as different to our hypothesized α' as we observe.
- See, for example, DeGroot and Scherish, "Probability and Statistics." [11]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Lonclusion

Revisiting the past—mammals

Full mass range:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
			C		
Kleiber	13	0.738	$< 10^{-6}$	0.11	
Brody	35	0.718	$< 10^{-4}$	$< 10^{-2}$	
Heusner	391	0.710	$< 10^{-6}$	$< 10^{-5}$	
Bennett	398	0.664	0.69	$< 10^{-15}$	
and Harvey					

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Revisiting the past—mammals

 $M \leq 10$ kg:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	5	0.667	0.99	0.000	
Kleibei	Э	0.667	0.99	0.088	
Brody	26	0.709	$< 10^{-3}$	$< 10^{-3}$	
				15	
Heusner	357	0.668	0.91	$< 10^{-15}$	

 $M \ge 10$ kg:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
	_		4		
Kleiber	8	0./54	$< 10^{-4}$	0.66	
Drody	0	0.760	< 10 - 3	0.56	
Brody	9	0.760	$< 10^{-3}$	0.56	
Heusner	34	0.877	$< 10^{-12}$	$< 10^{-7}$	

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Analysis of residuals

- 1. Presume an exponent of your choice: 2/3 or 3/4.
- 2. Fit the prefactor ($\log_{10} c$) and then examine the residuals:

$$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$$

- 3. H_0 : residuals are uncorrelated H_1 : residuals are correlated.
- 4. Measure the correlations in the residuals and compute a *p*-value.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

onclusion

Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation Coefficient

Basic idea:

 $\hbox{$\iff$ $Given $\{(x_i,y_i)$, rank the $\{x_i\}$ and $\{y_i\}$ separately from smallest to largest. Call these ranks R_i and S_i.}$

 \Re Now calculate correlation coefficient for ranks, r_s :

8

$$r_s = \frac{\sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^n (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^n (S_i - \bar{S})^2}}$$

 $\ref{eq:special}$ Perfect correlation: x_i 's and y_i 's both increase monotonically.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Analysis of residuals

We assume all rank orderings are equally likely:

- R_s is distributed according to a Student's t-distribution $\mathcal D$ with N-2 degrees of freedom.
- Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter.
- Bonus: works for non-linear monotonic relationships as well.
- See Numerical Recipes in C/Fortran which contains many good things. [39]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

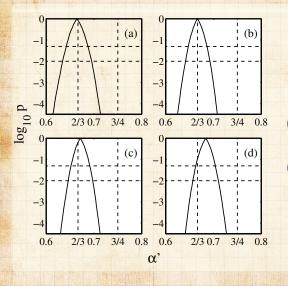
Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument


onclusion

Analysis of residuals—mammals

- (a) M < 3.2 kg
- (b) M < 10 kg,
- (c) M < 32 kg,
- (d) all mammals.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

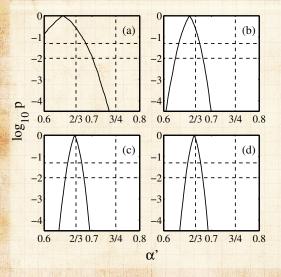
exponents

River networks

River networks

Earlier theories
Geometric

argument


Conclusion

Analysis of residuals—birds

- (a) M < 0.1 kg,
- (b) M < 1 kg,
- (c) M < 10 kg,
- (d) all birds.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories
Geometric

argument

Lonciusion

References

少 Q ← 45 of 126

Other approaches to measuring exponents:

- Clauset, Shalizi, Newman: "Power-law distributions in empirical data" [10] SIAM Review, 2009.
- See Clauset's page on measuring power law exponents

 (code, other goodies).
- See this collection of tweets for related amusement.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Impure scaling?:

- So: The exponent $\alpha=2/3$ works for all birds and mammals up to 10–30 kg
- For mammals > 10-30 kg, maybe we have a new scaling regime
- Possible connection?: Economos (1983)—limb length break in scaling around 20 kg [15]
- But see later: non-isometric growth leads to lower metabolic scaling. Oops.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

onclusion

The widening gyre:

Now we're really confused (empirically):

- White and Seymour, 2005: unhappy with large herbivore measurements ^[56]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.
- Glazier, BioScience (2006) [18]: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."
- Glazier, Biol. Rev. (2005) [17]: "Beyond the 3/4-power law": variation in the intra- and interspecific scaling of metabolic rate in animals."
- Savage et al., PLoS Biology (2008) [45] "Sizing up allometric scaling theory" Pro 3/4: problems claimed to be finite-size scaling.

COcoNuTS @networksvox

Optimal Supply Networks II

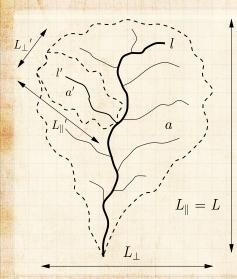
Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories


Geometric argument

Conclusion

Somehow, optimal river networks are connected:

🚵 a = drainage basin area

♣ ℓ = length of longest (main) stream

 $A = L_{\parallel} =$ longitudinal length of basin COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Mysterious allometric scaling in river networks

COCONUTS @networksvox

Optimal Supply Networks II

Death by 3 1957: J. T. Hack [19] fractions

Metabolism and Truthicide

"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

exponents

 $\ell \sim a^h$

River networks

 $h \sim 0.6$

Farlier theories

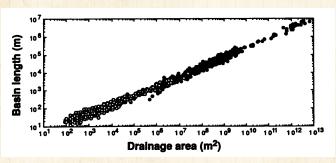
Geometric argument

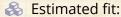
References

Subsequent studies: $0.5 \lesssim h \lesssim 0.6$

Another quest to find universality/god ...

Anomalous scaling: we would expect h = 1/2 ...


A catch: studies done on small scales.



Large-scale networks:

(1992) Montgomery and Dietrich [36]:

 $L \simeq 1.78a^{0.49}$

Mixture of basin and main stream lengths.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

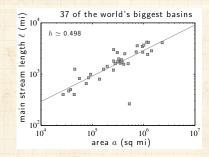
Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument


onclusion

World's largest rivers only:

Data from Leopold (1994) [31, 13]

 \Leftrightarrow Estimate of Hack exponent: $h = 0.50 \pm 0.06$

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

Earlier theories (1973-):

Building on the surface area idea:

- 🙈 McMahon (70's, 80's): Elastic Similarity [32, 34]
- Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)
- Disastrously, cites Hemmingsen [21] for surface area data.
- Appears to be true for ungulate legs ... [33]
- Metabolism and shape never properly connected.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Size and shape in biology"

T. McMahon, Science, **179**, 1201–1204, 1973. [32]

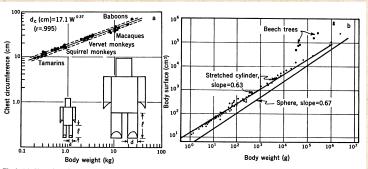


Fig. 3. (a) Chest circumference, d., plotted against body weight, W, for five species of primates. The broken lines represent the standard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, I, increases as the ½ power of diameter, d., is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for vertebrates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (3)].

@networksvox

Optimal Supply Networks II

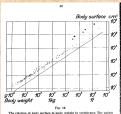
Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

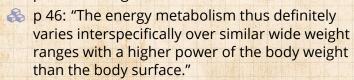
Earlier theories


Geometric argument

Conclusion

surrounded by a circle represent beech trees. The nuthorities of the data are in approximate order of hody sizes of organisms: Fishes (Yinca, Esaz, Salmo, Pleuronecles Jlesus, Anguilla, Crenilabrus, Lo-Srue: 9.84 p-2 kg), Jan Bokrius (unpublished). Frogs (3.5-32 g), lisards (3-13 g), Fay, 1914, p. 191. Ross excalente (25 and 50 g), Krosss, 1904, p. 404. Lizards (Locerta muralis and piridis, August fragilis: 5-26 g) and Ringed Snake (47-100 g), Isano, 1911, pp. 7-8. Teuch (Times: 211 g), frog (44 g), rabbit (3.6 kg), Very, 1930, no. 239, 244, 245, Dogs (7 and 30 kg), pigs, (3 and 100 kg), horses (175 and 900 kg), monkeys (2.5 and 5.5 kg), man (6 and 65 kg), Bacer, Convers and Marrietws, 1928, pp. 8, 30, 33 and 51. Snakes (rattle-snake, small and large python, box: 8.5-32 kg), Busineers, 1932, p. 146. Rate (20 and 250 g), cattle (20 and 460 kg), Becov, 1945, pp. 360, 361. Giant shark (2.75 t), rhinoceros (1 t), Hansensusan, 1950, pp. 30 and 43. Beech trees without leaves and roots (30 kg-1.3 t), Maller, Nittlsess and Mileage, 1954, tables 2-4 on pp. 277-281.

assuming a specific gravity of 1.0. Naturally, the inclination of this line corresponds to a proportionality power of 0.87. Of the unicellular organisms represented in fig. 1 not a few are subtrical in shape (the bacterium Sorcella, Saccharomyces, marine ergs); and most of the others have surfaces exceeding those of subserve of courst volume by rarely more than what corresponds to 0.1 decade in the log, ordinate system (Photobacterium abouthorescenz: 12 %, i.e. 0.05 decade, Escherichia coli: 34 %, i. c. 0.13 decade, the ciliates Colpidium and Paramaccium: 19-22 %, i.e. about 0.08-0.09 decade; calculated on the basis of data of Pürren, 1924, table 7 on p. 108, and Hanvey, 1928, table 1). Similar figures probably hold for other ciliates. Only the fluorilates represented (Trapanosomidae, Astesia Mebril) and certain amorboe are likely to deviate by higher figures. The surface values of the unicellular organisms represented in fig. 1 will, therefore, fall either on, or in most other cases less than 0.1 decade above, a line representing the relation between surface


It will be seen from flg. 10 that the points representing the holy surfaces of the metasies minute in question are present purable to the updown fleet fleet fleet in the state of the contrastility power of 10 June 10 June

and volume of spheres.

hody surface in cm² = k · body weight^{0,07}

as Inhularized by BESGENCY (1938, p. 176) for various birds and mammals weighing 8 g—14 kg; because this is about double the value of k for sphere surface (4.88). The value of k (13.96) found by KBOSEA (1940) for Arrayris is 20 times 4.88, and this corresponds well with the above mentioned figure 3 for the much larger retition of similar shape.

Hemmingsen's "fit" is for a 2/3 power, notes possible 10 kg transition. [?]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Earlier theories (1977):

Building on the surface area idea ...

Blum (1977)^[5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$d = 3$$
 gives $\alpha = 2/3$

$$d = 4$$
 gives $\alpha = 3/4$

So we need another dimension ...

Obviously, a bit silly... [46]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

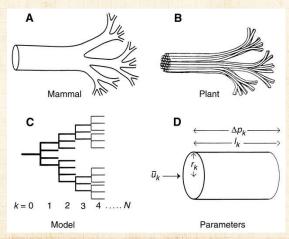
exponents

River networks

Earlier theories

Geometric argument

Conclusion



Nutrient delivering networks:

3 1960's: Rashevsky considers blood networks and finds a 2/3 scaling.

3/4 scaling. 1997: West *et al.* [53] use a network story to find

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

少 a ○ 57 of 126

Nutrient delivering networks:

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:

 $P \propto M^{3/4}$

networks are fractal

quarter powers everywhere

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Impedance measures:

Poiseuille flow (outer branches):

$$Z = \frac{8\mu}{\pi} \sum_{k=0}^{N} \frac{\ell_k}{r_k^4 N_k}$$

Pulsatile flow (main branches):

$$Z \propto \sum_{k=0}^N \frac{h_k^{1/2}}{r_k^{5/2} N_k}$$

- Wheel out Lagrange multipliers ...
- \red Poiseuille gives $P \propto M^1$ with a logarithmic correction.
- Pulsatile calculation explodes into flames.

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Not so fast ...

COcoNuTS
@networksvox
Optimal Supply

Networks II

Actually, model shows:

Metabolism and Truthicide

Death by fractions

 $P \propto M^{3/4}$ does not follow for pulsatile flow networks are not necessarily fractal.

exponents
River networks

Do find:

River networks

Amurray's cube law (1927) for outer branches: [37]

Earlier theories
Geometric

$$r_0^3 = r_1^3 + r_2^3$$

argument

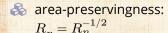
Impedance is distributed evenly.

References

Some Can still assume networks are fractal.

Connecting network structure to α

1. Ratios of network parameters:


$$R_n = \frac{n_{k+1}}{n_k}, \ R_\ell = \frac{\ell_{k+1}}{\ell_k}, \ R_r = \frac{r_{k+1}}{r_k}$$

2. Number of capillaries $\propto P \propto M^{\alpha}$.

$$\Rightarrow \boxed{\alpha = -\frac{\ln\!R_n}{\ln\!R_r^2 R_\ell}}$$

(also problematic due to prefactor issues)

Obliviously soldiering on, we could assert:

$$\Rightarrow \alpha = 3/4$$

 $\red space-fillingness: R_\ell = R_n^{-1/3}$

@networksvox

Optimal Supply Networks II

COCONUTS

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Data from real networks:

Network	R_n	R_r	R_{ℓ}	$-rac{\ln\!R_r}{\ln\!R_n}$	$-\frac{\ln\!R_\ell}{\ln\!R_n}$	α
West <i>et al</i> .	-	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) (Turcotte <i>et al.</i> ^[50])	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX) pig (RCA)	3.57 3.50 3.51	1.89 1.81 1.84	2.20 2.12 2.02	0.50 0.47 0.49	0.62 0.60 0.56	0.62
pig (LAD)	3.31	1.04	2.02	0.49	0.56	0.65
human (PAT) human (PAT)	3.03 3.36	1.60 1.56	1.49 1.49	0.42 0.37	0.36 0.33	0.83 0.94

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories
Geometric

argument

Attempts to look at actual networks:

"Testing foundations of biological scaling theory using automated measurements of vascular networks"

Newberry, Newberry, and Newberry, PLoS Comput Biol, **11**, e1004455, 2015. [38]

"_"

Newberry et al., PLoS Comput Biol, **11**, e1004455, . [?] COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Some people understand it's truly a disaster:

"Power, Sex, Suicide: Mitochondria and the Meaning of Life" **3** 🗷 by Nick Lane (2005). [30]

"As so often happens in science, the apparently solid foundations of a field turned to rubble on closer inspection."

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Let's never talk about this again:

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms" (2

West, Brown, and Enquist, Science Magazine, **284**, 1677–1679, 1999. [54]

- No networks: Scaling argument for energy exchange area a.
- Distinguish between biological and physical length scales (distance between mitochondria versus cell radius).
- & Buckingham π action. [9]
- New disaster: after going on about fractality of a, then state $v \propto a\ell$ in general.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"It was the epoch of belief, it was the epoch of incredulity"

"A General Model for the Origin of Allometric Scaling Laws in Biology" West, Brown, and Enquist, Science, **276**, 122–126, 1997. [53]

"Nature"

West, Brown, and Enquist, Nature, **400**, 664–667, 1999. [55]

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science Magazine, **284**, 1677–1679, 1999. [54] COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [28]

J. H. Brown, G. B. West, and B. J. Enquist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735–738, 2005. [7]

J. Kozlowski, M. Konarzewski. "West, Brown and Enquist's model of allometric scaling again: the same questions remain." Functional Ecology 19: 739–743, 2005. COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Curvature in metabolic scaling"
Kolokotrones, Savage, Deeds, and Fontana.
Nature, **464**, 753, 2010. [27]

Let's try a quadratic:

$$\log_{10}P\sim\log_{10}c+\alpha_1\log_{10}M+\alpha_2\log_{10}M^2$$

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents
River networks

River Hetworks

Earlier theories

Geometric argument

Conclusion

Yah:

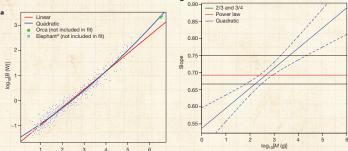


Figure 1 | Curvature in metabolic scaling. a, Lincar (red) and quadratic (blue) fits (not including temperature) of log₁₆B versus log₂₆M. The orca (green square) and Asian elephant (ref. 4 truquoise square at larger mass) are not included in the fit, but are predicted well. Differences in the quality of fit are best seen in terms of the conditional mean of the error, estimated by the lowes (locally-weighted scatterplot smoothing) fit of the residuals (Supplementary Information). See Table 1 for the values of the coefficients obtained from the fit. b, Slope of the quadratic fit (including temperature) with pointwise 99% confidence intervals (blue.) It solpe of the power-law fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for comparison. This panel suggests that exponents estimated by assuming a power law will be highly sensitive to the mass range of the data set used, as shown in Fig. 2.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

"This raises the question of whether the theory can be adapted to agree with the data"1

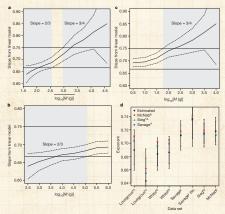


Figure 2 | Scaling exponent depends on mass range. a, Slope estimated by linear regression within a three log-unit mass range (smaller near the boundaries). Values on the abscissa denote mean logoM within the range. When the 95% confidence regions (dashed lines) include the 2/3 or 3/4 lines. the local slope is consistent with a 2/3 or 3/4 exponent, respectively. These cases are indicated by the shaded regions (2/3 on the left and 3/4 on the right), b. Slope estimated by using all data points with $M \le x$. The shaded region is consistent with 2/3 slope estimates, c. Slope estimated by using all data points with M > x. The shaded region is consistent with 3/4 slope

estimates. d, Exponents estimated for eight historical data sets using linear regression (black filled circles): Lovegrove13, Lovegrove14, White18, White28, Sieg16, McNab8, and Savage6 using species average data ('Savage6') and binned data ('Savage' bin'). Exponents predicted using coefficients from quadratic fits to McNab's (red), Sieg's (green), or Savage's (blue) data and the first three moments of loganM (Supplementary Information). Thick lines represent uncorrected 95% confidence intervals. Thin lines are multiplicity corrected intervals

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Evolution has generally made things bigger¹

"The Phantom Tollbooth" **3** 2 by Norton Juster (1961). [24]

 \Re Regression starting at high M makes ...no sense

COcoNuTS
@networksvox
Optimal Supply

Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric

Conclusion

¹Yes, yes, yes: insular dwarfism with the shrinkage

Still going:

"A general model for metabolic scaling in self-similar asymmetric networks" Brummer, Brummer, and Enquist, PLoS Comput Biol, **13**, e1005394, 2017. [8]

Wut?:

"Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks."

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Oh no:

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" **3**, by Geoffrey B. West (2017). [52]

Amazon reviews excerpts (so, so not fair but ...):

- "Full of intriguing, big ideas but amazingly sloppy both in details and exposition, especially considering the author is a theoretical physicist."
- "The beginning is terrible. He shows four graphs to illustrate scaling relationships, none of which have intelligible scales"
- "(he actually repeats several times that businesses can die but are not really an animal - O RLY?)"

COcoNuTS @networksvox

Optimal Supply Networks II

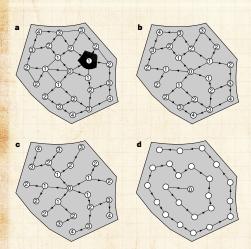
Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories


Geometric argument

Conclusion

Simple supply networks:

Banavar et al., Nature, (1999)[1].

- Flow rate argument.
- Ignore impedance.
- Very general attempt to find most efficient transportation networks.

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories Geometric

argument

Simple supply networks

Banavar et al. find 'most efficient' networks with

$$P \propto M^{d/(d+1)}$$

🚵 ...but also find

$$V_{
m network} \propto M^{(d+1)/d}$$

$$d = 3$$
:

$$V_{\rm blood} \propto M^{4/3}$$

 \Leftrightarrow Consider a 3 g shrew with $V_{blood} = 0.1 V_{body}$

$$\Longrightarrow$$
 3000 kg elephant with $V_{\rm blood}$ = $10V_{\rm body}$

COcoNuTS @networksvox

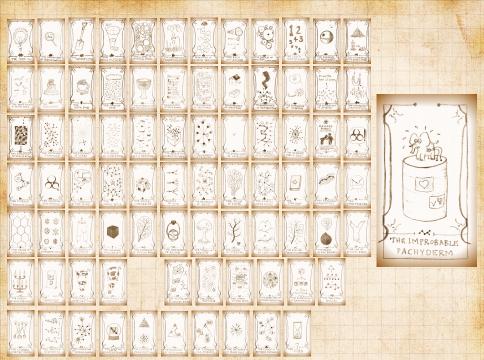
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

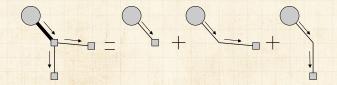
exponents

River networks


Earlier theories

Geometric argument

Conclusion



"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]

- Consider one source supplying many sinks in a d-dim. volume in a D-dim. ambient space.
- Assume sinks are invariant.
- \Leftrightarrow Assume sink density $\rho = \rho(V)$.
- Assume some cap on flow speed of material.
- See network as a bundle of virtual vessels:

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents
River networks

Earlier theories

Geometric argument

Conclusion

References

少 a @ 77 of 126

Q: how does the number of sustainable sinks N_{sinks} scale with volume V for the most efficient network design?

 \mathfrak{S} Or: what is the highest α for $N_{\text{sinks}} \propto V^{\alpha}$?

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

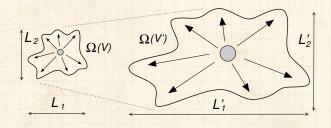
Death by fractions

exponents

River networks

Earlier theories

Geometric argument


Conclusion

Allometrically growing regions:

A Have d length scales which scale as

$$L_i \propto V^{\gamma_i}$$
 where $\gamma_1 + \gamma_2 + ... + \gamma_d = 1$.

 \Leftrightarrow For isometric growth, $\gamma_i = 1/d$.

For allometric growth, we must have at least two of the $\{\gamma_i\}$ being different

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents River networks

Farlier theories

Geometric argument

2 9 0 79 of 126

Spherical cows and pancake cows:

Assume an isometrically Scaling family of cows:

Extremes of allometry: The pancake cows-

COcoNuTS @networksvox

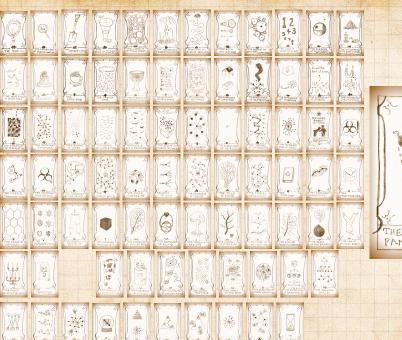
Optimal Supply Networks II

Metabolism and Truthicide

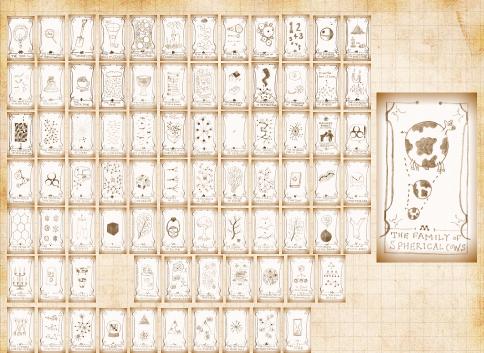
Death by fractions

Measuring exponents

River networks


Earlier theories

Geometric


Conclusion

Spherical cows and pancake cows:

Question: How does the surface area S_{cow} of our two types of cows scale with cow volume V_{cow} ? Insert question from assignment $4 \ \square$

Question: For general families of regions, how does surface area S scale with volume V? Insert question from assignment $4 \, \square$

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

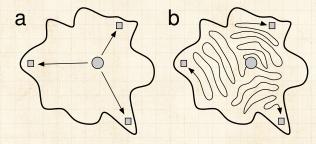
Death by fractions

exponents

River networks

Earlier theories

Geometric argument


Conclusion

Best and worst configurations (Banavar et al.)

Rather obviously:

 $minV_{net} \propto \sum$ distances from source to sinks.

COCONUTS @networksvox

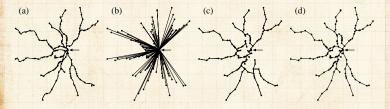
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks


Farlier theories

Geometric argument

Real supply networks are close to optimal:

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" [16]

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

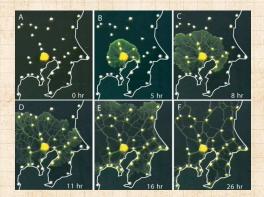
Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument


Coriciasion

"Rules for Biologically Inspired Adaptive Network Design" Tero et al., Science, **327**, 439-442, 2010. [49]

Urban deslime in action:

https://www.youtube.com/watch?v=GwKuFREOgmo

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

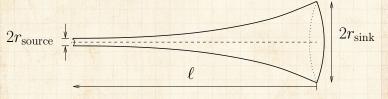
exponents

River networks

Earlier theories

Geometric argument

Conclusion


References

少 Q ← 86 of 126

We add one more element:

- Vessel cross-sectional area may vary with distance from the source.
- Flow rate increases as cross-sectional area decreases.
- e.g., a collection network may have vessels tapering as they approach the central sink.
- Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

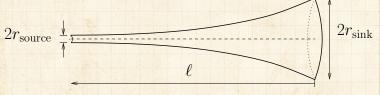
Death by fractions

exponents

River networks

Farlier theories

Earlier theories


Geometric argument

Correlation

Effecting scaling:

- & Consider vessel radius $r \propto (\ell+1)^{-\epsilon}$, tapering from $r = r_{\text{max}}$ where $\epsilon \geq 0$.
- \clubsuit Gives $v \propto \ell^{1-2\epsilon}$ if $\epsilon < 1/2$
- \Leftrightarrow Gives $v \propto 1 \ell^{-(2\epsilon 1)} \to 1$ for large ℓ if $\epsilon > 1/2$
- \red Previously, we looked at $\epsilon = 0$ only.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

Conclusion

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\mathrm{min} V_{\mathrm{net}} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert question from assignment 4 🗹

$$\propto
ho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max}=\max_i \gamma_i$.

For $\epsilon > 1/2$, find simply that

$$\min V_{\rm net} \propto \rho V$$

So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible. COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

少 Q ← 89 of 126

For $0 \le \epsilon < 1/2$:

$$\mathrm{min}V_{\mathrm{net}} \propto \rho V^{1+\gamma_{\mathrm{max}}(1-2\epsilon)}$$

 \mathfrak{R} If scaling is isometric, we have $\gamma_{\mathsf{max}} = 1/d$:

$${\sf min}V_{\sf net/iso} \propto
ho V^{1+(1-2\epsilon)/d}$$

\$ If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and

$$ext{min}V_{ ext{net/allo}} \propto
ho V^{1+(1-2\epsilon)\gamma_{ ext{allo}}}$$

Isometrically growing volumes require less network volume than allometrically growing volumes:

$$\frac{\mathrm{min}V_{\mathrm{net/iso}}}{\mathrm{min}V_{\mathrm{net/allo}}} \rightarrow 0 \text{ as } V \rightarrow \infty$$

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

For $\epsilon > 1/2$:

 $\mathsf{min}V_\mathsf{net} \propto
ho V$

Network volume scaling is now independent of overall shape scaling.

Limits to scaling

- Limit to how fast material can move, and how small material packages can be.
- & e.g., blood velocity and blood cell size.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

This is a really clean slide

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Blood networks

Velocity at capillaries and aorta approximately constant across body size [51]: $\epsilon = 0$.

Material costly ⇒ expect lower optimal bound of $V_{\rm net} \propto \rho V^{(d+1)/d}$ to be followed closely.

 \Leftrightarrow For cardiovascular networks, d = D = 3.

Blood volume scales linearly with body volume [47], $V_{\rm net} \propto V$.

Sink density must : decrease as volume increases:

$$\rho \propto V^{-1/d}$$
.

Density of suppliable sinks decreases with organism size.

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

Blood networks

 \Leftrightarrow Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

 \clubsuit For d=3 dimensional organisms, we have

$$P \propto M^{2/3}$$

Including other constraints may raise scaling exponent to a higher, less efficient value.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

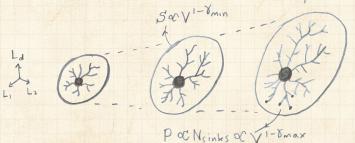
exponents

River networks

Earlier theories

Geometric argument

Conclusion



8

Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes.

Insert question from assignment 4

The surface area-supply network mismatch for allometrically growing shapes:

COcoNuTS @networksvox

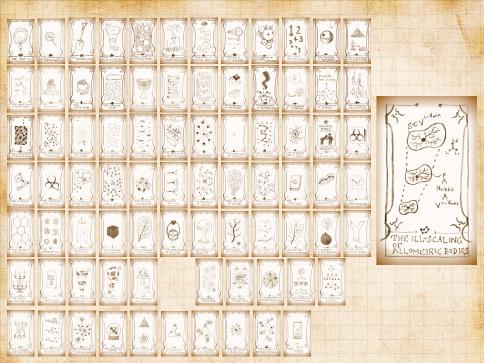
Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks


Earlier theories

Geometric

Conclusion

Recall:

The exponent $\alpha=2/3$ works for all birds and mammals up to 10–30 kg

For mammals > 10-30 kg, maybe we have a new scaling regime

Economos: limb length break in scaling around 20 kg

Mhite and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 \pm 0.014$

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Prefactor:

Stefan-Boltzmann law:

$$\frac{\mathsf{d}E}{\mathsf{d}t} = \sigma S T^4$$

where S is surface and T is temperature.

Very rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S:

$$B \simeq 10^5 M^{2/3}$$
erg/sec.

& Measured for $M \leq 10$ kg:

$$B = 2.57 \times 10^5 M^{2/3}$$
erg/sec.

COcoNuTS @networksvox

Optimal Supply Networks II

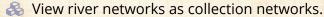
Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories


Geometric argument

CONCIDION

River networks

Many sources and one sink.

& ϵ ?

 \clubsuit Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{\,3/2}$$

Network volume grows faster than basin 'volume' (really area).

It's all okay:

Landscapes are d=2 surfaces living in D=3 dimensions.

Streams can grow not just in width but in depth ...

& If $\epsilon > 0$, V_{net} will grow more slowly but 3/2 appears to be confirmed from real data.

COcoNuTS @networksvox

Optimal Supply Networks II

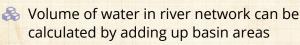
Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories


Geometric argument

Conclusion

Hack's law

🙈 Flows sum in such a way that

$$V_{\mathsf{net}} = \sum_{\mathsf{all \ pixels}} a_{\mathsf{pixel} \ i}$$

Hack's law again:

$$\ell \sim a^h$$

🙈 Can argue

$$V_{\rm net} \propto V_{\rm basin}^{1+h} = a_{\rm basin}^{1+h}$$

where h is Hack's exponent.

🚵 .: minimal volume calculations gives

$$h = 1/2$$

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

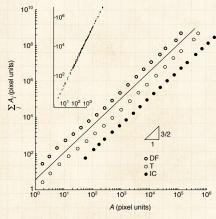
exponents

River networks

Earlier theories
Geometric

argument

Conclusion


Real data:

Banavar et al.'s approach [1] is okay because ρ really is constant.

The irony: shows optimal basins are isometric

Optimal Hack's law: $\ell \sim a^h$ with h=1/2

🙈 (Zzzzz)

From Banavar et al. (1999)^[1]

COcoNuTS @networksvox

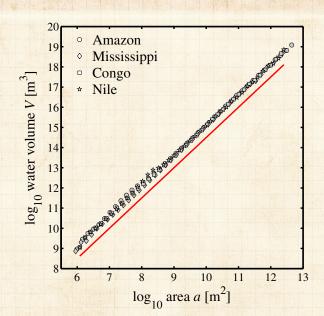
Optimal Supply Networks II

Metabolism and Truthicide

Death by

exponents

River networks


Earlier theories

Geometric argument

Even better—prefactors match up:

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

The Cabal strikes back:

Banavar et al., 2010, PNAS: "A general basis for quarter-power scaling in animals." [2]

It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always < 1, > 2/3, and often very close to 3/4."

Cough, cough, cough, hack, wheeze, cough.

COcoNuTS @networksvox

Optimal Supply Networks II

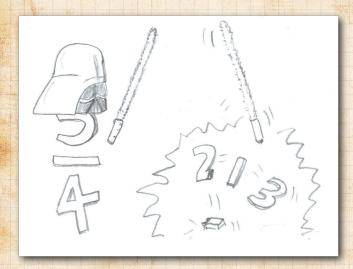
Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories


Geometric argument

Correlation

Stories—Darth Quarter:

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusio

Some people understand it's truly a disaster:

Peter Sheridan Dodds, Theoretical Biology's Buzzkill

By Mark Changizi | February 9th 2010 03:24 PM | 1 comment | ← Print | ← Femail | Track Comments

There is an apocryphal story about a graduate mathematics student at the University of Virginia studying the properties of certain mathematical objects. In his fifth year some killjoy bastard elsewhere published a paper proving that there are no such mathematical objects. He dropped out of the program, and I never did hear where

he is today. He's probably making my cappuccino right now.

This week, a professor named Peter Sheridan Dodds published a new paper in Physical Review Letters further fleshing out a theory concerning why a 2/3 power law may apply for metabolic rate. The 2/3 law says that metabolic rate in animals rises as the 2/3 power of body mass. It was in a 2001 Journal of Theoretical Biology paper that he first argued that perhaps a 2/3 law applies, and that paper -- along with others such as the one that just appeared -- is what has put him in the Killiov Hall of Fame. The University of Virginia's killjoy was a mere amateur.

Mark Changizi

MORE ARTICLES

- . The Ravenous Color-Blind: New Developments For Color-Deficients
- · Don't Hold Your Breath Waiting For Artificial Brains
- · Welcome To Humans. Version 3.0

AROUT MARK

Mark Changizi is Director of Human Cognition at 2AL and the author of The Vision Revolution (Benbella 2009) and Harnessed: How

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Farlier theories

Geometric argument

The unnecessary bafflement continues:

"Testing the metabolic theory of ecology" [40]

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson Ecology Letters, **15**, 1465–1474, 2012.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

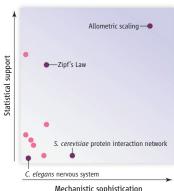
Measuring

exponents

River networks

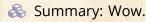
Earlier theories

Geometric argument


Conclusion

Artisanal, handcrafted

"Critical truths about pow Stumpf and Porter, Scien



the level of statistical support—as measured in (16. 21)—and our opinion about the mechanistic sophistication underlying hypothetical generative models for various reported power laws. Some relationships are identified by name; the others reflect the general characteristics of a wide range of reported power laws. Allometric scaling stands out from the other power laws reported for complex systems.

How good is your power law? The chart reflects

Call generalization of Central Limit Theorem, stable distributions. Also: PLIPLO action.

COCONUTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Farlier theories

Geometric argument

20 0 107 of 126

Conclusion

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D = d versus D > d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.
- 3/4-scaling? Jury ruled a mistrial.
- The truth will out. Maybe.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References I

[1] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks.

Nature, 399:130–132, 1999. pdf

[2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, and A. Maritan. A general basis for quarter-power scaling in animals.

Proc. Natl. Acad. Sci., 107:15816–15820, 2010. pdf

[3] P. Bennett and P. Harvey.
Active and resting metabolism in birds—allometry, phylogeny and ecology.
J. Zool., 213:327–363, 1987. pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References II

[4] K. L. Blaxter, editor.

Energy Metabolism; Proceedings of the 3rd
symposium held at Troon, Scotland, May 1964.

Academic Press, New York, 1965.

[5] J. J. Blum.

On the geometry of four-dimensions and the relationship between metabolism and body mass.

J. Theor. Biol., 64:599-601, 1977. pdf

[6] S. Brody.

Bioenergetics and Growth.

Reinhold, New York, 1945.

reprint, pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References III

[7] J. H. Brown, G. B. West, and B. J. Enquist. Yes, West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?

Functional Ecology, 19:735--738, 2005. pdf

[8] A. B. Brummer, S. V. M., and B. J. Enquist. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput Biol, 13, 2017. pdf

[9] E. Buckingham.
On physically similar systems: Illustrations of the use of dimensional equations.
Phys. Rev., 4:345–376, 1914, pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusio

References IV

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51:661–703, 2009. pdf

[11] M. H. DeGroot.

Probability and Statistics.

Addison-Wesley, Reading, Massachusetts, 1975.

[12] P. S. Dodds.

Optimal form of branching supply and collection networks.

Phys. Rev. Lett., 104(4):048702, 2010. pdf

[13] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents
River networks

Kivei Hetworks

Earlier theories

Geometric argument

Conclusion

References V

[14] P. S. Dodds, D. H. Rothman, and J. S. Weitz.

Re-examination of the "3/4-law" of metabolism.

Journal of Theoretical Biology, 209:9–27, 2001.

pdf

[15] A. E. Economos.
Elastic and/or geometric similarity in mammalian design.

Journal of Theoretical Biology, 103:167–172, 1983. pdf ☑

[16] M. T. Gastner and M. E. J. Newman.
Shape and efficiency in spatial distribution networks.

J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006. pdf 2

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References VI

[17] D. S. Glazier.

Beyond the '3/4-power law': variation in the intraand interspecific scaling of metabolic rate in animals.

Biol. Rev., 80:611-662, 2005. pdf

[18] D. S. Glazier.

The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals.

BioScience, 56:325-332, 2006. pdf

[19] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45−97, 1957. pdf ✓

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References VII

[20] A. Hemmingsen.

The relation of standard (basal) energy metabolism to total fresh weight of living organisms.

Rep. Steno Mem. Hosp., 4:1-58, 1950. pdf

[21] A. Hemmingsen.

Energy metabolism as related to body size and respiratory surfaces, and its evolution.

Rep. Steno Mem. Hosp., 9:1–110, 1960. pdf

[22] A. A. Heusner.

Size and power in mammals.

Journal of Experimental Biology, 160:25–54, 1991. pdf ☑

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References VIII

[23] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose.

A general scaling law reveals why the largest animals are not the fastest.

Nature Ecology & Evolution, 1:1116, 2017. pdf

[24] N. Juster.

The Phantom Tollbooth.

Random House, 1961.

[25] M. Kleiber.

Body size and metabolism.

Hilgardia, 6:315–353, 1932. pdf ✓

[26] M. Kleiber.

The Fire of Life. An Introduction to Animal
Energetics.

Wiley, New York, 1961.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References IX

[27] T. Kolokotrones, V. Savage, E. J. Deeds, and W. Fontana.

Curvature in metabolic scaling.

Nature, 464:753, 2010. pdf

[28] J. Kozłowski and M. Konarzewski. Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?

Functional Ecology, 18:283--289, 2004. pdf

[29] P. La Barbera and R. Rosso.
On the fractal dimension of stream networks.
Water Resources Research, 25(4):735–741, 1989.
pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References X

[30] N. Lane.

Power, Sex, Suicide: Mitochondria and the Meaning of Life.

Oxford University Press, Oxford, UK, 2005.

[31] L. B. Leopold.

A View of the River.

Harvard University Press, Cambridge, MA, 1994.

[32] T. McMahon.

Size and shape in biology.

Science, 179:1201–1204, 1973. pdf

[33] T. A. McMahon.
Allometry and biomechanics: Limb bones in adult ungulates.
The American Naturalist, 100:547, 563, 1075

The American Naturalist, 109:547–563, 1975.

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

raver networks

Earlier theories

Geometric argument

Conclusion

References XI

[34] T. A. McMahon and J. T. Bonner.

On Size and Life.

Scientific American Library, New York, 1983.

[35] N. Meyer-Vernet and J.-P. Rospars.
How fast do living organisms move: Maximum speeds from bacteria to elephants and whales.

American Journal of Physics, pages 719–722, 2015. pdf

[36] D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape scale.

Science, 255:826-30, 1992. pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XII

@networksvox
Optimal Supply
Networks II

[37] C. D. Murray.

A relationship between circumference and weight in trees and its bearing on branching angles.

J. Gen. Physiol., 10:725–729, 1927. pdf

[38] M. G. Newberry, E. D. B., and S. V. M.

Testing foundations of biological scaling theory using automated measurements of vascular networks.

PLoS Comput Biol, 11:e1004455, 2015. pdf

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C.

Cambridge University Press, second edition, 1992.

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XIII

[40] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15:1465–1474, 2012. pdf

[41] J. M. V. Rayner.

Linear relations in biomechanics: the statistics of scaling functions.

J. Zool. Lond. (A), 206:415-439, 1985. pdf

[42] M. Rubner.

Ueber den einfluss der körpergrösse auf stoffund kraftwechsel.

Z. Biol., 19:535-562, 1883. pdf

COcoNuTS @networksvox

Optimal Supply Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XIV

[44] Sarrus and Rameaux.

de Médecine.

pdf

COCONUTS @networksvox **Optimal Supply** Networks II

[43] P. A. Samuelson. A note on alternative regressions. Econometrica, 10:80-83, 1942. pdf Metabolism and Truthicide

fractions exponents

Death by

River networks

Farlier theories

Geometric argument

References

Bull, Acad. R. Méd. (Paris), 3:1094-1100, 1838-39. [45] V. M. Savage, E. J. Deeds, and W. Fontana. Sizing up allometric scaling theory. PLoS Computational Biology, 4:e1000171, 2008.

Rapport sur une mémoire adressé à l'Académie

References XV

COcoNuTS @networksvox Optimal Supply Networks II

[46] J. Speakman.

On Blum's four-dimensional geometric explanation for the 0.75 exponent in metabolic allometry.

J. Theor. Biol., 144(1):139–141, 1990. pdf

[47] W. R. Stahl.
Scaling of respiratory variables in mammals.
Journal of Applied Physiology, 22:453–460, 1967.

[48] M. P. H. Stumpf and M. A. Porter.
Critical truths about power laws.
Science, 335:665–666, 2012. pdf

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XVI

[49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki.

Rules for biologically inspired adaptive network design.

Science, 327(5964):439-442, 2010. pdf

- [50] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf
- [51] P. D. Weinberg and C. R. Ethier.

 Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas.

 Journal of Biomechanics, 40(7):1594–1598, 2007.

 pdf

COcoNuTS
@networksvox
Optimal Supply
Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XVII

[52] G. B. West.

Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies.

Penguin Press, New York, 2017.

[53] G. B. West, J. H. Brown, and B. J. Enquist.
A general model for the origin of allometric scaling laws in biology.

Science 276:122-126, 1997, pdf 7

Science, 276:122-126, 1997. pdf

[54] G. B. West, J. H. Brown, and J. Enquist.

The fourth dimension of life: Fractal geometry and allometric scaling of organisms.

Science Magazine, 284:1677–1679, 1999. pdf

COcoNuTS
@networksvox
Optimal Supply
Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XVIII

[55] G. B. West, J. H. Brown, and J. Enquist.
Nature.

Nature, 400:664-667, 1999. pdf

[56] C. R. White and R. S. Seymour.

Allometric scaling of mammalian metabolism.

J. Exp. Biol., 208:1611–1619, 2005. pdf

COcoNuTS
@networksvox
Optimal Supply
Networks II

Metabolism and Truthicide

Death by fractions

exponents

River networks

Earlier theories

Geometric argument

Conclusion

