Organizational Networks: Information Exchange and Robustness

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Results

Conclusion

References

 $\begin{bmatrix} \lambda & y & D \\ x_1 & d \end{bmatrix} d_2$

These slides are brought to you by:

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Model

Results

Conclusion

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model Testing Results

Conclusion

References

20 3 of 61

Outline

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model **Testing** Results

Conclusion

References

COCONUTS @networksvox

Organizational Networks

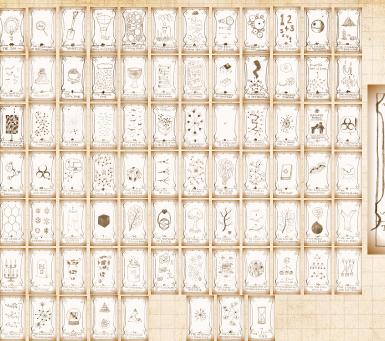
Overview

Ambiguous problems Models of organizations

Modelification Goals

Results

Conclusion



The basic idea/problem/motivation/history:

Organizations as information exchange entities.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

Catastrophe recovery.

COCONUTS @networksvox

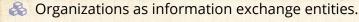
Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Results


Conclusion

The basic idea/problem/motivation/history:

& Catastrophe recovery.

Solving ambiguous, ill-defined problems.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

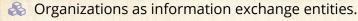
Ambiguous problems

Models of organizations:

Modelification

Model Testing

Testing Results


Conclusion

The basic idea/problem/motivation/history:

& Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Testing

Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

& Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

Task specification.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

& Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

Task specification.

Message routing algorithm.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model

Results

Conclusion

The basic idea/problem/motivation/history:

Organizations as information exchange entities.

Catastrophe recovery.

Solving ambiguous, ill-defined problems.

Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.

Task specification.

Message routing algorithm.

Results:

Performance measures.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Outline

Overview Toyota

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations

Modelification

Goals

Model

Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations

Modelification Goals

Model

Results

Conclusion

References

20 10 of 61

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

4 hours supply ("just in time").

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations

Modelification Goals

Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

4 hours supply ("just in time").

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations

Modelification Goals

Results

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

4 hours supply ("just in time").

 \clubsuit 14,000 cars per day \rightarrow 0 cars per day.

& 6 months before new machines would arrive.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Testing Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

4 hours supply ("just in time").

 \clubsuit 14,000 cars per day \rightarrow 0 cars per day.

& 6 months before new machines would arrive.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Testing Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

- 4 hours supply ("just in time").
- \clubsuit 14,000 cars per day \to 0 cars per day.
- 6 months before new machines would arrive.
- Recovered in 5 days.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model

Testing Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground. [4]

- & 4 hours supply ("just in time").
- \clubsuit 14,000 cars per day \to 0 cars per day.
- 6 months before new machines would arrive.
- Recovered in 5 days.

Case study performed by Nishiguchi and Beaudet [4]

"Fractal Design: Self-organizing Links in Supply

Chain"

in "Knowledge Creation: A New Source of Value"

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Testing Results

Conclusion

References

9 a @ 10 of 61

Some details:

36 suppliers, 150 subcontractors

COcoNuTS @networksvox

Organizational Networks

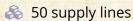
Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Results



Some details:

36 suppliers, 150 subcontractors

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations

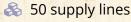
Modelification

Goals Model

Results

Conclusion





COcoNuTS @networksvox Organizational

Organizational Networks

Some details:

Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.

Overview

Toyota
Ambiguous problems
Models of organizations

Modelification

Goals Model

Results

Conclusion

COCONUTS @networksvox

Organizational Networks

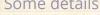
Overview

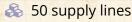
Toyota

Ambiguous problems Models of organizations:

Modelification Goals

References




Some details:

- 36 suppliers, 150 subcontractors
- 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:

Some details:

36 suppliers, 150 subcontractors

Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.

Recovery depended on horizontal links which arguably provided:

1. robustness

COCONUTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations:

Modelification Goals

COCONUTS @networksvox

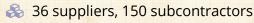
Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations:

Modelification Goals


References

Some details:

50 supply lines

Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.

Recovery depended on horizontal links which arguably provided:

- 1. robustness
- 2. searchability

Some things fall apart:

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

References

29 0 12 of 61

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations:

Modelification Goals

Model

Testing

Results

Conclusion

References

9 a @ 13 of 61

Rebirth:

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations:

Modelification

Goals

Model

Results

Conclusion

Outline

Overview

Ambiguous problems

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

Motivation

Recovery from catastrophe involves solving problems that are:

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

> Modelification Goals

Results

Conclusion

References

20 16 of 61

Motivation

Recovery from catastrophe involves solving problems that are:

Unanticipated,

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Results

Conclusion

Motivation

Recovery from catastrophe involves solving problems that are:

Unanticipated,

Unprecedented,

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Model Testing

Results

Conclusion

Recovery from catastrophe involves solving problems that are:

Unanticipated,

Unprecedented,

Ambiguous (nothing is obvious),

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations

Modelification

Results

Conclusion

Recovery from catastrophe involves solving problems that are:

- & Unanticipated,
- Unprecedented,
- Ambiguous (nothing is obvious),
- Distributed (knowledge/people/resources),

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

Recovery from catastrophe involves solving problems that are:

- & Unanticipated,
- Unprecedented,
- Ambiguous (nothing is obvious),
- Distributed (knowledge/people/resources),
- Limited by existing resources,

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

Recovery from catastrophe involves solving problems that are:

- & Unanticipated,
- Unprecedented,
- Ambiguous (nothing is obvious),
- Distributed (knowledge/people/resources),
- Limited by existing resources,
- Critical for survival.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Testing Results

Conclusio

COcoNuTS
@networksvox
Organizational
Networks

Recovery from catastrophe involves solving problems that are:

Overview

Unanticipated,

Toyota

Ambiguous problems

Models of organizations

Unprecedented,Ambiguous (nothing is obvious),

Modelification Goals

Distributed (knowledge/people/resources),Limited by existing resources,

Conclusion

& Critical for survival.

References

Frame:

Collective solving of ambiguous problems

Ambiguity:

Question much less answer is not well understood.

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Results

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

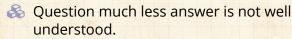
Models of organizations

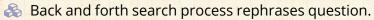
Modelification Goals

Model Testing

Testing Results

Conclusion


References



Ambiguity:



COcoNuTS @networksvox

Organizational Networks

Ambiguity:

Back and forth search process rephrases question.

🙈 Leads to iterative process of query reformulation.

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

COcoNuTS @networksvox

Organizational Networks

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- 🙈 Leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Model Testing

Results

Conclusion

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

References

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- Leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Goals

References

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- Leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?
- How do we define ambiguity?

Modeling ambiguous problems is hard...

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Results

Modeling ambiguous problems is hard...

Model response instead...

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Model Results

Conclusion

Modeling ambiguous problems is hard...

Model response instead...

Individuals need novel information and must communicate with others outside of their usual contacts.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations Modelification

Goals

Modeling ambiguous problems is hard...

Model response instead...

Individuals need novel information and must communicate with others outside of their usual contacts.

Creative search is intrinsically inefficient.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model Testing

Results

Conclusion

@networksvox Organizational Networks

COCONUTS

Modeling ambiguous problems is hard...

Toyota

Ambiguous problems

Models of organizations

Overview

Model response instead...

Modelification Goals

Individuals need novel information and must communicate with others outside of their usual contacts.

Testing Results

& Creative search is intrinsically inefficient.

Conclusion

Focus on robustness:

COcoNuTS
@networksvox
Organizational
Networks

Modeling ambiguous problems is hard...

Overview
Toyota
Ambiguous problems

Model response instead...

Ambiguous problems

Models of organizations

Individuals need novel information and must communicate with others outside of their usual contacts.

Modelification
Goals

Creative search is intrinsically inefficient.

Conclusion

References

References

Focus on robustness:

1. Avoidance of individual failures.

COcoNuTS @networksvox Organizational

Modeling ambiguous problems is hard...

Overview

Networks

Model response instead...

Ambiguous problems

Models of organizations

Individuals need novel information and must communicate with others outside of their usual contacts.

Modelification Goals

& Creative search is intrinsically inefficient.

Conclusion

References

Focus on robustness:

1. Avoidance of individual failures.

2. Survival of organization even when failures do occur.

Outline

Overview

Toyota

Ambiguous problem

Models of organizations:

Moderfication

Goals Mode

Testing

Reference

COcoNuTS @networksvox

Organizational Networks

Overview

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Model

Testing

Results

Conclusion

"The Nature of the Firm" Ronald H. Coase, Economica, New Series, 4, 386-405, 1937. [1] COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Results

Conclusion

"The Nature of the Firm" Ronald H. Coase, Economica, New Series, 4, 386-405, 1937. [1]

Notion of Transaction Costs .

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations:

Modelification

Goals

Results

Conclusion

"The Nature of the Firm" Ronald H. Coase, Economica, New Series, 4, 386-405, 1937. [1]

Notion of Transaction Costs .

More efficient for individuals to cooperate outside of the market.

COCONUTS @networksvox

Organizational Networks

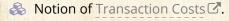
Overview

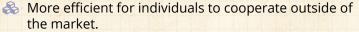
Ambiguous problems

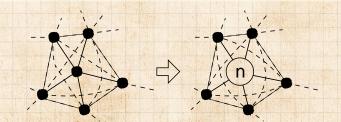
Models of organizations:

Modelification

Goals







"The Nature of the Firm"

Ronald H. Coase, Economica, New Series, 4, 386-405, 1937. [1]

COCONUTS @networksvox

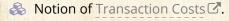
Organizational Networks

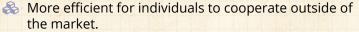
Overview

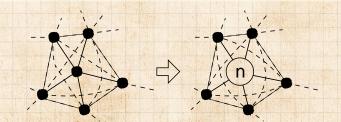
Ambiguous problems Models of organizations:

Modelification Goals

References




20 of 61



"The Nature of the Firm"

Ronald H. Coase, Economica, New Series, 4, 386-405, 1937. [1]

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

References

20 of 61

Real organizations—Extremes

Hierarchy:

Maximum efficiency,

Suited to static environment,

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Results

Conclusion

Real organizations—Extremes

COcoNuTS @networksvox Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

References

Hierarchy:

Maximum efficiency,

Suited to static environment,

Brittle.

Market:

Resilient,

Suited to rapidly changing environment,

Requires costless or low cost interactions.

Organizations as efficient hierarchies

& Economics: Organizations \equiv Hierarchies.

& e.g., Radner (1993)^[5], Van Zandt (1998)^[7]

Hierarchies performing associative operations:

COCONUTS @networksvox

Organizational Networks

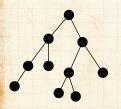
Overview

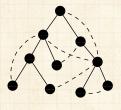
Ambiguous problems

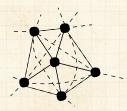
Models of organizations:

Modelification

Goals







Real organizations...

But real, complex organizations are in the middle...

"Heterarchy" David Stark, The Biology of Business: Decoding the Natural Laws of the Enterprise., New Series, 4, 153-, 1999. [6]

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

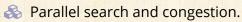
Modelification

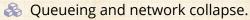
Goals

Results

Conclusion


Optimal network topologies for local search




"Optimal network topologies for local search with congestion"

Guimerà et al., Phys. Rev. Lett., 89, 248701, 2002. [3]

Exploration of random search mechanisms.

COCONUTS @networksvox

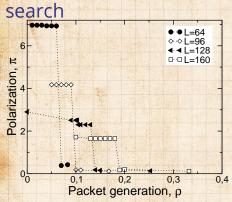
Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

References



24 of 61

Optimal network topologies for local

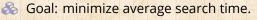
& Betweenness: β .

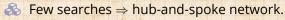
Polarization:

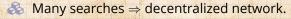
$$\pi = \frac{\mathsf{max}\beta}{\langle\beta\rangle} - 1$$

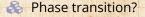
A L = number of links.

COCONUTS @networksvox


Organizational Networks


Overview


Ambiguous problems Models of organizations:


Modelification

Goals

Outline

Foyota Ambiguous problems Models of organizations

Modelification Goals

Model Testing Results

Conclusion

Reference

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testin

Results

Conclusion

1. Low cost (requiring few links).

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model

Testing Results

Conclusion

- 1. Low cost (requiring few links).
- 2. Scalability.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Results

Conclusion

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Results

Conclusion

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Results

Conclusion

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing

Results

Conclusion

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':
 - I Congestion robustness
 (Resilience to failure due to information exchange);

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations:

Modelification

Goals

Testing

Results

Conclusion

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':
 - I Congestion robustness
 (Resilience to failure due to information exchange);
 - Il Connectivity robustness (Recoverability in the event of failure).

COcoNuTS @networksvox

Organizational Networks

Overview

Toyot

Ambiguous problems

Models of organizations:

Modelification

Goals

Testing

Results

Conclusion

Searchability

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations:

Modelification Goals

References

Small world problem:

- Can individuals pass a message to a target individual using only personal connections?
- Yes, large scale networks searchable if nodes have identities.
- "Identity and Search in Social Networks," Watts, Dodds, & Newman, 2002. [8]

Outline

Modelification

Model

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification

Goals Model

Results

Conclusion

Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521, 2003.[2]

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Model

Results

Conclusion

Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521, 2003.[2]

Edited by Harrison White

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Model

Results

Conclusion

"Information exchange and the robustness of organizational networks" Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521,

Edited by Harrison White

2003. [2]

Formal organizational structure:

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Results

Conclusion

"Information exchange and the robustness of organizational networks" Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521,

2003. [2]

Formal organizational structure:

Underlying hierarchy:

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Results

Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Formal organizational structure:

Underlying hierarchy:

branching ratio b

COCONUTS @networksvox

Organizational Networks

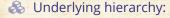
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Formal organizational structure:

branching ratio b

 \bigcirc depth L

COCONUTS @networksvox

Organizational Networks

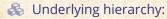
Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results



Dodds, Watts, and Sabel. Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Formal organizational structure:

- branching ratio b

COcoNuTS @networksvox

Organizational Networks

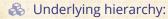
Overview

Ambiguous problems

Models of organizations:

Modelification Goals

Model



Dodds, Watts, and Sabel. Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Edited by Harrison White

Formal organizational structure:

- branching ratio b
- \bigcirc depth L
- $N = (b^L 1)/(b 1)$ nodes
- N-1 links

COCONUTS @networksvox

Organizational Networks

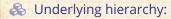
Overview

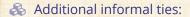
Ambiguous problems

Models of organizations:

Modelification Goals

Model




Dodds, Watts, and Sabel. Proc. Natl. Acad. Sci., 100, 12516-12521, 2003. [2]

Edited by Harrison White

Formal organizational structure:

- branching ratio b
- \bigcirc depth L
- $N = (b^L 1)/(b 1)$ nodes
- N-1 links

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., **100**, 12516–12521, 2003. [2]

& Edited by Harrison White 🗹

Formal organizational structure:

- Underlying hierarchy:
 - branching ratio b
 - \bigcirc depth L
 - $N = (b^L 1)/(b 1)$ nodes
 - N-1 links
- Additional informal ties:
 - \bigcirc Choose m links according to a two parameter probability distribution

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

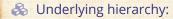
Models of organizations.

Modelification

Goals Model

Testing Results

Conclusion



Dodds, Watts, and Sabel, Proc. Natl. Acad. Sci., **100**, 12516–12521, 2003. ^[2]

& Edited by Harrison White 🗹

Formal organizational structure:

- branching ratio b
- \bigcirc depth L
- $N = (b^L 1)/(b 1)$ nodes
- N-1 links

Additional informal ties:

- Choose m links according to a two parameter probability distribution
- $0 \leq m \leq (N-1)(N-2)/2$

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

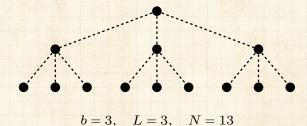
Models of organizations.

Modelification

Model Testing

Results

Conclusion



Model—underlying hierarchy

Model—formal structure:

COcoNuTS @networksvox

Organizational Networks

Overview

Toyot

Ambiguous problems

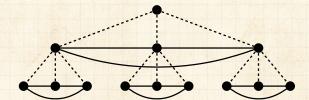
Models of organizations:

Modelification Goals

Model

Testing

Results


Conclusion

Team-based networks (m = 12):

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

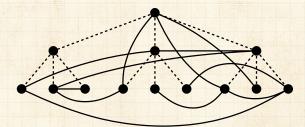
Modelification

Goals

Model

Results

References



9 a @ 32 of 61

Random networks (m = 12):

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

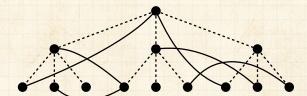
Goals

Model

Results

Conclusion

References



9 a @ 33 of 61

Random interdivisional networks (m = 6):

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

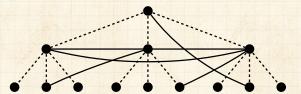
Modelification

Goals

Model

Results

References



29 Q 34 of 61

Core-periphery networks (m = 6):

COcoNuTS @networksvox

Organizational Networks

Overview

Toyot

Ambiguous problems

Models of organizations

Modelification

Goals

Model

Results

Conclusion

References

9 a @ 35 of 61

Multiscale networks (m = 12):

COcoNuTS @networksvox

Organizational Networks

Overview

- CVCIVI

Ambiguous problems

Models of organizations

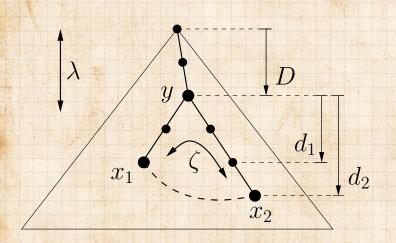
Modelification

Goals

Model

Results

Conclusion


References

9 a @ 36 of 61

COcoNuTS @networksvox

Organizational Networks

Overview

Overvie

Ambiguous problems

Models of organizations

Modelification

Goals

Model Testing

Results

Conclusion

References

9 a @ 37 of 61

Link addition probability:

$$P(D, d_1, d_2) \propto e^{-D/\lambda} e^{-f(d_1, d_2)/\zeta}$$

- \clubsuit First choose (D, d_1, d_2) .
- \Re Randomly choose (y, x_1, x_2) given (D, d_1, d_2) .
- Choose links without replacement.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model

Testing Results

onclusion

Requirements for $f(d_1, d_2)$:

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Model

Results

Requirements for $f(d_1, d_2)$:

1.
$$f \ge 0$$
 for $d_1 + d_2 \ge 2$

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Results

Conclusion

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations

Modelification Goals

Model

Results

Conclusion

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Model

Results

Conclusion

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. f is maximized when $d_1 = d_2$.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Model

Results

COcoNuTS @networksvox

Organizational Networks

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. f is maximized when $d_1 = d_2$.

Overview

Ambiguous problems

Models of organizations:

Modelification

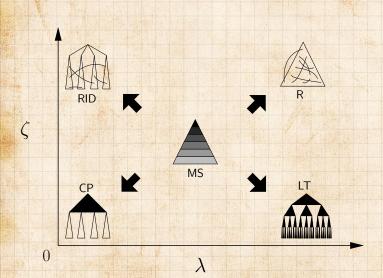
Model

Testing

Conclusio

References

Simple function satisfying 1-4:


$$\begin{split} f(d_1,d_2) &= (d_1^2 + d_2^2 - 2)^{1/2} \\ \Rightarrow P(y,x_1,x_2) &\propto e^{-D/\lambda} e^{-(d_1^2 + d_2^2 - 2)^{1/2}/\zeta} \end{split}$$

Model—limiting cases

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

References

2 Q ← 40 of 61

Outline

Modelification

Testing

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Testing

Results

with probability μ .

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals Model Testing

Results

Conclusion

@networksvox Organizational Networks

COCONUTS

 \Leftrightarrow Each of T time steps, each node generates a message with probability μ .

Overview

Recipient of message chosen based on distance from sender.

Ambiguous problems

Models of organizations

Modelification Goals

oals lodel

Testing Results

Conclusion

& Each of T time steps, each node generates a message with probability μ .

Recipient of message chosen based on distance from sender.

8

 $P(\text{recipient at distance }d) \propto e^{-d/\xi}.$

- 1. ξ = measure of uncertainty;
- 2. $\xi = 0$: local message passing;
- 3. $\xi = \infty$: random message passing.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

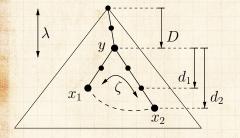
Models of organizations.

Modelification

Model Testing

Results

Conclusion



Distance d_1 , between two nodes x_1 and x_2 :

Measure unchanged with presence of informal ties.

$$d_{12}=\max(d_1,d_2)=3$$

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification

Testing Results

Conclusion

Simple message routing algorithm:

Look ahead one step: always choose neighbor closest to recipient node. COcoNuTS @networksvox

Organizational Networks

Overview

Toyota Ambiguous problems

Models of organizations

Modelification Goals

Model Testing

Results

Conclusion

Simple message routing algorithm:

- Look ahead one step: always choose neighbor closest to recipient node.
- Pseudo-global knowledge:
 - 1. Nodes understand hierarchy.
 - 2. Nodes know only local informal ties.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Testing

Conclusion

Interpretations:

1. Sender knows specific recipient.

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Testing Results

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Model

Testing

Conclusion

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- Sender seeks specific information but recipient unknown.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification Goals

Model

Testing

Conclusion

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- 3. Sender seeks specific information but recipient unknown.
- 4. Sender has a problem but information/recipient unknown.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Model

Testing

Conclusion

Performance:

& Measure Congestion Centrality ρ_i , fraction of messages passing through node i.

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations

Modelification Goals

Testing Results

Conclusion

Performance:

& Measure Congestion Centrality ρ_i , fraction of messages passing through node i.

Similar to betweenness centrality.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Testing

Performance:

- Measure Congestion Centrality ρ_i , fraction of messages passing through node i.
- Similar to betweenness centrality.
- However: depends on
 - 1. Search algorithm;

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Model Testing

Results

Conclusion

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Testing

References

Performance:

- & Measure Congestion Centrality ρ_i , fraction of messages passing through node i.
- Similar to betweenness centrality.
- However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Testing

References

Performance:

- & Measure Congestion Centrality ρ_i , fraction of messages passing through node i.
- Similar to betweenness centrality.
- & However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).
- Congestion robustness comes from minimizing ρ_{max} .

Outline

Modelification

Results

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals

Results

Conclusion

Parameter settings (unless varying):

 \clubsuit Underlying hierarchy: b = 5, L = 6, N = 3096;

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification

Goals

Results

Conclusion

Parameter settings (unless varying):

 \clubsuit Underlying hierarchy: b = 5, L = 6, N = 3096;

 \mathbb{R} Number of informal ties: m = N.

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems

Models of organizations Modelification

Goals

Results

Conclusion

Parameter settings (unless varying):

Underlying hierarchy: b = 5, L = 6, N = 3096;

Number of informal ties: m = N.

& Link addition algorithm: $\lambda = \zeta = 0.5$.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations

Modelification

Goals

Testing Results

Results

Conclusion

Parameter settings (unless varying):

- 3096 Underlying hierarchy: b = 5, L = 6, N = 3096;
- $\red{solution}$ Number of informal ties: m = N.
- \Leftrightarrow Link addition algorithm: $\lambda = \zeta = 0.5$.
- \clubsuit Message passing: $\xi = 1$, $\mu = 10/N$, T = 1000.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

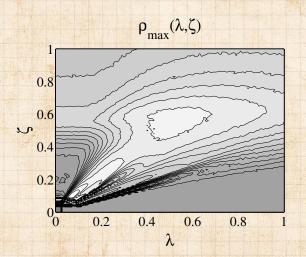
Ambiguous problems

Models of organizations

Modelification

Model

Results


Conclusion

Results—congestion robustness

COcoNuTS @networksvox

Organizational Networks

Overview

Toyot

Ambiguous problems

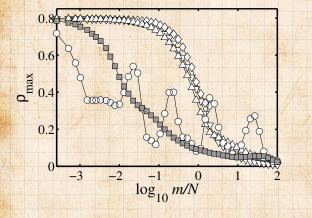
Models of organizations

Modelification

Goals

Testing

Results


Conclusion

Results—varying number of links added:

COcoNuTS @networksvox

Organizational Networks

Overview

Toyo

◇=TB

▽=R

△=RID

○=CP □=MS Ambiguous problems

Models of organizations

Modelification

Goals Model

Results

Conclusion

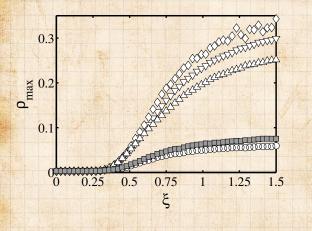
Results—varying message passing pattern

Ambiguous problems Models of organizations

Modelification

Goals Model

Results


Conclusion

References

◇=TB ▽=R

△=RID

O=CP

□=MS

Congestion may increase with size of network.

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

Networks

COCONUTS

@networksvox Organizational

Ambiguous problems

Models of organizations:

Modelification Goals

Model Testing

Results

Conclusion

References

Congestion may increase with size of network.

 (ξ) .

Signature μ Fix rate of message passing μ and Message pattern

 (ξ) .

Congestion may increase with size of network.

 \Re Fix rate of message passing (μ) and Message pattern

@networksvox Organizational Networks

COCONUTS

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Results

Fix branching ratio of hierarchy and add more levels.

@networksvox Organizational Networks

COCONUTS

Overview

Ambiguous problems Models of organizations:

Modelification Goals

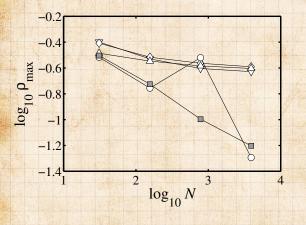
Results

References

Congestion may increase with size of network.

 \Re Fix rate of message passing (μ) and Message pattern (ξ) .

Fix branching ratio of hierarchy and add more levels.


Individuals have limited capacity \Rightarrow limit to firm size.

Scalability in complete uncertainty: $\xi = \infty$

◇=TB

▽=R

△=RID

O=CP

□=MS

COcoNuTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification

Goals

Results

Conclusion

Connectivity Robustness

Inducing catastrophic failure:

 \aleph Remove N_r nodes and measure relative size of largest component $C = S/(N - N_r)$.

COCONUTS @networksvox

Organizational Networks

Overview

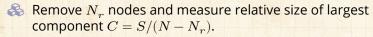
Ambiguous problems

Models of organizations:

Modelification

Results

Conclusion



Connectivity Robustness

Inducing catastrophic failure:

- Four deletion sequences:
 - 1. Top-down;
 - 2. Random;
 - 3. Hub;
 - 4. Cascading failure.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification Goals

Testing Results

.....

Conclusion

Connectivity Robustness

COCONUTS @networksvox

Organizational Networks

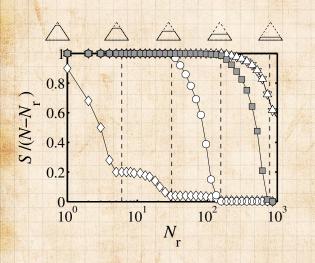
Overview

Ambiguous problems Models of organizations:

Modelification Goals

Results

References



Inducing catastrophic failure:

- Remove N_m nodes and measure relative size of largest component $C = S/(N-N_r)$.
- Four deletion sequences:
 - 1. Top-down;
 - 2. Random;
 - 3. Hub;
 - 4. Cascading failure.
- Results largely independent of sequence.

Results—Connectivity Robustness

@networksvox Organizational

Networks

COcoNuTS

Overview

◇=TB ▽=R

△=RID

O=CP

□=MS

Ambiguous problems Models of organizations:

Modelification

Goals

Results

Conclusion

References

2 Q € 55 of 61

Summary of results

COcoNuTS @networksvox Organizational Networks

Feature	Congestion Robustness	Connectivity Robustness	Scalability	Overview Toyota Ambiguous problems Models of organization
Core-periphery	good	average	average	Modelification Goals Model Testing
Random	poor	good	poor	Results Conclusion
Rand. Interdivisional	poor	good	poor	References
Team-based	poor	poor	poor	
Multiscale	good	good	good	

Multi-scale networks:

1. Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Results

Conclusion

Multi-scale networks:

- 1. Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Results

Conclusion

Multi-scale networks:

- 1. Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Results

Conclusion

Multi-scale networks:

- Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;
- Above suggests existence of multi-scale structure is plausible.

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations:

Modelification

Model Testing

Testing Results

Conclusion

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

COCONUTS @networksvox

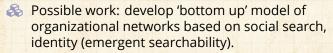
Organizational Networks

Overview

Ambiguous problems Models of organizations

Modelification Goals

Results


Conclusion

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model Testing

Testing Results

Conclusion

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).

Balance of generalists versus specialists—how many middle managers does an organization need?

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

Conclusion

- Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).
- Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).
- Balance of generalists versus specialists—how many middle managers does an organization need?
- Still a need for data on real organizations...

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Model Testing

Testing Results

Conclusion

References I

[1] R. H. Coase.

The nature of the firm.

Economica, New Series, 4(4):386-405, 1937. pdf

[2] P. S. Dodds, D. J. Watts, and C. F. Sabel.
Information exchange and the robustness of organizational networks.

Proc. Natl. Acad. Sci., 100(21):12516-12521, 2003. pdf

[3] R. Guimerà, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales, and A. A.
Optimal network topologies for local search with congestion.

Phys. Rev. Lett., 89:248701, 2002. pdf

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Model Testing

Results

References II

[4] T. Nishiguchi and A. Beaudet.

Fractal design: Self-organizing links in supply chain.

In G. Von Krogh, I. Nonaka, and T. Nishiguchi, editors, Knowledge Creation: A New Source of Value, pages 199-230. MacMillan, London, 2000.

[5] R. Radner.

The organization of decentralized information processing.

Econometrica, 61(5):1109-1146, 1993. pdf 2

[6] D. Stark.

Heterarchy.

In J. Clippinger, editor, The Biology of Business: Decoding the Natural Laws of the Enterprise., chapter 5, pages 153-. Jossey-Bass, San Francisco, 1999. pdf 2

COCONUTS @networksvox

Organizational Networks

Overview

Ambiguous problems Models of organizations:

Modelification Goals

References III

[7] T. Van Zandt.

Organizations with an endogenous number of information processing agents.

In Organizations with Incomplete Information, chapter 7. Cambridge University Press, New York, 1998.

[8] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.

Science, 296:1302-1305, 2002, pdf

COcoNuTS @networksvox

Organizational Networks

Overview

Toyota

Ambiguous problems

Models of organizations.

Modelification

Goals Model Testing

Results

Conclusion

