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Structure detection

A Zachary's karate club 1% 17

The issue:
how do we

elucidate the
internal structure of
large networks
across many scales?
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Structure detection

A Zachary's karate club 1% 17

Possible substructures:

hierarchies, cliques, rings, ...

The issue:
how do we

elucidate the
internal structure of
large networks
across many scales?
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A Zachary's karate club 1% 17

Possible substructures:
hierarchies, cliques, rings, ...

Plus:

All combinations of substructures.
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Structure detection

The issue:

how do we
elucidate the
internal structure of
large networks
across many scales?

A Zachary's karate club 1% 17

Possible substructures:
hierarchies, cliques, rings, ...

Plus:

All combinations of substructures.

Much focus on hierarchies...
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Idea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.
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Idea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward's method (']
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Idea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward's method (']

Procedure:
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|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward's method (']

Procedure:
1. Order pair-based distances.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

DA 90f78


http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Ward%27s_method

|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward’s method (£'(17]

Procedure:

1. Order pair-based distances.
2. Sequentially add links between nodes based on
closeness.
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|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward’s method (£'(17]

Procedure:

1. Order pair-based distances.

2. Sequentially add links between nodes based on
closeness.

3. Use additional criteria to determine when clusters
are meaningful.
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|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward’s method (£'(17]

Procedure:
1. Order pair-based distances.
2. Sequentially add links between nodes based on
closeness.
3. Use additional criteria to determine when clusters
are meaningful.

Clusters gradually emerge, likely with clusters
inside of clusters.
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|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward’s method (£'(17]

Procedure:

1. Order pair-based distances.

2. Sequentially add links between nodes based on
closeness.

3. Use additional criteria to determine when clusters
are meaningful.

Clusters gradually emerge, likely with clusters
inside of clusters.

Call above property Modularity.
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|dea: Extract hierarchical classification scheme for
N objects by an agglomeration process.

Need a measure of distance between all pairs of
objects.

Example: Ward’s method (£'(17]

Procedure:

1. Order pair-based distances.

2. Sequentially add links between nodes based on
closeness.

3. Use additional criteria to determine when clusters
are meaningful.

Clusters gradually emerge, likely with clusters
inside of clusters.
Call above property Modularity.

Works well for data sets where a distance between
all objects can be specified (e.g., Aussie Rules ).
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| Hierarchy. by aggregation

Tend to plainly not work on data sets representing
networks with known modular structures.
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Idea: Identify global structure first and recursively
uncover more detailed structure.
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Idea: Identify global structure first and recursively
uncover more detailed structure.

Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

apping communities
method

ructure

“Da 120f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

Idea: Identify global structure first and recursively
uncover more detailed structure.

Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

We'll first work through “Finding and evaluating

community structure in networks” by Newman
and Girvan (PRE, 2004).["?!
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~ Hierarchy by division

Idea: Identify global structure first and recursively
uncover more detailed structure.

Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

We'll first work through “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). 2]

See also

1. “Scientific collaboration networks. Il. Shortest
paths, weighted networks, and centrality” by
Newman (PRE, 2001). 0. 1]
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~ Hierarchy by division

Idea: Identify global structure first and recursively
uncover more detailed structure.

Basic objective: find dominant components that
have significantly more links within than without,
as compared to randomized version.

We'll first work through “Finding and evaluating
community structure in networks” by Newman
and Girvan (PRE, 2004). 2]
See also
1. “Scientific collaboration networks. Il. Shortest
paths, weighted networks, and centrality” by
Newman (PRE, 2001). 10 1]
2. "Community structure in social and biological
networks” by Girvan and Newman (PNAS, 2002). ]
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| Hierarchy. by division

1. Compute edge betweenness for whole network.
2. Remove edge with highest betweenness.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

DA 140f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

~ Hierarchy by division

1. Compute edge betweenness for whole network.

2. Remove edge with highest betweenness.
3. Recompute edge betweenness
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 Hierarchy by division

S v

Compute edge betweenness for whole network.
Remove edge with highest betweenness.
Recompute edge betweenness

Repeat steps 2 and 3 until all edges are removed.
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 Hierarchy by division

Compute edge betweenness for whole network.
Remove edge with highest betweenness.
Recompute edge betweenness

S v

5 Record when
components appear as
a function of # edges
removed.

Repeat steps 2 and 3 until all edges are removed.
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 Hierarchy by division

. Compute edge betweenness for whole network.

. Remove edge with highest betweenness.

. Recompute edge betweenness

. Repeat steps 2 and 3 until all edges are removed.

Record when
components appear as
a function of # edges

removed.

Generate dendogram
revealing hierarchical

structure.
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 Hierarchy by division

. Compute edge betweenness for whole network.
. Remove edge with highest betweenness.

. Recompute edge betweenness

. Repeat steps 2 and 3 until all edges are removed.

Record when
components appear as
a function of # edges

removed.

Generate dendogram
revealing hierarchical

structure.

Red line indicates appearance
of four (4) components at a

certain level.
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Recomputing betweenness.

Reason: Possible to have a low betweenness in
links that connect large communities if other links
carry majority of shortest paths.
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Recomputing betweenness.

Reason: Possible to have a low betweenness in
links that connect large communities if other links
carry majority of shortest paths.
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Recomputing betweenness.

Reason: Possible to have a low betweenness in
links that connect large communities if other links
carry majority of shortest paths.

How do we know which divisions are meaningful?
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Recomputing betweenness.

Reason: Possible to have a low betweenness in
links that connect large communities if other links
carry majority of shortest paths.

How do we know which divisions are meaningful?

Modularity measure: difference in fraction of
within component nodes to that expected for
randomized version:
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Recomputing betweenness.
Reason: Possible to have a low betweenness in

links that connect large communities if other links
carry majority of shortest paths.

How do we know which divisions are meaningful?
Modularity measure: difference in fraction of
within component nodes to that expected for
randomized version:

G=ni af]

where e, ; is the fraction of (undirected) edges
travelling between identified communities i and j,
and a; = Zj e,;; is the fraction of edges with at
least one end in community . [J
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 Hierarchy by division

Generate random community-based networks.

N = 128 with four communities of size 32.

Add edges randomly within and across
communities.
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 Hierarchy by division

Generate random community-based networks.

N = 128 with four communities of size 32.

Add edges randomly within and across
communities.

Example:
<k>in =6 and <k>out =2.
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modularity

o3 fa

Maximum modularity @ =~ 0.5 obtained when four
communities are uncovered.

Further ‘discovery’ of internal structure is
somewhat meaningless, as any communities arise
accidentally.
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| ‘Hierarchy. by division

Factions in Zachary's karate club network. !'”!

COcoNuTS
@networksvex

Structure
detection
methods

Overview
Methods
Hi hy by aggregation

References

J_{II.‘-."‘:' °
BT |g|
e 1O

“2a 190f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Betweenness for electrons: @renvonergy
| Structure |

Unit resistors on each detection

methods
edge.
Jpurcent in < Overview
\ Methods
s Hierarct ation

Hle 03
Hierarchy by shuffling
3 -
Spectral methads
Hierarchies & Missing
Lin
current out

g communities

Link-based methods

General structure
detection

References

DA 200f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

Betweenness for electrons: @networksvex
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Betweenness for electrons:

current in

current out

Unit resistors on each
edge.

For every pair of nodes
s (source) and t (sink),
set up unit currents in
at s and out at ¢.

Measure absolute
current along each
edge (, |1, .
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Betweenness for electrons:

current in

Unit resistors on each

edge.
5/\722 For every pair of nodes
s s (source) and t (sink),
% 7, set up unit currents in
ALM at s and out at ¢.
current ut Measure absolute

current along each
edge ¢, [To sel-

Sum |1, .| over all pairs of nodes to obtain
electronic betweenness for edge /.
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Betweenness for electrons:

current in

Unit resistors on each

edge.
5/\ For every pair of nodes
Mi s (source) and t (sink),
% 7, set up unit currents in
AN ! at s and out at ¢.
M
current ut Measure absolute

current along each
edge ¢, [To sel-

Sum |1, .| over all pairs of nodes to obtain
electronic betweenness for edge /.
(Equivalent to random walk betweenness.)
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- Betweenness for electrons:

current in

Unit resistors on each
edge.

For every pair of nodes
s (source) and t (sink),
set up unit currents in
at s and out at ¢.

curtent out Measure absolute

current along each
edge ¢, g stl-

Sum |1, .| over all pairs of nodes to obtain
electronic betweenness for edge /.
(Equivalent to random walk betweenness.)
Contributing electronic betweenness for edge
between nodes i and j:

B

elec
13,8t

= aij|‘/i,st iy th,st|‘
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~ Electronic betweenness
| Define some arbitrary voltage reference.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods
Hierarchy

Hie

egation

Spectral meth

Hierarchies &
Links
Overlapping communities
Link-based methods

General structure
detection

References

DA 210f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

Electronic betweenness

Define some arbitrary voltage reference.
Kirchhoff's laws: current flowing out of node :
must balance:

=
ZR— — Vi) =05 504

e B A
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Electronic betweenness

Define some arbitrary voltage reference.
Kirchhoff's laws: current flowing out of node :
must balance:
N
1
o 7,) = 0,5 — 5'Lt'

s

Between connected nodes, R,;; =1 =a;; = 1/a,;.
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Electronic betweenness

Define some arbitrary voltage reference.

Kirchhoff's laws: current flowing out of node :

must balance:

LR
> 5l

Jj=1

=0

s

Between connected nodes, R, ;

Between unconnected nodes, R, ;

’L]'

0
=l=a;;=1/a,
=00 = 1/a;,ij.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

DA 210f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

Electronic betweenness

Define some arbitrary voltage reference.
Kirchhoff's laws: current flowing out of node :

must balance:

—
ZF z):(sis

Jj=1

Between connected nodes, R, ; =
Between unconnected nodes, R, ;

We can therefore write:

N
Zaij(vi i V]) =0,
=1

0

l=a;;=1/a,

’L]'

=0 = 1/aij.

g
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Electronlc betweenness @networksvex

COcoNuTS
5 5 Structure
Define some arbitrary voltage reference. detection
. y 2 3 methods
Kirchhoff's laws: current flowing out of node :
must balance: 5
verview
N
1 Methods
Z R = 518 38 6’Lt :erar‘ch;l;yd s’on“ ]
j=1 ; oo

Between connected nodes, R,;; =1 =a;; = 1/a,;.
Between unconnected nodes, R, ; = oo = 1/a,;.

We can therefore write:

References
N
E G Ve = ) = O i f
j=1

Some gentle jiggery-pokery on the left hand side: fr
Zj a;;(V; = V;) =
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Electronlc betweenness @networksvex

COcoNuTS
5 5 Structure
Define some arbitrary voltage reference. detection
. y 2 3 methods
Kirchhoff's laws: current flowing out of node :
must balance: 5
verview
N
1 Methods
Z R = 518 38 6’Lt :erar‘ch;l;yd s’on“ ]
j=1 ; oo

Between connected nodes, R,;; =1 =a;; = 1/a,;.
Between unconnected nodes, R, ; = oo = 1/a,;.

We can therefore write:

References
N
E G Ve = ) = O i f
j=1

Some gentle jiggery-pokery on the left hand side: fr
Zjaiﬂ‘/i*vj):vizjaij*zjaijvj i

D 210f78
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Electronlc betweenness @networksvex

COcoNuTS
. . Structure
Define some arbitrary voltage reference. detection
. y 2 3 methods
Kirchhoff's laws: current flowing out of node :
must balance: 5
verview
N >
1 Methods
Z R = 5’iS =3 6it' :erar;hQEyd s:mm :
j=1 ; oo

Between connected nodes, R,;; =1 =a;; = 1/a,;.
Between unconnected nodes, R, ; = oo = 1/a,;.

We can therefore write:

References
N
E @ (Ve —= Vi) = 05— s F
G=1

Some gentle jiggery-pokery on the left hand side: fr
Zjaiﬂ‘/i*vj):vizjaij*zjaijvj i
=V;k, — Zj aijVj
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Electronlc betweenness @networksvex

COcoNuTS
Define some arbitrary voltage reference. Zteré;ctﬁéﬁ
5 methods
Kirchhoff's laws: current flowing out of node :
must balance: ik
N
1 Methods
Z o B = 518 38 6’Lt :erar‘ch;l:;yd‘ s’or\m”H
=il R 1“‘ b v‘ ing
Between connected nodes, R,;; =1 =a;; = 1/a,;.
Between unconnected nodes, R, ; = oo = 1/a,;.
We can therefore write: e
N
Zaij(vi_vj>:5is_5it' F
=1 W)
Some gentle jiggery-pokery on the left hand side: o
ZjaiﬂVi*Vj):ViZ az’j*Z a--V- i
=V,k; — Zj aijVj = Z [k1517v7 a”V]]
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; Electronlc betweenness @networksvex

COcoNuTS
. . Structure
Define some arbitrary voltage reference. detection
. y 2 3 methods
Kirchhoff's laws: current flowing out of node :
must balance: S
N 1 Methods
Z R <VJ Vo= 0l ‘H‘erarchybydo
g=1 %3 Hi g

Between connected nodes, R;; =1 =a;; =1/a;;. =

Between unconnected nodes, R, ; = oo = 1/a,;.
We can therefore write:

References
N

e i P
E aij(vi_vg'>_5is_5it' :
j=1

Some gentle jiggery-pokery on the left hand side: fr

Zjaiﬂ‘/i*vj):vizjaij*zjaijvj -
=Viki =3 05V; = 32, [k04;V; — ais V] g
oF [(K_A>V]z’ SHa e 210f78
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 Electronic betweenness

Write right hand side as [I*]; _, = §;, —d;,, where
I% holds external source and sink currents.
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Electronic betweenness

Write right hand side as [18%]

iy8tiT=

210,

s

— 0,4, Where

I holds external source and sink currents.

Matrixingly then:

(K— AW = IS,
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- Electronic betweenness

Write right hand side as [I*]; _, = §;, —d;,, where
I holds external source and sink currents.

Matrixingly then:
(K— AW = IS,

L = K— Ais a beast of some utility—known as the
Laplacian.
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COcoNuTS

; Electronlc betweenness @networksvex

Structure
Write right hand side as [I‘*Xt]i’w5 =06;, — 0,4, Where  detection
I holds external source and sink currents.
Matr|X|ng|y then Overview
Methods

(K— AW = IS,

L = K— Ais a beast of some utility—known as the
Laplacian.

Solve for voltage vector V by LU decomposition
(Gaussian elimination).
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- Electronic betweenness

Write right hand side as [I*]; _, = §;, —d;,, where
I holds external source and sink currents.
Matrixingly then:

(K— AW = IS,

L = K— Ais a beast of some utility—known as the
Laplacian.

Solve for voltage vector V by LU decomposition
(Gaussian elimination).

Do not compute an inverse!
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COcoNuTS

; Electronlc betweenness @networksvex

Structure
Write right hand side as [IeXt]iyw5 =06;, — 0,4, Where  detection
I holds external source and sink currents.
Matr|X|ng|y then Overview
Methods

(K— AW = IS,

L = K— Ais a beast of some utility—known as the
Laplacian.

Solve for voltage vector V by LU decomposition
(Gaussian elimination).

Do not compute an inverse! P

Note: voltage offset is arbitrary so no unique W)
solution. e
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; Electronlc betweenness @networksvex

COcoNuTS
Structure
Write right hand side as [I®]; _, = d,, —d;,, where  Zescten
I holds external source and sink currents.
Matrixingly then: Overview
Methods
(K i A)V — Ig)t(t. ‘H‘:;rar‘:h;‘/l:’;ydi’v‘\srorr‘\m‘H

L = K— Ais a beast of some utility—known as the o s

Laplacian. v I
Solve for voltage vector V by LU decomposition ol
(Gaussian elimination).

Do not compute an inverse! r %
Note: voltage offset is arbitrary so no unique
solution. e
Presuming network has one component, null ke

space of K— A is one dimensional.
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COcoNuTS

Electronlc betweenness @networksvex

Structure
Write right hand side as [I®]; _, = d,, —d;,, where  Zescten
I holds external source and sink currents.

methods
Matrixingly then: Overview
Methods

(K Lo A)V = g)ét- ‘Werafchybvdmsmw

Hie

L = K— Ais a beast of some utility—known as the s o
Laplacian. ot
Solve for voltage vector V by LU decomposition i

(Gaussian elimination). Helercnees
Do not compute an inverse! r
Note: voltage offset is arbitrary so no unique "
solution. g

Presuming network has one component, null -
space of K— A is one dimensional.

In fact, (K — A) = {cI,c € R} since (K— A)1 = 0.
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Alternate betweenness measures;

Asking too much: Need full knowledge of network
to travel along shortest paths.

One of many alternatives: consider all random
walks between pairs of nodes i and j.
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Asking too much: Need full knowledge of network
to travel along shortest paths.

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j.
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 Alternate betweenness measures:

Asking too much: Need full knowledge of network
to travel along shortest paths.

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j.

Record the number of times an edge is followed
by a walk.
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 Alternate betweenness measures:

Asking too much: Need full knowledge of network
to travel along shortest paths.

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j.

Record the number of times an edge is followed
by a walk.

Consider all pairs of nodes.
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COcoNuTS

 Alternate betweenness measures: ERE 8

Structure
detection
methods

Asking too much: Need full knowledge of network
to travel along shortest paths. Overview

Methods

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j.

Record the number of times an edge is followed
by a Walk References

Consider all pairs of nodes. r
Random walk betweenness of an edge = absolute W)
difference in probability a random walk travels Ry
one way versus the other along the edge. ety
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COcoNuTS

 Alternate betweenness measures: ERE 8

Structure
detection
methods

Asking too much: Need full knowledge of network
to travel along shortest paths. QTR

Methods

One of many alternatives: consider all random
walks between pairs of nodes i and j.

Walks starts at node i, traverses the network
randomly, ending as soon as it reaches j. ik cos i

Record the number of times an edge is followed
by a Walk References
Consider all pairs of nodes. p
Random walk betweenness of an edge = absolute

difference in probability a random walk travels
one way versus the other along the edge. e

Equivalent to electronic betweenness (see also
diffusion).
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| ‘Hierarchy. by division

Factions in Zachary's karate club network. !'”!
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Third column shows what happens if we don't
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- Scientists working on networks (2004)

(c)
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“Extracting the hierarchical organization of
complex systems”
Sales-Pardo et al., PNAS (2007) "4 1°]
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- Shuffling for structure

“Extracting the hierarchical organization of

complex systems”
Sales-Pardo et al., PNAS (2007) "4 1°]

Consider all partitions of networks into m groups
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- Shuffling for structure

“Extracting the hierarchical organization of
complex systems”
Sales-Pardo et al., PNAS (2007) 4 ']

Consider all partitions of networks into m groups

As for Newman and Girvan approach, aim is to
find partitions with maximum modularity:

Q= Z[en‘ i (Zeij)Q] = TrE — |[E?[|;.
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| Shuffling for' structure

Consider partition network, i.e., the network of all
possible partitions.
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- Shuffling for structure

Consider partition network, i.e., the network of all
possible partitions.

Defn: Two partitions are connected if they differ
only by the reassignment of a single node.
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- Shuffling for structure

Consider partition network, i.e., the network of all
possible partitions.

Defn: Two partitions are connected if they differ
only by the reassignment of a single node.

Look for local maxima in partition network.
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- Shuffling for structure

Consider partition network, i.e., the network of all
possible partitions.

Defn: Two partitions are connected if they differ
only by the reassignment of a single node.

Look for local maxima in partition network.
Construct an affinity matrix with entries Mf’;f.
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COcoNuTS

; Sthﬂlng for StrU CtU re @networksvex

Structure
detection
methods

Consider partition network, i.e., the network of all
possible partitions.
Methods

Defn: Two partitions are connected if they differ Ry b st
only by the reassignment of a single node.

Look for local maxima in partition network.

Overview

Construct an affinity matrix with entries Mf’;.f.
M2 = Pr random walker on modularity network R
ends up at a partition with i and j in the same

group. r

C.f. topological overlap between i and j =

# matching neighbors for i and j divided by e

maximum of k; and k. -
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A: Base network; B: Partition network; C: iy
Coclassification matrix; D: Comparison to random sy
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- Shuffling fo r structure
i C 0.0 0.5 1.0
— E

av

Q o T o

Modularity ' Modularity, M

A: Base network; B: Partition network; C:
Coclassification matrix; D: Comparison to random
networks (all the same!); E: Ordered

coclassification matrix; Conclusion: no structure...
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Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.
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COcoNuTS

Method obtains a distribution of classification @networksvox
hierarchies. Structure
detection
Note: the hierarchy with the highest modularity score i
isn't chosen.
Overview

Idea is to weight possible hierarchies according to their — ,.;00-
basin of attraction's size in the partition network. Hlefarcy by sgeregaton
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Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.

Idea is to weight possible hierarchies according to their
basin of attraction's size in the partition network.

Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.
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Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.

Idea is to weight possible hierarchies according to their
basin of attraction's size in the partition network.

Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.

Idea: permute nodes to minimize following cost
1 NN

N £~ <

J==%

c M — jl.
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Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.

Idea is to weight possible hierarchies according to their
basin of attraction's size in the partition network.

Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.

Idea: permute nodes to minimize following cost
1 NN

N i=1 j=1

c M — jl.

Use simulated annealing (slow).
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Method obtains a distribution of classification
hierarchies.

Note: the hierarchy with the highest modularity score
isn't chosen.

Idea is to weight possible hierarchies according to their
basin of attraction's size in the partition network.

Next step: Given affinities, now need to sort nodes into
modules, submodules, and so on.

Idea: permute nodes to minimize following cost

1 N N
Of be 12M§‘§fii—jl-
=1 9=

Use simulated annealing (slow).

Observation: should achieve same reskjjlts for more
general cost function: C = % >." | D M f(li—3)
where f is a strictly monotonically increasing function
of0,1,2, ..
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- Shuffling for structure

Define cost matrix as T with entries T;; = f(|i — j|).

Weird observation: if T, ; = (i — j)? then T is of
rank 3, independent of N.
Discovered by numerical inspection ...

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods
Hierarchy by aggregation

y division

verlapping communities
Link-based method:
General structure
detection

References

A 370f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Shuffling for structure

Define cost matrix as T with entries T;; = f(|i — j|).

Weird observation: if T, ; = (i — j)? then T is of
rank 3, independent of N.
Discovered by numerical inspection ...

The eigenvalues are

where

1t
Agi= —gn(n2 —1),

A2 = +\/nSn74 + STL,Q’ and
)‘3 T nSn,4 | Sn,2‘

1
Sn,Zzﬁn(n —].) and
1
Sn,4:% n(n % (a1
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Shuffling for> structure

Eigenvectors

n+1
2

n+1
7

)
)

2
I,
2

\/Sn,a/n, and
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Shuffling for structure

Eigenvectors

@)= (1= 2EL) 4 /5, o fm, and
@)= (1= 252) = Bl

Remarkably,

SV A A oT A AT
T = \010; + ApUq05 + A3U303.
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Shuffling for structure

Eigenvectors

(¥), = (i— n;1)2+m, and
(ARE( e TR

Remarkably,

SV A ~ ~T A AT
T = \010; + ApUq05 + A3U303.

The next step: figure out how to capitalize on
this...
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- Shuffling for structure

Table 1. Top-level structure of real-world networks

Network Nodes Edges Modules Main modules
Air transportation 3,618 28,284 57 8
E-mail 1,133 10,902 41 8
Electronic circuit 516 686 18 1
Escherichia coli KEGG 739 1,369 39 13
E. coli UCSD 507 947 28 17
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‘S‘huffling for structure
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Modularity
structure for
metabolic
network of E. coli
(UCSD
reconstruction).
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- General structure detection

“Detecting communities in large networks”
Capocci et al. (2005) !
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- General structure detection

“Detecting communities in large networks”
Capocci et al. (2005) !

Consider normal matrix K-1 4, random walk
matrix ATK~1, Laplacian K— A, and AAT,
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- General structure detection

“Detecting communities in large networks”
Capocci et al. (2005) !

Consider normal matrix K1 4, random walk
matrix ATK~1, Laplacian K— A, and AAT,

Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
structure.
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General structure detection

“Detecting communities in large networks”
Capocci et al. (2005) !

Consider normal matrix K-1 4, random walk
matrix ATK~1, Laplacian K— A, and AAT,

Basic observation is that eigenvectors associated
with secondary eigenvalues reveal evidence of
structure.

Builds on Kleinberg's HITS algorithm.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

Hierarchy by aggregation

Hierarchy by divisior
Hie C oy shuffling
spectral methods

References

[e]STe)

“Da > 430f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

General structure detection

Example network:
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General structure detection

Second eigenvector's components:
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- General structure detection

Network of word associations for 10616 words.
Average in-degree of 7.

Using 2nd to 11th evectors of a modified version

of AAT:

Table 1

Words most correlated to science, literature and piano in the eigenvectors of Q' Ww™

Science 1 Literature 1 Piano 1

Scientific 0.994 Dictionary 0.994 Cello 0.993
Chemistry 0.990 Editorial 0.990 Fiddle 0.992
Physics 0.988 Synopsis 0.988 Viola 0.990
Concentrate 0.973 Words 0.987 Banjo 0.988
Thinking 0.973 Grammar 0.986 Saxophone 0.985
Test 0.973 Adjective 0.983 Director 0.984
Lab 0.969 Chapter 0.982 Violin 0.983
Brain 0.965 Prose 0.979 Clarinet 0.983
Equation 0.963 Topic 0.976 Oboe 0.983
Examine 0.962 English 0.975 Theater 0.982

Values indicate the correlation.
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Hierarchies and missing links
Clauset et al., Nature (2008) °!

Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

COcoNuTS
@networksvex

Structure
detection
methods

Overview

Methods

General structure
detection

References

DA 480f78


http://www.uvm.edu
http://www.uvm.edu/pdodds

Hierarchies and missing links
Clauset et al., Nature (2008) °!

Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

Handle: Hierarchical random graph models.
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Hierarchies and missing links
Clauset et al., Nature (2008) °!

Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

Handle: Hierarchical random graph models.

Plan: Infer consensus dendogram for a given real
network.
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Hierarchies and missing links
Clauset et al., Nature (2008) °!

Idea: Shades indicate probability that nodes in left
and right subtrees of dendogram are connected.

Handle: Hierarchical random graph models.
Plan: Infer consensus dendogram for a given real
network.

Obtain probability that links are missing (big
problem...).
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Hierarchies and missing links

Model also predicts reasonably well

1. average degree,
2. clustering,
3. and average shortest path length.

Table 1| Comparison of original and resampled networks
Network <k>real <k>samp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 511(2) 101361 0.352(1) 25753 12794CT)
Grassland 3.0 2i9E)ep 0174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree (k), clustering coefficient C and average vertex-vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.
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Hierarchies and missing links

Consensus dendogram for grassland species.

Copes with disassortative and assortative
communities.
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- From PoCS: |
Small-worldness and social searchability

Social networks and identity:

Identity is formed from attributes such as:
Geographic location
Type of employment
Religious beliefs
Recreational activities.
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From PoCS: |
Small-worldness and social searchability

Social networks and identity:

Identity is formed from attributes such as:
Geographic location
Type of employment
Religious beliefs
Recreational activities.

Groups are formed by people with at least one similar
attribute.
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- From PoCS:
Small-worldness and social searchability

Social networks and identity:

Identity is formed from attributes such as:
Geographic location
Type of employment
Religious beliefs
Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts < Interactions < Networks.
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Social distance—Context distance

occupation

education health care

kindergarten
teacher

high school

teacher doctor
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al."?) detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al."?) detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose k?
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al.!"?] detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose k?
Four new quantities:
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.
Overlap: Acknowledge nodes can belong to
multiple communities.
Palla et al."?) detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).
One of several issues: how to choose £?
Four new quantities:

m, number of a communities a node belongs to.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al."?) detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose £?

Four new quantities:

m, number of a communities a node belongs to.
so) s number of nodes shared between two given
communities, o and B.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al.!"?] detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose k?

Four new quantities:

m, number of a communities a node belongs to.
so) s number of nodes shared between two given
communities, o and B.

d®°m, degree of community a.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al."?) detect communities as sets of

adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose k?

Four new quantities:
m, number of a communities a node belongs to.
so) s number of nodes shared between two given
communities, o and B.

d°™, degree of community a.
sM, community s size.
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Earlier structure detection algorithms,
agglomerative or divisive, force communities to be
purely distinct.

Overlap: Acknowledge nodes can belong to
multiple communities.

Palla et al.!"?] detect communities as sets of
adjacent k-cliques (must share k£ — 1 nodes).

One of several issues: how to choose k?
Four new quantities:

m, number of a communities a node belongs to.
so) s number of nodes shared between two given
communities, o and B.

d®°m, degree of community a.

sM, community s size.

Associated distributions:
P, (m), P.(s3) g) Po(d3™), and P, (s&™).
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Figure 1 lllustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.

b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. ¢, An example of overlapping
k-clique communities at k = 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k — 1 nodes.

A 580f78



http://www.uvm.edu
http://www.uvm.edu/pdodds

A. M. Sudupe
x

L. A Fernanfd X

/ Scientist
- >

s

72
! %.‘,44

Figure 2 | The community structure around a particular node in three be associated with his fields of interest. b, The communities of the word
different networks. The communities are colour coded, the overlapping ‘bright’ in the South Florida Free Association norms list (for w* .025)
nodes and links between them are emphasized in red, and the volume of the  represent the different meanings of this word. ¢, The communities of the
balls and the width of the links are proportional to the total number of protein Zds1 in the DIP core list of the protein—protein interactions of S.
communities they belong to. For each network the value of k has been set to  cerevisiae can be associated with either protein complexes or certain

4. a, The communities of G. Parisi in the co-authorship network of the functions.

Los Alamos Condensed Matter archive (for threshold weight w* = 0.75) can

Two tunable parameters: w*, the link weight
threshold, and %, the clique size.
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Figure 4 | Statistics of the k-clique communities for three large
networks. The networks are the co-authorship network of the Los Alamos
Condensed Matter archive (triangles, k = 6, f* = 0.93), the word-
association network of the South Florida Free Association norms (squares,
k=4, f* = 0.67), and the protein interaction network of the yeast S.
cerevisiae from the DIP database (circles, k = 4). a, The cumulative
distribution function of the community size follows a power law with
exponents between 1 (upper line) and — L6 (lower line). b, The
cumulative distribution of the ity degree starts and
then crosses over to a power law (with the same exponent as for the

100 10!

geom.

102

size ). ¢, The cumulative distribution of the overlap
size. d, The cumulative distribution of the membership number.
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What we know now: Many network analyses profit
from focusing on links.
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What we know now: Many network analyses profit
from focusing on links.

Idea: form communities of links rather than
communities of nodes.
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What we know now: Many network analyses profit
from focusing on links.

Idea: form communities of links rather than
communities of nodes.

Observation: Links typically of one flavor, while
nodes may have many flavors.

Link communities induce overlapping and still
hierarchically structured communities of nodes.
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What we know now: Many network analyses profit
from focusing on links.

Idea: form communities of links rather than
communities of nodes.

Observation: Links typically of one flavor, while
nodes may have many flavors.

Link communities induce overlapping and still
hierarchically structured communities of nodes.

[Applause.]
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Ahn, Bagrow, and Lehmann,
Nature, 466, 761-764, 2010.!"]
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Figure 1| Overlapping communities lead to dense networks and prevent
the discovery of a single node hierarchy. a, Local structure in many Spectral methods
networks is simple: an individual node sees the communities it belongs to. Hierarchies & Missing
b, Complex global structure emerges when every node is in the situation Links

displayed in a. ¢, Pervasive overlap hinders the discovery of hierarchical
organization because nodes cannot occupy multiple leaves of a node
dendrogram, preventing a single tree from encoding the full hierarchy. Link-based methods.
d,e, An example showinglink communities (colours in d), the link similarity
matrix (e; darker entries show more similar pairs of links) and the link

Home and work

Overlapping communities

General structure

detection
dend (e)-f,Link ities from the full word association network
around the word ‘Newton’. Link colours represent communities and filled
regions provide a guide for the eye. Link communities capture concepts References
related to science and allow substantial overlap. Note that the words were
produced by experi icipants during free word associati

Note: See details of paper on how to choose link
communities well based on partition density D.
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Composite performance

LCG| LGCGI-LCG I LGGAI LCGI' LCGI

Metabolic  PPI(Y2H) PPI(AP/MS)  PPI(LC) PPl al) Phone.
N 1042 1,647 1,004 1,213 2,729 885,989
k) 1681 306 16.57 421 892 3

Figure 2 | Assessing the relevance of link communities using real-world
networks. Composite pe (Methods and !

Measures

[] Overlap coverage

[0 Community coverage
M Overlap quality

M Community quality

Methods

L - Links

C - Clique percolation
G - Greedy modularity
I - Infomap

LCG I ILGCGl: LCEIl LCG(I LGCa|
Actor  US Congress Philosopher Word assoc. Amazon.com

emﬂ 390 1,219 5018 18,142
3895 980 22.02 509

networks were chosen for their varied sizes and topologies and to represent
domains where network analysis is used. Shown for each are the

Information) is a data-driven measure of the quality (relevance of discovered
memberships) and coverage (fraction of network classified) of community
and overlap. Tested algorithms are link clustering, introduced here; clique
percolation’; greedy modularity optimization®’; and Infomap™. Test

number of nodes, N, and the average number of neighbours per node, (k).
Link clustering finds the most relevant community structure in real-world
networks. AP/MS, affinity-purification/mass spectrometry; LG, literature
curated; PPI, protein—protein interaction; Y2H, yeast two-hybrid.

Comparison of structure detection algorithms
using four measures over many networks.

Revealed communities are matched against
‘known’ communities recorded in network

metadata.

Link approach particularly good for dense,

overlapful networks.
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Link dendrogram threshold, t

Figure 4 | Meaningful communities at multiple levels of the link
dendrogram. ac, The social network of mobile phone users displays co-
located, overlapping communities on multiple scales. a, Heat map of the
most likely locations of all users in the region, showing several cities.

b, Cutting the dendrogram above the optimum threshold yields small, intra-
city communities (insets). ¢, Below the optimum threshold, the largest
communities become spatially extended but still show correlation. d, The
snclal nc(work wllhm the largest commumtv in ¢, with ns largest

The shown along
withits link dendrogram and pmmon density, D, asa function of threshold,
£. Link colours branches. e, C quality,

Q, as a function of dendmg‘ram level, compared with random control
(Methods).
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