Random Networks Nutshell

Last updated: 2019/01/14, 23:14:28
Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Random
Networks
Nutshell

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

COcoNuTS
@networksvox
Random
Networks
Nutshell

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

These slides are also brought to you by:

Special Guest Executive Producer

\square On Instagram at pratchett_the_cat■

Outline

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized Random Networks
Configuration model How to build in practice Motifs
Random friends are strange Largest component

References

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component

Random network generator for $N=3$:

Ret your own exciting generator here[3 . As $N \nearrow$, polyhedral die rapidly becomes a ball...

How to build in practice

Motifs

Random friends are strange
Largest component

Random networks

Consider set of all networks with N labelled nodes and m edges.
Standard random network = one randomly chosen network from this set.
To be clear: each network is equally probable.
Sometimes equiprobability is a good assumption, but it is always an assumption.
Known as Erdős-Rényi random networks or ER graphs.

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

How to build in practice

Motifs
Random friends are

strange

Largest component

Random networks—basic features:

Number of possible edges:
Random
Networks Nutshell

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

Limit of $m=0$: empty graph.
Limit of $m=\binom{N}{2}$: complete or fully-connected graph.
8
Number of possible networks with N labelled nodes:

$$
2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2} N(N-1)} .
$$

- Given m edges, there are $\left(\begin{array}{c}\binom{N}{m}\end{array}\right)$ different possible networks.
Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$.
Real world: links are usually costly so real networks are almost always sparse.

Random networks

How to build standard random networks:

R Given N and m.

8
Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

- Algorithm: Randomly choose a pair of nodes i and $j, i \neq j$, and connect if unconnected; repeat until all m edges are allocated.
- Best for adding relatively small numbers of links (most cases).
- 1 and 2 are effectively equivalent for large N.

Pure random
networks
Definitions
How to build theoretically Some visual examples

Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are

strange

Largest component
References

Random networks

A few more things:

For method 1, \# links is probablistic:

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{\not 2}{\not 2} p \frac{1}{\mathscr{2}} X(N-1)=p(N-1) .
\end{gathered}
$$

Which is what it should be...
If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as $N \rightarrow \infty$.

Pure random
networks
Definitions
How to build theoretically Some visual examples

Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice

Motifs

Random friends are
strange
Largest component
References

Random networks: examples

Next slides:

Example realizations of random networks
\& $N=500$
. Vary m, the number of edges from 100 to 1000.
Average degree $\langle k\rangle$ runs from 0.4 to 4 .
Look at full network plus the largest component.
Pure random
networks
Definitions
How to build theoretically Some visual examples

Random networks: examples for $N=500$

COcoNuTS @networksvox

Random

Networks
Nutshell

$$
\begin{aligned}
& m=200 \\
& \langle k\rangle=0.8
\end{aligned}
$$

$$
m=100
$$

$$
\langle k\rangle=0.4
$$

$$
m=260
$$

$$
\langle k\rangle=1.04
$$

$$
\begin{aligned}
& m=280 \\
& \langle k\rangle=1.12
\end{aligned}
$$

$$
m=300
$$

$$
\langle k\rangle=1.2
$$

$m=1000$
$\langle k\rangle=2$
$m=250$
$\langle k\rangle=1$
$m=240$
$\langle k\rangle=0.96$

$\langle k\rangle=4$

Random networks: largest components

 @networksvox
Random

Networks
Nutshell

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
$m=280$
$\langle k\rangle=1.12$

$$
\begin{aligned}
& m=100 \\
& \langle k\rangle=0.4
\end{aligned}
$$

$x=260$
$\langle k\rangle=1.04$

$$
m=260
$$

$\langle k\rangle=1.04$
$m=230$
$\langle k\rangle=0.92$
$m=200$
$\langle k\rangle=0.8$

$$
\begin{aligned}
& m=240 \\
& \langle k\rangle=0.96
\end{aligned}
$$

$$
m=500
$$

$$
\langle k\rangle=2
$$

$m=300$
$\langle k\rangle=1.2$

Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

Random networks: examples for $N=500$

COcoNuTS @networksvox

Random

Networks
Nutshell

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$$
\begin{array}{ll}
m=250 & m=250 \\
\langle k\rangle=1 & \langle k\rangle=1
\end{array}
$$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

$$
m=250
$$

$$
\langle k\rangle=1
$$

Generalized

Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

Random networks: largest components

 @networksvox
Random

Networks
Nutshell

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

low to build in practice
Motifs
Random friends are
strange
Largest component

References

$$
\langle k\rangle=1
$$

$$
m=250
$$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$$
m=250
$$

$\langle k\rangle=1$

Giant component

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component

Clustering in random networks:

For construction method 1 , what is the clustering coefficient for a finite network?
Consider triangle/triple clustering coefficient:

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\text { \#triples }}
$$

Pure random

Recall: $C_{2}=$ probability that two friends of a node are also friends.
8 Or: $C_{2}=$ probability that a triple is part of a triangle.
8. For standard random networks, we have simply that

$$
C_{2}=p
$$

Clustering in random networks:

So for large random networks ($N \rightarrow \infty$), clustering drops to zero.
Key structural feature of random networks is that they locally look like pure branching networks
No small loops.

Definitions
How to build theoretically Some visual examples

Clustering

Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice

Motifs

Random friends are
strange
Largest component

Degree distribution:

R Recall $P_{k}=$ probability that a randomly selected node has degree k.

- Consider method 1 for constructing random networks: each possible link is realized with probability p.
Now consider one node: there are ' $N-1$ choose k ' ways the node can be connected to k of the other $N-1$ nodes.
\& Each connection occurs with probability p, each non-connection with probability $(1-p)$.
R Therefore have a binomial distribution $\boxed{\square}$:

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

Limiting form of $P(k ; p, N)$:

Our degree distribution:
$P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$.
What happens as $N \rightarrow \infty$?

We must end up with the normal distribution right?
If p is fixed, then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$.
But we want to keep $\langle k\rangle$ fixed...
So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant.

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \rightarrow \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

This is a Poisson distribution \langle with mean $\langle k\rangle$.

Pure random networks
Definitions
How to build theoretically Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component
References

Poisson basics:

$$
P(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- $\lambda>0$
\& $k=0,1,2,3, \ldots$

Classic use: probability that an event occurs k times in a given time period, given an average rate of occurrence.
e.g.: phone calls/minute, horse-kick deaths.
'Law of small numbers'

Pure random networks

Definitions

How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice

Motifs

Random friends are
strange
Largest component
References

Poisson basics:

The variance of degree distributions for random networks turns out to be very important. Using calculation similar to one for finding $\langle k\rangle$ we find the second moment to be:

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

So standard deviation σ is equal to $\sqrt{\langle k\rangle}$. Note: This is a special property of Poisson distribution and can trip us up...

General random networks

So... standard random networks have a Poisson degree distribution
Generalize to arbitrary degree distribution P_{k}.
A Also known as the configuration model. ${ }^{[6]}$
Can generalize construction method from ER random networks.
R Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

But we'll be more interested in

1. Randomly wiring up (and rewiring) already existing nodes with fixed degrees.
2. Examining mechanisms that lead to networks with certain degree distributions.

Random networks: examples

Coming up:

Example realizations of random networks with power law degree distributions:
s $N=1000$.
\& $P_{k} \propto k^{-\gamma}$ for $k \geq 1$.
Set $P_{0}=0$ (no isolated nodes).
Vary exponent γ between 2.10 and 2.91.
Again, look at full network plus the largest component.
Apart from degree distribution, wiring is random.
Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

Random networks: examples for $N=1000$

COcoNuTS @networksvox

Random

 Networks Nutshell$$
\begin{aligned}
& \gamma=2.1 \\
& \langle k\rangle=3.448
\end{aligned}
$$

$\gamma=2.19$
$\gamma=2.28$
$\gamma=2.37$
$\gamma=2.46$
$\langle k\rangle=2.986$
$\langle k\rangle=2.306$
$\langle k\rangle=2.504$
$\langle k\rangle=1.856$
Pure random networks
Definitions
How to build theoretically Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

Configuration model

How to build in practice
Motifs
Random friends are
strange
Largest component
References

$\gamma=2.55$
$\gamma=2.64$
$\gamma=2.73$
$\gamma=2.82$
$\gamma=2.91$
$\langle k\rangle=1.712$
$\langle k\rangle=1.6$
$\langle k\rangle=1.862$
$\langle k\rangle=1.386$
$\langle k\rangle=1.49$

Random networks: largest components

Random

Networks
Nutshell
$\gamma=2.1$
$\gamma=2.19$
$\gamma=2.28$
$\gamma=2.37$
$\gamma=2.46$
$\langle k\rangle=1.856$

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized
 Random
 Networks

Configuration model

How to build in practice
Motifs
Random friends are
strange
Largest component
References
$\gamma=2.55$
$\gamma=2.64$
$\gamma=2.73$
$\gamma=2.82$
$\gamma=2.91$
$\langle k\rangle=1.712$
$\langle k\rangle=1.6$
$\langle k\rangle=1.862$
$\langle k\rangle=1.386$
$\langle k\rangle=1.49$

Models

Generalized random networks:

Arbitrary degree distribution P_{k}.

- Create (unconnected) nodes with degrees sampled from P_{k}.
Wire nodes together randomly.
Create ensemble to test deviations from randomness.

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component

Building random networks: Stubs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

Configuration model

How to build in practice Motifs
Random friends are
strange
Largest component
References

Initially allow self- and repeat connections.

Building random networks: First rewiring

Phase 2:
Now find any (A) self-loops and (B) repeat edges and randomly rewire them.
(A)

(B)

R Being careful: we can't change the degree of any node, so we can't simply move links around.
simplest solution: randomly rewire two edges at a time.

General random rewiring algorithm

R Randomly choose two edges.
(Or choose problem edge and a random edge)
Check to make sure edges are disjoint.

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice Motifs
Random friends are
strange
Largest component
References
 4 -cycles. and rotating them.

Sampling random networks

Phase 2:

. Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

Randomize network wiring by applying rewiring algorithm liberally.
R Rule of thumb: \# Rewirings $\simeq 10 \times$ \# edges ${ }^{[4]}$.

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice

Random friends are
strange
Largest component

Random sampling

8 Problem with only joining up stubs is failure to randomly sample from all possible networks.
Example from Milo et al. (2003) ${ }^{[4]}$:

1 configuration

90 configurations

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

Configuration model

How to build in practice
Motifs
Random friends are
strange
Largest component
References

Sampling random networks

What if we have P_{k} instead of N_{k} ?
Must now create nodes before start of the construction algorithm.
\&enerate N nodes by sampling from degree distribution P_{k}.
Easy to do exactly numerically since k is discrete.
Note: not all P_{k} will always give nodes that can be wired together.

Network motifs

8. Idea of motifs ${ }^{[7]}$ introduced by Shen-Orr, Alon et al. in 2002.
Looked at gene expression within full context of transcriptional regulation networks.
Specific example of Escherichia coli.
R
Directed network with 577 interactions (edges) and 424 operons (nodes).
8 Used network randomization to produce ensemble of alternate networks with same degree frequency N_{k}.
8
Looked for certain subnetworks (motifs) that appeared more or less often than expected

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

Network motifs

feedforward loop

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component

Network motifs

single input module (SIM)

Master switch.
Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange
Largest component
References

Network motifs

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs

Random friends are
strange
Largest component
References

Network motifs

Pure random
networks
Definitions
How to build theoretically
Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
For more, see work carried out by Wiggins et al. at Columbia.

The edge-degree distribution:

 description of many complex networksAgain: P_{k} is the degree of randomly chosen node.
A second very important distribution arises from choosing randomly on edges rather than on nodes.
Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k.
Now choosing nodes based on their degree (i.e., size):

$$
Q_{k} \propto k P_{k}
$$

Normalized form:

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}=\frac{k P_{k}}{\langle k\rangle} .
$$

Big deal: Rich-get-richer mechanism is built into this selection process.
\& Probability of randomly selecting a node of degree k by choosing from nodes:

$$
\begin{aligned}
& P_{1}=3 / 7, P_{2}=2 / 7, P_{3}=1 / 7, \\
& P_{6}=1 / 7 .
\end{aligned}
$$

Probability of landing on a node of degree k after randomly selecting an edge and then randomly choosing one direction to travel:
$Q_{1}=3 / 16, Q_{2}=4 / 16$,
$Q_{3}=3 / 16, Q_{6}=6 / 16$.
s
Probability of finding \# outgoing edges $=k$ after randomly selecting an edge and then randomly choosing one direction to travel: $R_{0}=3 / 16 R_{1}=4 / 16$, $R_{2}=3 / 16, R_{5}=6 / 16$.

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
s̄trange-
Largest component
References

uvM

The edge-degree distribution:

For random networks, Q_{k} is also the probability that a friend (neighbor) of a random node has k friends.
B Useful variant on Q_{k} :
$R_{k}=$ probability that a friend of a random node has k other friends.

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Equivalent to friend having degree $k+1$.
Natural question: what's the expected number of other friends that one friend has?

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
s̄trange-
Largest component
References

The edge-degree distribution:

 friends, then the average number of friends' other friends is$$
\begin{aligned}
& \langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
& =\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
& =\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

(where we have sneakily matched up indices)

$$
\begin{gathered}
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } \mathrm{j}=\mathrm{k}+1) \\
=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
\end{gathered}
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
s-strange-
Largest component

References

The edge-degree distribution:

Note: our result, $\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$, is true for all random networks, independent of degree distribution.
For standard random networks, recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

(8) Therefore:

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

Again, neatness of results is a special property of the Poisson distribution.
So friends on average have $\langle k\rangle$ other friends, and $\langle k\rangle+1$ total friends...

The edge-degree distribution:

 networks ...$$
P_{k}=\frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

into

$$
R_{k}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

we have

$$
\begin{gathered}
R_{k}=\frac{(k+1)}{\langle k\rangle} \frac{\langle k\rangle^{(k+1)}}{(k+1)!} e^{-\langle k\rangle}=\frac{(k+1)}{\langle k\rangle} \frac{\langle k\rangle^{(k+\not \chi)}}{(k+1) k!} e^{-\langle k\rangle} \\
=\frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \equiv P_{k}
\end{gathered}
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clüstering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice

Motifs

Random friends are
s-strange-
Largest component

Two reasons why this matters

Reason \#1:

Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
sistrange
Largest component
References

3. Your friends really are different from you... [3,5]
4. See also: class size paradoxes (nod to: Gelman)

Two reasons why this matters

More on peculiarity \#3:

. A node's average \# of friends: $\langle k\rangle$
. Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

So only if everyone has the same degree (variance $=\sigma^{2}=0$) can a node be the same as its friends.
\& Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Motifs

Random friends are
s̄range
Largest component

"Generalized friendship paradox in complex networks: The case of scientific collaboration"

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. ${ }^{[2]}$
Random
Networks Nutshell

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
sistrange
Largest component
${ }^{1}$ Some press here[] [MIT Tech Review].

Two reasons why this matters

(Big) Reason \#2:

$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together.
e.g., we'd like to know what's the size of the largest component within a network.
As $N \rightarrow \infty$, does our network have a giant component?

- Defn: Component = connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork, and no node outside of the subnetwork is connected to it.
, Defn: Giant component = component that comprises a non-zero fraction of a network as $N \rightarrow \infty$.

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

Configuration model

How to build in practice

Motifs

Random friends are
s̄range
Largest component
References

. Note: Component = Cluster

Giant component

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

UVM = $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Structure of random networks

Giant component:

A giant component exists if when we follow a random edge, we are likely to hit a node with at least 1 other outgoing edge.
Equivalently, expect exponential growth in node number as we move out from a random node.
\& All of this is the same as requiring $\langle k\rangle_{R}>1$.

- Giant component condition (or percolation condition):

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Again, see that the second moment is an essential part of the story.
Equivalent statement: $\left\langle k^{2}\right\rangle>2\langle k\rangle$

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

Spreading on Random Networks

 pure branching.Successful spreading is :: contingent on single edges infecting nodes.

Success

Failure:
Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
Focus on binary case with edges and nodes either infected or not.
. First big question: for a given network and contagion process, can global spreading from a single seed occur?

Global spreading condition

ใ We need to find:
$\mathbf{R}=$ the average $\#$ of infected edges that one random infected edge brings about.
Call R the gain ratio.
Define $B_{k 1}$ as the probability that a node of degree k is infected by a single infected edge.

Generalized
Random

$$
\begin{aligned}
\mathbf{R}= & \sum_{k=0}^{\infty} \underbrace{\frac{k P_{k}}{\langle k\rangle}}_{\begin{array}{c}
\text { prob. of } \\
\text { connecting to } \\
\text { a degree } k \text { node }
\end{array}} \cdot \underbrace{(k-1)}_{\begin{array}{c}
\text { \# outgoing } \\
\text { infected } \\
\text { edges }
\end{array}} \cdot \underbrace{B_{k 1}}_{\begin{array}{c}
\text { Prob. of } \\
\text { infection }
\end{array}} \\
& +\sum_{k=0}^{\infty} \frac{\overbrace{k P_{k}}}{\langle k\rangle} \bullet \underbrace{0}_{\begin{array}{l}
\text { \# outgoing } \\
\text { infected } \\
\text { edges }
\end{array}} \cdot \underbrace{\left(1-B_{k 1}\right)}_{\begin{array}{l}
\text { Prob. of } \\
\text { no infection }
\end{array}}
\end{aligned}
$$

Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component

References

Global spreading condition

Our global spreading condition is then:

$$
\mathbf{R}=\sum_{k=0}^{\infty} \frac{k P_{k}}{\langle k\rangle} \bullet(k-1) \cdot B_{k 1}>1
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component

Good: This is just our giant component condition again.

Global spreading condition

Case 2-Simple disease-like: If $B_{k 1}=\beta<1$ then

$$
\mathbf{R}=\sum_{k=0}^{\infty} \frac{k P_{k}}{\langle k\rangle} \bullet(k-1) \bullet \beta>1
$$

Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
A fraction (1- β) of edges do not transmit infection.

- Analogous phase transition to giant component case but critical value of $\langle k\rangle$ is increased.
\& Aka bond percolation [?
Resulting degree distribution \tilde{P}_{k} :

$$
\tilde{P}_{k}=\beta^{k} \sum_{i=k}^{\infty}\binom{i}{k}(1-\beta)^{i-k} P_{i} .
$$

Generalized
Random
Networks
Configuration model
How to build in practice

Motifs

Random friends are
strange
Largest component

References

Giant component for standard random networks:

R Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$.
Determine condition for giant component:

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

- Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component

References

Random networks with skewed P_{k} :

e.g, if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$, then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} d x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle)
\end{gathered}
$$

So giant component always exists for these kinds of networks.

Cutoff scaling is k^{-3} : if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$.
\& How about $P_{k}=\delta_{k k_{0}}$?
Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are

References

Giant component

And how big is the largest component?

Define S_{1} as the size of the largest component.
Consider an infinite ER random network with average degree $\langle k\rangle$.

Ret's find S_{1} with a back-of-the-envelope argument.
R Define δ as the probability that a randomly chosen node does not belong to the largest component.
Simple connection: $\delta=1-S_{1}$.
Dirty trick: If a randomly chosen node is not part of the largest component, then none of its neighbors are.

- So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized

Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange
Largest component

References

- Substitute in Poisson distribution...

Giant component

Carrying on:

$$
\begin{gathered}
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
\end{gathered}
$$

Now substitute in $\delta=1-S_{1}$ and rearrange to obtain:

$$
S_{1}=1-e^{-\langle k\rangle S_{1}} .
$$

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clüstering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component

Giant component

. We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.

Pure random
networks
Definitions
First, we can write $\langle k\rangle$ in terms of S_{1} :

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

As $\langle k\rangle \rightarrow 0, S_{1} \rightarrow 0$.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$.
Notice that at $\langle k\rangle=1$, the critical point, $S_{1}=0$.
Only solvable for $S_{1}>0$ when $\langle k\rangle>1$.
Really a transcritical bifurcation.

Giant component

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

UVM = $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Giant component

Turns out we were lucky...
Our dirty trick only works for ER random networks.

The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
But we know our friends are different from us...
Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$.
We need a separate probability δ^{\prime} for the chance that an edge leads to the giant (infinite) component.
We can sort many things out with sensible probabilistic arguments...
. More detailed investigations will profit from a spot
Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks

Configuration model

How to build in practice

Motifs
Random friends are
strange

Largest component
 of Generatingfunctionology.

References I

[1] P. S. Dodds, K. D. Harris, and J. L. Payne.
Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks.
Phys. Rev. E, 83:056122, 2011. pdf[^
[2] Y.-H. Eom and H.-H. Jo.
Generalized friendship paradox in complex networks: The case of scientific collaboration.
Nature Scientific Reports, 4:4603, 2014. pdf(־)
[3] S. L. Feld.
Why your friends have more friends than you do. Am. J. of Sociol., 96:1464-1477, 1991. pdf[]

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

References II

[4] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.
On the uniform generation of random graphs with prescribed degree sequences, 2003. pdfC
[5] M. E. J. Newman.
Ego-centered networks and the ripple effect,. Social Networks, 25:83-95, 2003. pdf[〕
[6] M. E. J. Newman.
The structure and function of complex networks. SIAM Rev., 45(2):167-256, 2003. pdf[]
[7] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31:64-68, 2002. pdf[

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clüstering
Degree distributions
Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are

strange

Largest component

References III

@networksvox
Random
Networks
Nutshell

Pure random
networks
Definitions
[8] S. H. Strogatz.
Nonlinear Dynamics and Chaos.
Addison Wesley, Reading, Massachusetts, 1994.
[9] H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdf[
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largest component
References

