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- Random networks

Consider set of all networks with IV labelled nodes
and m edges.
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Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd&s-Rényi random networks or ER
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Number of possible edges:

Limit of m = 0: empty graph.

Limit of m = (§'): complete or fully-connected
graph.

Number of possible networks with N labelled

nodes:

Given m edges, there are ((gﬂ)) different possible
networks.

Crazy factorial explosion for 1 « m « (g).
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on)

1. Connect each of the (%) pairs with appropriate 8
probability p. Retidotr =t
Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
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Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.
Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.
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Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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For method 1, # links is probablistic:

N

<m>=p<2

) B p%N(N iy

So the expected or average degree is

2p1N(N 1) =

2500
~ NP3 wrg

Which is what it should be...
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For method 1, # links is probablistic:

N

<m>=p<2

) B p%N(N iy

So the expected or average degree is

_24m)
B
= ZpAN(V = 1) = Zpi (N~ 1) =p(N -1

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as
N — o0.
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- Random networks: examples
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m =100
(k)=0.4

“ Random networks: largest components

m =200
(ky=0.8

m =280

(ky=1.12

m =230
(k) =0.92

COcoNuTS
@networksvex
Random
Networks
Nutshell

Pure random
networks

Definitions

w to build theoretically

isual examples
Degree distributions

Generalized
Random
Networks

C or



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Random netWCrks:

examples for N=500

COcoNuTS
@networksvex
Random
Networks
Nutshell

Pure random
networks
Definitions

Generalized
Random
Networks

ion model

b build in practice

m friends are

Largest component

References
-



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Random networks: largest components GrenvarkoR
Random
Networks

Nutshell e
‘ Pure random
| networks
: Definitions
How to build theoretically
Some visual examples

m =250
| (k)=1
=250 m =250 Generalized
YR (k)=1 3 Random
(k) m —_250 Networks
(k)= Configuration model
m =250 How to build in practice
(k) =1 Motifs
Random friends are
strange

Largest component
References
ot 7

m =250
(k) =1

m =250
(k) =1

m =250
(ky=1
m =250
(k)=



http://www.uvm.edu
http://www.uvm.edu/pdodds

Giant COmponent COCONUTS

@networksvex
Random

Networks
Nutshell

Pure random
networks
Definitio

How to build theoretically

Some visual examples

0.8f

Generalized
Random
Networks
Configuration mode
How to build in practice

0.6f

Random friends are

0.4¢

0.2¢



http://www.uvm.edu
http://www.uvm.edu/pdodds

|

Outline

Pure random networks

Clustering

COcoNuTS =

@networksvex
Random 3
Networks i
Nutshell W

Pure random
networks

Definitions

How to build theoretically

Some visual examples

Degree distributions

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange

Largest component

References
me———


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Clustering in random networks: GrenvatkoR
Random

For construction method 1, what is the clustering NetBFks
coefficient for a finite network? Nutshel

Pure random
networks
Definitions

How to build theoretically

Degree distributions
Generalized
Random
Networks

Configuration model

ouild in practice

friends are

est component

References



http://www.uvm.edu
http://www.uvm.edu/pdodds

Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
27 #triples
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Clustering in random networks:
For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
27 #triples

! Recall: C, = probability that
Ci two friends of a node are
also friends.
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- Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
27 #triples

! Recall: C, = probability that

Ci two friends of a node are
also friends.

P2y Or: C, = probability that a

,,1) triple is part of a triangle.
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- Clustering in random networks: Grcnitkis

COcoNuTS
For construction method 1, what is the clustering  Networks
coefficient for a finite network? N
Consider triangle/triple clustering coefficient: o Lo
3 x #triangles S
27 #triples =L
Generalized
Random
L Recall: C;, = probability that ~ tewore
Eq two friends of a node are S
also friends.
’ \ ():- = 5 35 ope Larg
] ! 1[) == B Qr. C? = probablllty that a o
2 - triple is part of a triangle. =
! For standard random 1‘ <l
' networks, we have simply b
that M

“»3 CQ :p
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Our degree distribution:
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What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N-1-k 7
Plk;p; N2 <kk:>' (1 B N<k_>1> Bl (k) (k)

This is a Poisson distribution (£ with mean (k).
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Poisson basics:
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Classic use: probability

that an event occurs &
times in a given time
period, given an
average rate of
occurrence.

e.g.

phone calls/minute,
horse-kick deaths.

‘Law of small numbers'
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- Poisson basics:

The variance of degree distributions for random

networks turns out to be very important.

Using calculation similar to one for finding (k) we

find the second moment to be:
R 1 e T
Variance is then

0 = (k%) = (B2 = (B)2 + (k) = (R)? =

So standard deviation ¢ is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...

COcoNuTS
@networksvex
Random
Networks
Nutshell

Pure random
networks

Generalized
Random
Networks
Configuration mode

A
R
L
References
K ——



http://www.uvm.edu
http://www.uvm.edu/pdodds

= s COCcONuUTS =+ *
OUt' I ne @networksvex
Random

Networks
Nutshell

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

Generalized Random Networks Cotproten e
i Configuration model

Random friends are
strange

Largest component

References



http://www.uvm.edu
http://www.uvm.edu/pdodds

- General random networks orendi]

COcoNuTS
Random
: Networks
So... standard random networks have a Poisson Nutshell

degree distribution

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks



http://www.uvm.edu
http://www.uvm.edu/pdodds
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So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !
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So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

Can generalize construction method from ER
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. !

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P, and form links with probability

P(link between i and j) oc w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.
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General random networks

So... standard random networks have a Poisson
degree distribution

Generalize to arbitrary degree distribution P,.
Also known as the configuration model. [/

Can generalize construction method from ER
random networks.

Assign each node a weight w from some
distribution P, and form links with probability

P(link between i and j) oc w,;w,.

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing

nodes with fixed degrees.

2. Examining mechanisms that lead to networks with

certain degree distributions.
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Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.
P, x kgifork = I
Set P, = 0 (no isolated nodes).
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Example realizations of random networks with power
law degree distributions:

N = 1000.

P, x kgifork = I

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.
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- Random networks: examples

Example realizations of random networks with power
law degree distributions:

N = 1000.

P, x kgifork = I

Set P, = 0 (no isolated nodes).

Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.
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|dea: start with a soup of unconnected nodes with
stubs (half-edges):

S g
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Building random networks: First rewiring e
Random

Networks
Nutshell

Pure random
networks

Definitions

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

Generalized

(A) §© (B) ><>/< N

on model

Being careful: we can't change the degree of any 5
node, so we can't simply move links around.

Simplest solution: randomly rewire two edges ata = prersices
time.

Id in practice
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- General random rewiring algorithm GrenvatkoR
] Networks
Nutshell

Randomly choose two edges. :
P
(Or choose problem edge and oo

arandom edge)
Some visual examples
Check to make sure edges are Clistering
b A s Degree distributions
disjoint.
. Generalized
e 1 Random
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Rewire one end of each edge.
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General random rewiring algorithm
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.

Node degrees do not change.
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Randomly choose two edges. :
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(Or choose problem edge and oo
arandom edge)

Check to make sure edges are
disjoint.

Generalized
Random
Networks
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How to build in practice

Rewire one end of each edge.
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General random rewiring algorithm
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Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.

COcoNuTS
@networksvex

Random
Networks
Nutshell

Pure random
networks
Definitions

How

Generalized
Random

Networks
Config

ration mode

uild in practice

References
" -

1



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Sampling random networks enenofkey
| NetHbric
Nutshell

Pure random
networks

Definitions

How to build theoretically

Use rewiring algorithm to remove all self and

Cluster

repeat loops. e disbions

Generalized
Random

Networks
Config tion moc

sual examples



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Sampling random networks GrenvatkoR
Networks
Nutshell

Pure random
networks
Definitions

How to build theoretically

Use rewiring algorithm to remove all self and

Clustering

repeat loops. Degree dstbutions

Generalized
Random
Networks

ion model

Id in practice

Randomize network wiring by applying rewiring :
algorithm liberally.

References
-



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.

Rule of thumb: # Rewirings ~ 10 x # edges “).
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- Sampling random networks @reniarkay
Random

Networks
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Pure random
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What if we have P, instead of V,.?

Must now create nodes before start of the
construction algorithm.

0 build tt

Generalized

Generate N nodes by sampling from degree Random

Networks

distribution P;,. Confgraton
How to build in practice
Easy to do exactly numerically since k& is discrete.
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Random

Networks
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Pure random

= . networks
What if we have P, instead of IV, ? Defniions
Must now create nodes before start of the
construction algorithm. G
Generalized
Generate N nodes by sampling from degree Random
Networks

distribution P;,. Cligcaion poc

How to build in practice

Easy to do exactly numerically since k& is discrete.

Note: not all P, will always give nodes that can be L campone
wired together.
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Idea of motifs !’ introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.
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al. in 2002. et
Looked at gene expression within full context of oo

transcriptional regulation networks.

Specific example of Escherichia coli. Generalized
Random
Directed network with 577 interactions (edges) Networkay .

and 424 operons (nodes).

Motifs

n friends are



http://www.uvm.edu
http://www.uvm.edu/pdodds

- Network motifs

Idea of motifs !’ introduced by Shen-Orr, Alon et
al. in 2002.

Looked at gene expression within full context of
transcriptional regulation networks.

Specific example of Escherichia coli.

Directed network with 577 interactions (edges)
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.
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Idea of motifs !’ introduced by Shen-Orr, Alon et 7
al. in 2002. il

Definitions

Looked at gene expression within full context of b
transcriptional regulation networks.

Degree distributions

Specific example of Escherichia coli. Generalized

Random

Directed network with 577 interactions (edges) heola
and 424 operons (nodes).

Used network randomization to produce
ensemble of alternate networks with same degree
frequency N,,.

Looked for certain subnetworks (motifs) that
appeared more or less often than expected

d theoretically
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Z only turns on in response to sustained activity in

X.

Turning off X rapidly turns off Z.
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- The edg‘e-'degr:ee distribution:

The degree distribution P, is fundamental for our
description of many complex networks

| o

COcoNuTS
@networksvex

Random
Networks
Nutshell

Pure random
networks

Definitions

How to build theoretically
Some visual examples
Clustering

Degree distributions

Generalized
Random
Networks

References

T
f


http://www.uvm.edu
http://www.uvm.edu/pdodds

The edg‘e-'de'gr'ee distribution:

The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.
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The degree distribution P, is fundamental for our
description of many complex networks

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k.
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- The edge-degree distribution: @reniarkay

Random
The degree distribution P, is fundamental for our e
description of many complex networks
Again: P, is the degree of randomly chosen node. Pure random

networks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k. Generalized

Random
Networks

Now choosing nodes based on their degree (i.e., size): i
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- The edge-degree distribution: @reniarkay

Random
The degree distribution P, is fundamental for our e
description of many complex networks
Again: P, is the degree of randomly chosen node. Pure random

networks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k. Generalized

Random
Networks

Now choosing nodes based on their degree (i.e., size):

Normalized form:
kPk

Qi =
SR
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- The edge-degree distribution: @reniarkay

Random
The degree distribution P, is fundamental for our e
description of many complex networks
Again: P, is the degree of randomly chosen node. Pure random

networks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k. Generalized

Random
Networks

Now choosing nodes based on their degree (i.e., size): e

Normalized form:
kP, kP,

Qk = Z;?:O ]f/Pk/: <l€> &
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- The edge-degree distribution: @reniarkay

Random
The degree distribution P, is fundamental for our e
description of many complex networks
Again: P, is the degree of randomly chosen node. Pure random

networks

A second very important distribution arises from
choosing randomly on edges rather than on nodes.

Define ;. to be the probability the node at a random
end of a randomly chosen edge has degree k. Generalized

Random
Networks

Now choosing nodes based on their degree (i.e., size): i e

Normalized form:
kP, kP,

Qk = Z;?:O ]f/Pk/: <l€> &

Big deal: Rich-get-richer mechanism is built into this
selection process.
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Pa—v/e7

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,
Q5'=.3/16, Qs = 6/16,
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Probability of randomly Random
selecting a node of degree k M 2
by choosing from nodes:

P1:3/7,P2:2/7,P3:1/7,

Pure random

P6 == 1/7 networks

Definitions

Probability of landing on a
node of degree k after
randomly selecting an edge T ik
and then randomly choosing Random
one direction to travel: Networks |
Q, =3/16,Q, = 4/16,

Qs =3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.

Deg
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that a friend (neighbor) of a random node has & Pure random
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Useful variant on Q,:

Degree distributions
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has k other friends. NEtwotks

Configuration mode

How to build in practice



http://www.uvm.edu
http://www.uvm.edu/pdodds

- The edge-degree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

F (k+1)Pp 4
Zk/:()(k/ =2 1>Pk’+1

Ry,
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- The edge-degree distribution:

For random networks, @, is also the probability
that a friend (neighbor) of a random node has &
friends.

Useful variant on Q,:

R, = probability that a friend of a random node
has k other friends.

(k+1)Py, (k+1)Py, 4
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For random networks, @, is also the probability
that a friend (neighbor) of a random node has & Pure random

networks

friends.
Useful variant on Q,:

R, = probability that a friend of a random node Generalized
has k other friends. Networks
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Equivalent to friend having degree k + 1.
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- The edge-degree distribution: @reniarkay

Random
Networks
Nutshell
For random networks, @, is also the probability
that a friend (neighbor) of a random node has & Pure random
networks

friends. bt
Useful variant on Q,:

R, = probability that a friend of a random node Generalized
has k other friends. Networks
B (k+ 1P, _ (k+ D P, o

Zk/:O(k/ + 1>Pk/+1 <k:> R‘;\’EI'(—?H(Z(—?S
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|

)

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of 3 i
other friends that one friend has? e

How to build theoretically
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The edg‘e-'degr'ee distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is
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- The edg‘e-'de'gr'ee distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is

- - k+1 Pk+1
=NVRR

1

(k) £

Rl

k(k+1)Py .,
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| The edge- degree distribution:

Given R, is the probability that a friend has k other
friends, then the average number of friends' other
friends is
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| ‘T‘he edgé-degrée distribution:

Note: our result, (k) , = (7{;) ((k?) — (k)), is true for
all random networks, independent of degree
distribution.
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Note: our result, (k) . = ﬁ ((k?) — (k)), is true for
all random networks, independent of degree
distribution.

For standard random networks, recall
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Note: our result, (k) . = ﬁ ((k%) — (k)), is true for ~ nNutshel
all random networks, independent of degree
distribution. Pure random

networks
Definitions

For standard random networks, recall

(k) = (92 + (8. e
Therefore: mng s
&, = % ()2 (k) — (B)) = (&)

Again, neatness of results is a special property of
the Poisson distribution.
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Again, neatness of results is a special property of 5 2
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Reason #1:
Average # friends of friends per node is

(ko) = (k) x (k)g = <k>% ((k?) — (k) = (k?) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.
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 Two reasons why this matters

Average # friends of friends per node is

1

(ko) = (k) x (k) g = (K) )

((k?) — (k) = (k?) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
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 Two reasons why this matters

Average # friends of friends per node is

(a) = (k) x (B = <k>$ ((R2) — (k)) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k5) will be big.
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 Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((K2) — (k) = (k2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:
1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
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 Two reasons why this matters

Average # friends of friends per node is

(ea) = (k) X (k) = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... > °!
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Average # friends of friends per node is

Pure random

: SSise
(k) = (k) x (B = (R) 7y (8%) = () = (K1) = (h). 0
Key: Average depends on the 1st and 2nd moments of St
P, and not just the 1st moment. Networks

Conf

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually e
<k)<k o 1)> References
2. If P, has a large second moment,
then (k,) will be big.
(e.g., in the case of a power-law distribution)
3. Your friends really are different from you... > °!
4. See also: class size paradoxes (nod to: Gelman)

om friends are
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Two reasons why this matters
More on peculiarity #3:
& Anode’s average # of friends: (k)
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(variance= o2 = 0) can a node be the same as its References
friends. ﬁ -
Intuition: for random networks, the more '
connected a node, the more likely it is to be
chosen as a friend.
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Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

'Some press here (£ [MIT Tech Review].
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Go on, hurt me: Friends have more coauthors,
citations, and publications.
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The hope: Maybe they have more enemies and
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(Big) Reason #2:

(k)  is key to understanding how well random
networks are connected together.
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e.g., we'd like to know what's the size of the largest ...
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Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.
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(k)  is key to understanding how well random
networks are connected together. o bl

Definitions

e.g., we'd like to know what's the size of the largest ...
component within a network.

As N — oo, does our network have a giant o b
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Defn: Component = connected subnetwork of Bt e
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.
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Random
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Nutshell

(k)  is key to understanding how well random
networks are connected together. o bl

Definitions

e.g., we'd like to know what's the size of the largest ...
component within a network.

As N — oo, does our network have a giant o b

Random

component? Networks

Defn: Component = connected subnetwork of Bt e
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.

Note: Component = Cluster
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- Structure of random networks
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A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.
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A giant component exists if when we follow a
random edge, we are likely to hit a node with at
least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.
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- Structure of random networks ERE 8

Random
Networks
Nutshell

A giant component exists if when we follow a
random edge, we are likely to hit a node with at PUlErnd

networks

least 1 other outgoing edge.

Equivalently, expect exponential growth in node
number as we move out from a random node.

Degree distributions

Generalized
i e s
All of this is the same as requiring (k) p > 1. Payia
Configuration mode

Giant component condition (or percolation
condition):

<k2> 5 <k> R;fierenc;@
kYp=—"-""—->1 —

L
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- Structure of random networks R A
Random

Networks
Nutshell

A giant component exists if when we follow a
random edge, we are likely to hit a node with at PUlErnd

networks

least 1 other outgoing edge. ot
Equivalently, expect exponential growth in node :

number as we move out from a random node. ‘ ¢ 1
Generalized
All of this is the same as requiring (k) p > 1. andom
Giant component condition (or percolation
condition):
<k2> T <k> R:fierem'e;m
kbp=—F——+7—2>1 i
iz (k) e

Again, see that the second moment is an essential
part of the story.
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- Structure of random networks R A
Random

Networks
Nutshell

A giant component exists if when we follow a
random edge, we are likely to hit a node with at PUlErnd

networks

least 1 other outgoing edge. ot
Equivalently, expect exponential growth in node :

number as we move out from a random node. o
Generalized
All of this is the same as requiring (k) p > 1. Random

Networks
Giant component condition (or percolation
condition):

<k2> T <k> > 1 rRi;r}ie?re‘m:;;m
® B

Again, see that the second moment is an essential }

part of the story.

Equivalent statement: (k?) > 2(k)

<k>R T
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- Spreading on Random Networks

For random networks, we know local structure is
pure branching.
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Focus on binary case with edges and nodes either
infected or not.
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 Spreading on Random Networks Grcnitkis
Random
o Networks
For random networks, we know local structure is Nutshell
pure branching.
Successful spreading is - contingent on single b
edges infecting nodes. S
Success Failure;
Generalized
Random
Networks
> i S {‘1, r\;.,i;jx:‘\y nodel

B ¢

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and

contagion process, can global spreading from a
single seed occur?
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~ Global spreading condition GrenvatkoR
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R = the average # of infected edges that one e
random infected edge brings about. SH Lo

Call R the gain ratio. networks
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Global spreading condition X
We need to find: " Random.
R = the average # of infected edges that one s
random infected edge brings about. i
Call R the gain ratio. it
Define B, as the probability that a node of
degree k is infected by a single infected edge. :
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Global spreading condition @renvofkadby
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Global spreading condition @renvofkadby
We need to find: " Networis
R = the average # of infected edges that one b [
random infected edge brings about. SHOE L
Call R the gain ratio. it
Define B, as the probability that a node of o
degree k is infected by a single infected edge.
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Global spreading condition @reniarkay
We need to find: " Networis
R = the average # of infected edges that one b [
random infected edge brings about. SHOE L
Call R the gain ratio. it
Define B,,, as the probability that a node of ot iy
degree k is infected by a single infected edge.
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Global spreading condition
We need to find: "
R =the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.

Define B, as the probability that a node of
degree k is infected by a single infected edge.

= kP,
R= Z o o (k—=1) e By,
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= S # outgoing Prob. of
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a degree k node
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Our global spreading condition is then:

R:kak.(k—1).3k1>1.

Case 1-Rampant spreading:
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- Global spreadihg condition

Our global spreading condition is then:

e
R= E
L®

.<k_1>.Bk1>1

Case 1-Rampant spreading: If B,; =1 then

SN~ FPe gy B
R_I;)<k> (k—1) 0 i

COcoNuTS
@networksvex

Random
Networks
Nutshell

Pure random
networks

Definitions

How to build theoretically

Generalized

Random

Networks
Confi



http://www.uvm.edu
http://www.uvm.edu/pdodds

~ Global spreading condition GrenvatkoR
Random

Networks
Nutshell

Our global spreading condition is then:

e
R= E
L®

Pure random
networks

.<k_1).Bk1>1

Degree distributions

Generalized
Random

Case 1-Rampant spreading: If B,; =1 then Networks

SN~ FPe gy B
R_I;)<k> (k—1) 0 i

Good: This is just our giant component condition
again.
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Case 2—Simple disease-like: If B,; =8 <1 then

S S
Rl

k=0

e(k—1)e3>1.
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- Global spfeadihg condition

Case 2—Simple disease-like: If B,; =8 <1 then

LA kPy
R_’;)<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.
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Global spreading condition

Case 2—Simple disease-like: If B,; =8 <1 then

LA kPy
R_’;J<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.
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Global spfeadi'ng condition

Case 2—Simple disease-like: If B,; =8 <1 then

LA kPy
R_’;J<k> (k—1)eB>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.
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| GIobaI spreadlng condition

Case 2—Simple disease-like: If B,; =8 <1 then

P
‘;0 (k)

—1l)efg>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.

Resulting degree distribution P, :

Pk_6k2(> A=k R
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Recall (k2) = (k)2 + (k).
Determine condition for giant component:

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.

Fine example of a continuous phase transition (£,

We say (k) = 1 marks the critical point of the
system.
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eg if P, =ckT"with2 <y < 3,k = 1, then
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So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .
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Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .
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- Giant component
And how big is the largest component?
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<o Define S, as the size of the largest component.
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Giant component

e

And how big is the largest component?

<o Define S, as the size of the largest component.

<= Consider an infinite ER random network with average
degree (k).
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Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.
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~ Giant component

Define S, as the size of the largest component.

Consider an infinite ER random network with average
degree (k).

Let's find .S; with a back-of-the-envelope argument.

Define § as the probability that a randomly chosen
node does not belong to the largest component.

Simple connection: 6 =1 — S;.
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Define S, as the size of the largest component.

Pure random
Consider an infinite ER random network with average et s
degree (k). kot
Let's find .S; with a back-of-the-envelope argument.
Define § as the probability that a randomly chosen Al
node does not belong to the largest component. Networks

Conf

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.
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Define ¢ as the probability that a randomly chosen Al
node does not belong to the largest component. Networks
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Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P, sk
k=0
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Define S, as the size of the largest component.
Pure random

Consider an infinite ER random network with average et s
degree (k). ol

Let's find S; with a back-of-the-envelope argument.

Define ¢ as the probability that a randomly chosen Al
node does not belong to the largest component. Networks

Conf

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So

5= i P, sk
k=0

Substitute in Poisson distribution...
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Now substitute in § = 1 — S; and rearrange to

obtain:
Sl == 1 o ei<k>sl
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We can figure out some limits and details for
Sl o ]_ — 67<k>sl‘
First, we can write (k) in terms of S;:

1 1
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As (kY — 0,5, — 0.
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As (kY — 0,5, — 0.
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Definitions

First, we can write (k) in terms of S;:
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As (kY — 0,5, — 0.

As (k) — 00, §; & 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.
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Definitions

First, we can write (k) in terms of S;: o
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.
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Configuration mode

As (kY — 0,5, — 0.

As (k) — 00, §; & 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. '/
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Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have
the same probability § of belonging to the largest
component.

But we know our friends are different from us...
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Our dirty trick only works for ER random networks.

Pure random

The problem: We assumed that neighbors have networks
the same probability § of belonging to the largest o
component.

But we know our friends are different from us... 2 et
Works for ER random networks because G
(k) = (k)R- Sk i

We need a separate probability 6" for the chance
that an edge leads to the giant (infinite)
component.
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probabilistic arguments...

More detailed investigations will profit from a spot  * .
of Generatingfunctionology. !
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