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Figure 2 | The backbone of the flavor network. Each node denotes an ingredient, the node color indicates food category, and node size reflects the
ingredient prevalence in recipes. Two ingredients are connected if they share a significant number of lavor compounds, link thickness representing the
number of shared the two ingredients. Adjacent i to reduce the lutter. Note: i
significant links, as identified by the algorithm of Refs.** for p-value 0.04. A drawing of the full network is too dense to be informative. We use, however,
the full network in our subsequent measurements. :
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Figure 2: Ingredient complement network. Two ingredients share an edge if they occur together' more than
would be expected by chance and if their pointwise mutual information exceeds a threshold.
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Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a
team with m = 3 agents, Consider, at time zero, a collaboration network comprising five agents, al
incumbents (blue circles). Along with the incumbents, there is a large pool of newcomers (green
circles) avalable to participate in new teams. Each agent in a team has a probability p of being

the pool of incumbents and a probability 1 — p of being drawn from the pool of new-
comers. For the second and subsequent agents selected from the incumbents' pool: i) with probability
g, the new agent is randomly selected from among the set of collaborators of a randomly selected
incumbent already in the teamy (i) otherwise, he or she is selected at random among all incumbents in
the network. For concreteness, let us assume that incumbent 4 is selected as the first agent in the new
team (leftmost box). Let us also assume that the second agent s an incumbent, too (center-eft box). In
this example, the second agent is a past collaborator of agent 4, specifcally agent 3 (center-right box).
Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6
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Normalization: Fpg (1) = Fpe(l) = 1.

Means: Fyg (1) = (kg and Fpg (1) = (K)g.
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ind
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COCONUTS =+ *

. We strap these in as well: @networksvex
|

Random Bipartite

1k k Networks } (;,
| & and( ) =T ps nd kx
i & FP(Q)(:E) Zk 0 nd kl'k Introduction
: & F RO-B K Basic story
,r?d_ﬂ (LIJ) Zk 0 Ind Pl References
RE—Y &k
& F BEY) (2) = Ek 0 |nd e

} So how do all these things connect?
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=
Fpiﬁn (x) = Zzo:o Pi%d,)kxk

co Q
Fpi(fg (-T) = Zkzo P|E’1d),kxk

o—H
FR!‘;)JH) (z) = Zzio Ri(nd,k )k

oo H—
FR;'E—W) (x) i Zkzo Ri(nd,k )xk

We're again performing sums of a randomly
chosen number of randomly chosen numbers.
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=
Fpiﬁn (x) = Z;O:o Pi%d,)kxk

co Q
Fﬂfg (33> = Zkzo P|E’1d),kxk

—H
Fro-a (1) = 27 Rig i ©*

oo H—9
Fre-— @) = 2km0 Ri(nd,k o

We're again performing sums of a randomly
chosen number of randomly chosen numbers.

We use one of our favorite sneaky tricks:

W =

v

U
VIO = Fy (@) = Fy(Fy (@)
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View this as Pnd .. (the probability a story shares tropes

frequency r,

0 20 40 60 80 100
‘number of costars z

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with 4= 15 and »=15. The points arc
simulation results for M= 10000 and N=100000. The line is the
exact solution, Egs. (89) and (90). The error bars on the numerical
results are smaller than the points.

with k other stories). !

Result of purely random wiring with Poisson

distributions for affiliation numbers.

Parameters: Ng = 104, Ng = 105,

(k)

= 1.5,and (k)¢ = 15.
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Randomly choose a [Hj, find its tropes (U), and
then find how many other stories each of those
tropes are part of (V):

Fom(r) =Foe(r) = Fpe (Fre())

ind ind
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Randomly choose a [Hj, find its tropes (U), and
then find how many other stories each of those
tropes are part of (V):

Introduction

Basic story

References

F}Dﬁ‘?) (z) = Fpﬁ) (55) = Fp® (FRW)(x))
Find the [ at the end of a randomly chosen
affiliation edge leaving a trope, find its number of
other tropes (U), and then find how many other
stories each of those tropes are part of (V):

FRFQ—HJ(@ = Fre (Fro(z)) Wwi

ind
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Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part
of those stories (V):

Fpo(2) = Fpo(z) = Fpo (Fra (2))
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Introduction

Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part . ..
of those stories (V): et bt

Fpo(z) = Fpo(z) = Fpo (Fre ()

Find the @ at the end of a randomly chosen
affiliation edge leaving a story, find the number of
other stories that use it (U), and then find how
many other tropes are in those stories (V):

Frpe-9(z) = Fro (Fre (1)) )

ind
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Average number of stories connected to a story
through trope-space:
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Average number of stories connected to a story
through trope-space:

d

So: (k)gg,ind = an@ (Fro(x))
2 s
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Average number of stories connected to a story
through trope-space:

<k>H,ind = FI/D@(U

ind

d

So: (k)gg,ind = an@ (Fro(x))
2 s

= FI/{(%(DFI/D(H (FR(V)(l))
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Introduction

i /
<k>H,ind = FP(E)(l) Basic story
ind
References

d

So: (k)gg,ind = an@ (Fro(x))
2 s

= F&(V)(DF]/:@ (FR(VJ(l)) = FI/{<9>(1)F1/:(H>(1)
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Average number of stories connected to a story
through trope-space:

(F)gg,ind = F e (1)

ind

4]

So: (k)gg,ind = L) (Fro(x))

=ik

= Fllyw(l)F]/:(H) (FRW)(l)) = Fl/{m(l)F]/:(Hu(l)

Similarly, the average number of tropes connected to a
random trope through stories:

<k>9,ind T F&(E)(l)FI/DW)(l)
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Average number of stories connected to a story
through trope-space:
<k>H,ind = F;D(Hu(l)

ind

d

So: (k)gg,ind = an@ (Fro(x))
2 s

== Fllyw(l)F]/:(Ha (FRW)(l)) = Fl/{m(l)F]/:(Hu(l)

Similarly, the average number of tropes connected to a
random trope through stories:

<k>9,ind T F&nﬁ)(l)FI/D(v)(l)

In terms of the underlying distributions, we have:

k(k— k(k—1
()ging = G2 ()gg and (o ing = S (kg
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Bl

(‘32 \‘j a}! > 7,}

=" ; f\f)—}’gg = ‘\jﬁ
P i
A g

’ \ri 1 : ﬁ‘\?/

Y - ly% = \Jj

View as bouncing back and forth between the two
connected populations. %/

Actual spread may be within only one population
(ideas between between people) or through both
(failures in physical and communication networks).

The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.
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Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?
We want to determine (k) r gg.ind = F;(Q_H)(l) (and

ind
FI’%(E_Q) (1) for the trope side of things).

ind



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = Fl’%fqd_ﬁ)(l) (and

FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d
<k>R,H,ind = %FRf:d_,? (x) =

Il



Always about the edges: when following a random

edge toward a [, what's the expected number of new

edges leading to other stories via tropes?

We want to determine (k) r g.ind = FI’%(Q_H)
ind

FI’%(E_Q) (1) for the trope side of things).

ind

(1) (and

We compute with joy:

d d
<k>R,H,ind = %FRf:d_? () = %FR(H) (FRW) (x))



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = FI’%%_H)(l) (and

FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d d
<k>R,H,ind = %FR§:d—;3> (QE) B %FR(H) (FR@)(ZE))

T F;Qm(l)F;:;(H) (Fro(1))



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = F;(Q_H)(l) (and
ind
FI’%(E_Q) (1) for the trope side of things).

ind
We compute with joy:
d d

(k) rgind = g Free (@) = g-Fra (Fre(z))
¢ =1 =1

T3 F;:gm(l)F;:i(Hw (Fro(1)) = F/R(9)<]')F/R(H)<1)



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r gg.ind = FI’%%_H)(l) (and

FI’%(E_Q) (1) for the trope side of things).

ind

We compute with joy:

d d

(k) rgind = g Free (@) = g-Fra (Fre(z))
4 =i =1
Fro(l) Fig(1)
7 FI/%(V)(]')FI/%(H‘) (FR(Q)(l)) S FI/%(V)<]')F1/%(H)(1) o= FZTQj(:l) FI/IZEHJ(l)



Always about the edges: when following a random

edge toward a [, what's the expected number of new

edges leading to other stories via tropes?

We want to determine (k) r g.ind = FI’%(Q_H)
ind

FI’%(E_Q) (1) for the trope side of things).

ind

(1) (and

We compute with joy:

d d
(k) rgind = g, Fre-o(2) = gz Fre (Fro(@))
¢ =+ =1
Flo(l) Fg (1)
7 FI/%(V)(]')FI/%(H‘) (FR(Q)(l)) S FI/%(V)<]')F1/%(H)(1) o= FZTQj(:l) FZEHj(l)

Note symmetry.



Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r g.ind = F;QFQJH>

(1) (and
FI’%(E_Q) (1) for the trope side of things).

ind

We compute with joy:

d d

(k) rgind = g Free (@) = g-Fra (Fre(z))
4 =i =1
Fro(l) Fig(1)
7 FI/%(V)(]')FI/%(H‘) (FR(Q)(l)) S FI/%(V)<]')F1/%(H)(1) o= FZTQj(:l) FI/IZEHJ(l)

Note symmetry.

$happiness++;
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In terms of the underlying distributions:

) et (k(k—1))g (k(k—1))g
S (ke (kg

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,@,ind > 1
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In terms of the underlying distributions:

o = Dy (k= Do
il (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,@,ind > 1

See this as the product of two gain ratios.
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In terms of the underlying distributions:

o = Dy (k= Do
il (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,@,ind > 1

See this as the product of two gain ratios.
#excellent
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In terms of the underlying distributions:

o = Dy (k= Do
il (k) (k)g

We have a giant component in both induced networks
when

(k) r,m,ind = (F)R,@,ind > 1

See this as the product of two gain ratios.
#excellent #physics
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In terms of the underlying distributions:

o = Dy (k= Do
il (k) (k)g

We have a giant component in both induced networks
when
(k)r@,ind = (k) r.9,ind > 1

See this as the product of two gain ratios.
#excellent #physics

We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

> )k (kE k- E)BEPY —0.
k=0 k’=0
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Introduction
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Set P,i@ = 0,5 and leave P,i ) arbitrary. Basic story

Each story contains exactly three tropes. eerenrs
We have Fpm (z) = 23 and Fr@ (z) = 22

Using FPE?) (z) = Fpm (Fre(z)) and

FPifd) (z) = Fpo (Fre(z)) we have

Fom(2) = [Fre(2)]” and Fpe (@) = Fpa (7).
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Set P,i

= 0,53 and leave P

arbltrary

Each story contains exactly three tropes.
We have Fpm (z) = 23 and Fr@ (z) = 22

Using FPE?) (z)

Fpo(@)

Fpiﬁ)(x) =

= FP(B) (FR(Q) (.’13)) and
= Fp(@) (FR(H) (ﬂf)) we have

[Fro(z)]® and F e

) (2) = Fpo (=2).

Even more specific: If each trope is found in

exactly two stories then Fpq

(H\( ) — :ES and FP(S?)(I') = iL'4.
ind

giving F

=72 andfiom =
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Sef P,i@ = 0,3 and leave Pf) arbitrary.
Each story contains exactly three tropes.
We have Fpm (z) = 23 and Fr@ (z) = 22
Using FPE?) (z) = Fpm (Fre(z)) and

FPu(nQd) <17) = Fp(@) (FR<H) (I)) we have

Fom(2) = [Fre(2)]” and Fpe (@) = Fpa (7).

P)ind

Even more specific: If each trope is found in

exactly two stories then Fpo = 22 and Fre =

giving F e (¢) = 23 and F e (z) = «*.
ind ind

Yes for giant components [

(k) r,mm,ind = (k) Rr,@ind =2-1=2> 1.
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References
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FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each
director sits on.
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FIG. 8. Frequency distributions for the boards of directors of the
Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each

director sits on.

number of boards

number of members

s

1

Boards typically have 5 to 15 directors.

frequency
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number of boards  number of members
FIG. 8. Frequency distributions for the boards of directors of the

Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each
director sits on.

Boards typically have 5 to 15 directors.

Plan: Take these distributions, presume random
bipartite structure and generate co-director network
and board interlock network.
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TABLE I. Summary of results of the analysis of four collabora-

tion networks.

Clustering C

Average degree z

Network Theory Actual Theory  Actual
Company directors 0590  0.588 14.53 14.44
Movie actors 0084 0.199 125.6 1134
Physics (arxiv.org) 0.192 0452 16.74 9.27
Biomedicine (MEDLINE) 0.042  0.088 18.02 16.93

Random bipartite affiliation network assumption
produces decent matches for some basic quantities.
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FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-

tributions for the numbers of collaborators of movie actors and
phys

Jolly good: Works very well for co-directors.
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: collaborations
g inphysics -

frequency r,

0 10 20 30 40 50
collaborators

40 50

number of codirectors z

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

Jolly good: Works very well for co-directors.

For comparison, the dashed line is a Poisson with the
empirical average degree.
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which each board of directors is “interlocked in the Fortune 1000
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line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.
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one sits on oneself.

Wins less bananas for the board interlock network.

Assortativity is the reason: Directors who sit on many

boards tend to sit on the same boards.
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FIG. 10. The distribution of the number of other boards with
which each board of directors is “interlocked” in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.

boards tend to sit on the same boards.

Note: The term assortativity was not used in this 2001

paper.
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Distributions of component size.

Simpler computation for the giant component
condition.

Contagion.

Testing real bipartite structures for departure
from randomness.

Random bipartite networks model many real
systems well.

Crucial improvement over simple random
networks.

We can find the induced distributions and
determine connectivity/contagion condition.
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