#### **Optimal Supply Networks I: Branching**

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

#### Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

200 1 of 31

### These slides are brought to you by:

### Sealie & Lambie Productions

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



20f31

#### These slides are also brought to you by:

#### **Special Guest Executive Producer**



On Instagram at pratchett\_the\_cat

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



200 3 of 31

### Outline

#### **Optimal transportation**

Optimal branching Murray's law Murray meets Tokunaga

#### References

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### What's the best way to distribute stuff?

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



# What's the best way to distribute stuff?

🗞 Stuff = medical services, energy, people, ...

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### What's the best way to distribute stuff?

Stuff = medical services, energy, people, ...
 Some fundamental network problems:



Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



290 5 of 31

#### What's the best way to distribute stuff?

Stuff = medical services, energy, people, ...
 Some fundamental network problems:

 Distribute stuff from a single source to many sinks

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### What's the best way to distribute stuff?

- Stuff = medical services, energy, people, ...
   Some fundamental network problems:
  - 1. Distribute stuff from a single source to many sinks
  - 2. Distribute stuff from many sources to many sinks

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



290 5 of 31

#### What's the best way to distribute stuff?

- Stuff = medical services, energy, people, ...
  Some fundamental network problems:
  - 1. Distribute stuff from a single source to many sinks
  - 2. Distribute stuff from many sources to many sinks
  - 3. Redistribute stuff between nodes that are both sources and sinks

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



290 5 of 31

#### What's the best way to distribute stuff?

- Stuff = medical services, energy, people, ...
  Some fundamental network problems:
  - 1. Distribute stuff from a single source to many sinks
  - 2. Distribute stuff from many sources to many sinks
  - 3. Redistribute stuff between nodes that are both sources and sinks
- Supply and Collection are equivalent problems

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



29 CP 5 of 31



### Basic question for distribution/supply networks: & How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where  $I_j$  = current on link jand  $Z_j$  = link j's impedance? COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



### Basic question for distribution/supply networks: & How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where  $I_j$  = current on link jand  $Z_j$  = link j's impedance?  $\clubsuit$  Example:  $\gamma = 2$  for electrical networks. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



29 C 7 of 31







COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References

### (a) $\gamma > 1$ : Braided (bulk) flow (b) $\gamma < 1$ : Local minimum: Branching flow (c) $\gamma < 1$ : Global minimum: Branching flow Note: This is a single source supplying a region.

From Bohn and Magnasco<sup>[3]</sup> See also Banavar *et al.*<sup>[1]</sup>: "Topology of the Fittest Transportation Network"; focus is on presence or absence of loops—same story



### Single source optimal supply Optimal paths related to transport (Monge) problems C:



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References

"Optimal paths related to transport problems" Qinglan Xia, Communications in Contemporary Mathematics, **5**, 251–279, 2003. <sup>[19]</sup>



#### Growing networks—two parameter model: [20]

FIGURE 1.  $\alpha = 0.6, \beta = 0.5$ 



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References

A Parameters control impedance (0 ≤ α < 1) and angles of junctions (0 < β)</li>
A For this example: α = 0.6 and β = 0.5

10 20

্য 👸 সহক 10 of 31

#### Growing networks: [20]



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References

δ Top:  $\alpha = 0.66$ ,  $\beta = 0.38$ ; Bottom:  $\alpha = 0.66$ ,  $\beta = 0.70$ 



DQC 11 of 31

#### An immensely controversial issue ...

The form of natural branching networks: Random, optimal, or some combination?<sup>[6, 18, 2, 5, 4]</sup> COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### An immensely controversial issue ...

- The form of natural branching networks: Random, optimal, or some combination? <sup>[6, 18, 2, 5, 4]</sup>
- 🚓 River networks, blood networks, trees, ...

#### Two observations:

Self-similar networks appear everywhere in nature for single source supply/single sink collection.

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



29 CP 12 of 31

#### An immensely controversial issue ...

- The form of natural branching networks: Random, optimal, or some combination? <sup>[6, 18, 2, 5, 4]</sup>
- 🚓 River networks, blood networks, trees, ...

#### Two observations:

Self-similar networks appear everywhere in nature for single source supply/single sink collection.
 Real networks differ in details of scaling but reasonably agree in scaling relations.

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



29 CP 12 of 31

#### **River network models**

#### Optimality:

Optimal channel networks<sup>[13]</sup>
 Thermodynamic analogy<sup>[14]</sup>

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### **River network models**

#### **Optimality:**

Optimal channel networks<sup>[13]</sup> Thermodynamic analogy<sup>[14]</sup>

#### versus ...

#### Randomness:



Scheidegger's directed random networks

Undirected random networks

COCONUTS @networksvox

**Optimal Supply** Networks I

Optimal transportation

Optimal branching Murrav's law Murray meets Tokunaga





### Outline

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

#### Optimal branching Murray's law



5

Murray's law (1926) connects branch radii at forks: <sup>[11, 10, 12, 7, 16]</sup>

$$r_0^3 = r_1^3 + r_2^3$$

where  $r_0 = radius$  of main branch, and  $r_1$  and  $r_2$  are radii of sub-branches. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



990 16 of 31

Murray's law (1926) connects branch radii at forks: <sup>[11, 10, 12, 7, 16]</sup>

$$r_0^3 = r_1^3 + r_2^3$$

where  $r_0$  = radius of main branch, and  $r_1$  and  $r_2$  are radii of sub-branches. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

Holds up well for outer branchings of blood networks.



Murray's law (1926) connects branch radii at forks: <sup>[11, 10, 12, 7, 16]</sup>



where  $r_0 = radius$  of main branch, and  $r_1$  and  $r_2$  are radii of sub-branches. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

الله الحمالي المحمول ا محمول المحمول المحم محمول المحمول المح

Holds up well for outer branchings of blood networks.

Also found to hold for trees <sup>[12, 8]</sup> when xylem is not a supporting structure <sup>[9]</sup>.

Murray's law (1926) connects branch radii at forks: <sup>[11, 10, 12, 7, 16]</sup>

 $r_0^3 = r_1^3 + r_2^3$ 

where  $r_0 = radius$  of main branch, and  $r_1$  and  $r_2$  are radii of sub-branches. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

Holds up well for outer branchings of blood networks.

Also found to hold for trees <sup>[12, 8]</sup> when xylem is not a supporting structure <sup>[9]</sup>.

See D'Arcy Thompson's "On Growth and Form" for background and general inspiration <sup>[15, 16]</sup>.

UVN S

So Use hydraulic equivalent of Ohm's law:  $\Delta p = \Phi Z \Leftrightarrow V = IR$ 

where  $\Delta p$  = pressure difference,  $\Phi$  = flux.





Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Solution Use hydraulic equivalent of Ohm's law:  $\Delta p = \Phi Z \Leftrightarrow V = IR$ 

where  $\Delta p$  = pressure difference,  $\Phi$  = flux.

Fluid mechanics: Poiseuille impedance for smooth Poiseuille flow in a tube of radius r and length  $\ell$ :

$$Z = \frac{6\eta e}{\pi r^4}$$

onl

 $\Re$   $\eta$  = dynamic viscosity  $\mathbb{C}$  (units:  $ML^{-1}T^{-1}$ ).

P ..



29 CP 17 of 31

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

Solution Use hydraulic equivalent of Ohm's law:  $\Delta p = \Phi Z \Leftrightarrow V = IR$ 

where  $\Delta p$  = pressure difference,  $\Phi$  = flux.

Fluid mechanics: Poiseuille impedance for smooth Poiseuille flow in a tube of radius r and length  $\ell$ :

 $Z = \frac{8\eta\ell}{\pi r^4}$ 

 $\eta$  = dynamic viscosity  $\mathbb{C}$  (units:  $ML^{-1}T^{-1}$ ).  $\Re$  Power required to overcome impedance:

$$P_{\text{drag}} = \Phi \Delta p = \Phi^2 Z.$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



DQ @ 17 of 31

Solution Use hydraulic equivalent of Ohm's law:  $\Delta p = \Phi Z \Leftrightarrow V = IR$ 

where  $\Delta p$  = pressure difference,  $\Phi$  = flux.

Fluid mechanics: Poiseuille impedance for smooth Poiseuille flow in a tube of radius r and length l:

$$Z = \frac{8\eta\ell}{\pi r^4}$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

 $P_{\text{drag}} = \Phi \Delta p = \Phi^2 Z.$ 

Also have rate of energy expenditure in maintaining blood given metabolic constant c:

 $P_{\rm metabolic} = cr^2 \ell$ 



Aside on P<sub>drag</sub>

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



200 18 of 31

5

### Aside on P<sub>drag</sub>



 $\Im$  Work done =  $F \cdot d$  = energy transferred by force F

**COcoNuTS** @networksvox

**Optimal Supply** Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Aside on $P_{drag}$



 $\Im$  Work done =  $F \cdot d$  = energy transferred by force F Power = P = rate work is done =  $F \cdot v$ 

COCONUTS @networksvox

**Optimal Supply** Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Aside on $P_{drag}$

- Solution Work done =  $F \cdot d$  = energy transferred by force F
- Solution P = P = rate work is done =  $F \cdot v$
- $\Rightarrow \Delta p$  = Force per unit area

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Aside on $P_{drag}$

Solution Work done =  $F \cdot d$  = energy transferred by force F

Solution P = P = rate work is done =  $F \cdot v$ 

- $\Rightarrow \Delta p$  = Force per unit area
- Φ = Volume per unit time = cross-sectional area · velocity

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Aside on $P_{drag}$

Solution Work done =  $F \cdot d$  = energy transferred by force F

Solution P = P = rate work is done =  $F \cdot v$ 

- $\Rightarrow \Delta p$  = Force per unit area
- Φ = Volume per unit time = cross-sectional area · velocity

 $\Im$  So  $\Phi \Delta p$  = Force · velocity

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Murray's law:



$$P = P_{drag} + P_{metabolic}$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



DQC 19 of 31

Murray's law:

🚳 Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Murray's law:

🚳 Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

Observe power increases linearly with l

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Murray's law:

🚳 Total power (cost):

$$P = P_{\text{drag}} + P_{\text{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

 $\mathfrak{L}$  Observe power increases linearly with  $\ell$ But r's effect is nonlinear:

COCONUTS @networksvox

**Optimal Supply** Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Murray's law:

🗞 Total power (cost):

$$P = P_{\mathsf{drag}} + P_{\mathsf{metabolic}} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



29 CP 19 of 31

Murray's law:

🚳 Total power (cost):

$$P = P_{\mathsf{drag}} + P_{\mathsf{metabolic}} = \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell$$



COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



29 CP 19 of 31

#### Murray's law:

 $\bigotimes$  Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left( \Phi^2 \frac{8\eta \ell}{\pi r^4} + c r^2 \ell \right)$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Murray's law:

 $\bigotimes$  Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left( \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Murray's law:

 $\bigotimes$  Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left( \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell = 0$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law



#### Murray's law:

 $\bigotimes$  Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left( \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$c^2 = \frac{c\pi r^6}{16\eta}$$

 $\Phi$ 

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Murray's law:

 $\bigcirc$  Minimize *P* with respect to *r*:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left( \Phi^2 \frac{8\eta \ell}{\pi r^4} + cr^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16\eta} = k^2 r^6$$

where k = constant.

COCONUTS @networksvox

**Optimal Supply** Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



#### Murray's law:



$$\Phi = kr^3$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Murray's law:

🗞 So we now have:

$$\Phi = kr^3$$

Flow rates at each branching have to add up (else our organism is in serious trouble ...):

$$\Phi_0 = \Phi_1 + \Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga



Murray's law:

🗞 So we now have:

$$\Phi = kr^3$$

Flow rates at each branching have to add up (else our organism is in serious trouble ...):

$$\Phi_0 = \Phi_1 + \Phi_2$$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches
All of this means we have a groovy cube-law:

$$r_0^3 = r_1^3 + r_2^3$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References



DQ @ 21 of 31

### Outline

#### COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References

#### **Optimal branching**

Murray meets Tokunaga



5

DQC 22 of 31

#### Murray meets Tokunaga:

 $\Phi_{\omega} = \text{volume rate of flow into an order } \omega \text{ vessel segment}$ 

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References



DQC 23 of 31

#### Murray meets Tokunaga:

🚳 Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law

Murray meets Tokunaga



#### Murray meets Tokunaga:

&  $\Phi_{\omega}$  = volume rate of flow into an order  $\omega$  vessel segment

🚳 Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

 $\clubsuit$  Using  $\phi_{\omega} = kr_{\omega}^3$ 

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k}r_{\omega-k}^{3}$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga



#### Murray meets Tokunaga:

🚳 Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

 $\clubsuit$  Using  $\phi_{\omega} = kr_{\omega}^3$ 

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k}r_{\omega-k}^{3}$$

 $rac{3}{3}$  Find Horton ratio for vessel radius  $R_r = r_{\omega}/r_{\omega-1}$  ...

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga



#### Murray meets Tokunaga:

Find  $R_r^3$  satisfies same equation as  $R_n$  and  $R_v$ (v is for volume):

$$R_r^3 = R_n = R_v$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References



DQC 24 of 31

#### Murray meets Tokunaga:

Find  $R_r^3$  satisfies same equation as  $R_n$  and  $R_v$ (v is for volume):

 $R_r^3 = R_n = R_v$ 

Is there more we could do here to constrain the Horton ratios and Tokunaga constants? COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References



29 CP 24 of 31

#### Murray meets Tokunaga:

 $\clubsuit$  Isometry:  $V_{\omega} \propto \ell_{\omega}^3$ 

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References



DQC 25 of 31

5

#### Murray meets Tokunaga:



 $\clubsuit$  Isometry:  $V_{\omega} \propto \ell_{\omega}^3$ 🚳 Gives

$$R_\ell^3 = R_r^3 = R_n = R_v$$

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrav's law

Murray meets Tokunaga



#### Murray meets Tokunaga:



$$R_\ell^3=R_r^3=R_n=R_v$$

🚳 We need one more constraint ...

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga



#### Murray meets Tokunaga:



$$R_\ell^3=R_r^3=R_n=R_v$$

🚳 We need one more constraint ...

West et al. (1997)<sup>[18]</sup> achieve similar results following Horton's laws (but this work is disaster). COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law

Murray meets Tokunaga

References



25 of 31

#### Murray meets Tokunaga:

 $\ref{eq:sometry: } V_{\omega} \propto \ell_{\omega}^3$  $\ref{eq:sometry: } S_{\omega} \propto \ell_{\omega}^3$ 

$$R_\ell^3 = R_r^3 = R_n = R_v$$

🚳 We need one more constraint ...

West *et al.* (1997)<sup>[18]</sup> achieve similar results following Horton's laws (but this work is disaster).
 So does Turcotte *et al.* (1998)<sup>[17]</sup> using Tokunaga (sort of).

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law

Murray meets Tokunaga

References

DQ @ 25 of 31

#### References I

COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law Murray meets Tokunaga

References

 J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.
 Topology of the fittest transportation network. Phys. Rev. Lett., 84:4745–4748, 2000. pdf

[2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf 2

[3] S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network. Phys. Rev. Lett., 98:088702, 2007. pdf

26 of 31

WN OS

#### References II

 P. S. Dodds.
 Optimal form of branching supply and collection networks.
 Phys. Rev. Lett., 104(4):048702, 2010. pdf

[5] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. <u>Physical Review E</u>, 63(1):016115, 2001. pdf

[6] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf 7 COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murrays law Murray meets Tokunaga

References

UVN S

29 a 27 of 31

### References III

- [7] P. La Barbera and R. Rosso. Reply. Water Resources Research, 26(9):2245–2248, 1990. pdf
- [8] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421:939–942, 2003. pdf 7
- [9] K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of wood. <u>Functional Ecology</u>, 18:931–938, 2004. pdf C

[10] C. D. Murray.

The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol., 9(9):835–841, 1926. pdf COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### **References IV**

[11] C. D. Murray. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci., 12:207–214, 1926. pdf
[12] C. D. Murray. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725–729, 1927. pdf

 [13] I. Rodríguez-Iturbe and A. Rinaldo.
 <u>Fractal River Basins: Chance and</u> <u>Self-Organization</u>.
 Cambridge University Press, Cambrigde, UK, 1997. COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga



#### **References V**

[14] A. E. Scheidegger. <u>Theoretical Geomorphology</u>. Springer-Verlag, New York, third edition, 1991.

[15] D. W. Thompson. On Growth and Form. Cambridge University Pres, Great Britain, 2nd edition, 1952.

[16] D. W. Thompson. On Growth and Form — Abridged Edition. Cambridge University Press, Great Britain, 1961.

[17] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf C COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



20 0 30 of 31

#### **References VI**

[18] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276:122–126, 1997. pdf

[19] Q. Xia. Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251–279, 2003. pdf

[20] Q. Xia. The formation of a tree leaf. ESAIM: Control, Optimisation and Calculus of Variations, 13:359–377, 2007. pdf COcoNuTS @networksvox

Optimal Supply Networks I

Optimal transportation

Optimal branching Murray's law Murray meets Tokunaga

References



990 31 of 31