Mixed, correlated random networks

Last updated: 2019/01/14, 22:50:59

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Mixed, correlated

Directed random

COcoNuTS

Mixed random networks

Mixed Random

Network
Contagion
Spreading condition
Full generalization
Triggering probabi

Nutshell

References

Outline

Directed random networks

Mixed random networks

Definition Correlations

Mixed Random Network Contagion

Spreading condition Full generalization Triggering probabilities

References

Nutshell

COcoNuTS

@networksvox

Mixed, correlated

Directed random

Mixed random networks

Mixed Random

Network
Contagion
Spreading condition
Full generalization
Triggering probab

References

少 Q (~ 4 of 35

COcoNuTS

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random

Network Contagion Spreading condition

Nutshell

•9 q 0> 7 of 35

COcoNuTS Mixed, correlated

Directed random networks

Mixed random networks Definition Correlations

Mixed Random

Network
Contagion
Spreading condition
Full generalization
Triggering probabilit

Nutshell

References

少 q (~ 8 of 35

Sealie & Lambie

Productions

These slides are brought to you by:

ჟ q (~ 1 of 35

COcoNuTS @networksvox Mixed, correlated

Mixed random

Contagion Triggering probabi

Nutshell

References

•9 Q (№ 2 of 35

COcoNuTS Mixed, correlated

networks

Mixed random networks

Mixed Random

Nutshell

Directed random

Definition Correlations

Network
Contagion
Spreading condi
Full generalization
Triggering proba

References

•9 q (~ 3 of 35

Random directed networks:

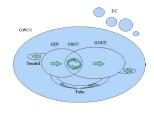
- So far, we've largely studied networks with undirected, unweighted edges.
- Now consider directed, unweighted edges.
- \aleph Nodes have k_i and k_0 incoming and outgoing edges, otherwise random.
- Network defined by joint in- and out-degree
- distribution: P_{k_i,k_o} \Re Normalization: $\sum_{k_i=0}^{\infty} \sum_{k_o=0}^{\infty} P_{k_i,k_o} = 1$
- Marginal in-degree and out-degree distributions:

$$P_{k_{\rm i}} = \sum_{k_{\rm o}=0}^{\infty} P_{k_{\rm i},k_{\rm o}} \text{ and } P_{k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} P_{k_{\rm i},k_{\rm o}}$$

Required balance:

$$\langle k_{\rm i}\rangle = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{k_{\rm i},k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{k_{\rm i},k_{\rm o}} = \langle k_{\rm o}\rangle$$

Directed network structure:



From Boguñá and Serano. [1]

🚓 GIN = Giant In-Component; S GOUT = Giant

Out-Component; GSCC = Giant Strongly

GWCC = Giant Weakly

Connected Component

Connected Component;

(directions removed);

DC = Disconnected Components (finite).

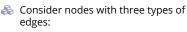
When moving through a family of increasingly connected directed random networks, GWCC usually appears before GIN, GOUT, and GSCC which tend to appear together. [4, 1]

These slides are also brought to you by:

On Instagram at pratchett the cat

Important observation:

- Directed and undirected random networks are separate families ...
- ...and analyses are also disjoint.
- Need to examine a larger family of random networks with mixed directed and undirected edges.



- 1. k_{II} undirected edges,
- 2. k_i incoming directed edges,
- 3. k_0 outgoing directed edges.
- Define a node by generalized degree:

$$\vec{k} = [k_{\mathsf{u}} \ k_{\mathsf{i}} \ k_{\mathsf{o}}]^{\mathsf{T}}.$$

Joint degree distribution:

$$P_{\vec{k}}$$
 where $\vec{k} = [k_{\mathsf{u}} \ k_{\mathsf{i}} \ k_{\mathsf{o}}]^{\mathsf{T}}$.

As for directed networks, require in- and out-degree averages to match up:

$$\langle k_{\rm i}\rangle = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{\vec{k}} = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{\vec{k}} = \langle k_{\rm o}\rangle$$

- Otherwise, no other restrictions and connections are random.
- Directed and undirected random networks are disjoint subfamilies:

Undirected:
$$P_{\vec{k}} = P_{k_u} \delta_{k_i,0} \delta_{k_o,0}$$
,

Directed: $P_{\vec{k}} = \delta_{k_{\parallel},0} P_{k_{\parallel},k_{0}}$.

Correlations:

- 💫 Now add correlations (two point or Markovian) 🛭:
 - 1. $P^{(u)}(\vec{k} \mid \vec{k}')$ = probability that an undirected edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node.
 - 2. $P^{(i)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an in-directed edge relative to the destination node.
 - 3. $P^{(0)}(\vec{k} \mid \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an out-directed edge relative to the destination node.
- Now require more refined (detailed) balance.
- Conditional probabilities cannot be arbitrary.
 - 1. $P^{(u)}(\vec{k} | \vec{k}')$ must be related to $P^{(u)}(\vec{k}' | \vec{k})$.
 - 2. $P^{(0)}(\vec{k} \mid \vec{k}')$ and $P^{(i)}(\vec{k} \mid \vec{k}')$ must be connected.

COcoNuTS Mixed, correlated

Directed random

Mixed random networks Definition

Mixed Random

Network
Contagion
Spreading condition
Full generalization
Triggering probabi

Nutshell References

ჟად 10 of 35

COcoNuTS @networksvox Mixed, correlated random networks

Directed random networks

Mixed random Definition

Mixed Random Network Contagion

Triggering probab Nutshell

References

少 q (~ 11 of 35

COcoNuTS Mixed, correlated

Directed random

Mixed random networks Correlations

Mixed Random

Contagion
Spreading condit
Full generalizatio
Triggering proba

Nutshell References

•9 q (~ 13 of 35

Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- \clubsuit Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- \clubsuit Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.
- \Leftrightarrow Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.

Conditional probability

$$P^{(\mathrm{u})}(\vec{k},\vec{k}') \quad = \quad P^{(\mathrm{u})}(\vec{k}\,|\,\vec{k}') \frac{k_{\mathrm{u}}'P(\vec{k}')}{\langle k_{\mathrm{u}}' \rangle}$$

$$P^{(\mathsf{u})}(\vec{k}',\vec{k}) = P^{(\mathsf{u})}(\vec{k}' \mid \vec{k}) \frac{k_{\mathsf{u}} P(\vec{k})}{\langle k_{\mathsf{u}} \rangle}.$$

@networksvox Mixed, correlated

Directed random

Mixed random networks Correlations

Mixed Randon

Network
Contagion
Spreading condition
Full generalization
Triggering probab

References

•9 q (~ 14 of 35

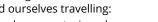
COcoNuTS

Correlations—Directed edge balance:

The quantities

$$\frac{k_{\rm o}P(\vec{k})}{\langle k_{\rm o}\rangle}$$
 and $\frac{k_{\rm i}P(\vec{k})}{\langle k_{\rm i}\rangle}$

give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \vec{k} node and then find ourselves travelling:



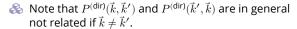
1. along an outgoing edge, or

Global spreading condition: [2]

When are cascades possible?:

- 2. against the direction of an incoming edge.
- We therefore have

$$P^{(\mathrm{dir})}(\vec{k},\vec{k}') = P^{(\mathrm{i})}(\vec{k}\,|\,\vec{k}') \frac{k_{\mathrm{o}}'P(\vec{k}')}{\langle k_{\mathrm{o}}' \rangle} = P^{(\mathrm{o})}(\vec{k}'\,|\,\vec{k}) \frac{k_{\mathrm{i}}P(\vec{k})}{\langle k_{\mathrm{i}} \rangle}.$$



Consider uncorrelated mixed networks first.

Recall our first result for undirected random

Similar form for purely directed networks:

Both are composed of (1) probability of

probability of infection.

networks, that edge gain ratio must exceed 1:

 $\mathbf{R} = \sum_{k_\mathrm{u}=0}^{\infty} \frac{k_\mathrm{u} P_{k_\mathrm{u}}}{\langle k_\mathrm{u} \rangle} \bullet (k_\mathrm{u} - 1) \bullet B_{k_\mathrm{u}, 1} > 1.$

 $\mathbf{R} = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} \frac{k_{\rm i} P_{k_{\rm i},k_{\rm o}}}{\langle k_{\rm i} \rangle} \bullet k_{\rm o} \bullet B_{k_{\rm i},1} > 1.$

connection to a node of a given type; (2) number

of newly infected edges if successful; and (3)

Mixed, correlated random networks Directed random

Mixed random

Mixed Random Network Contagion

Nutshell References

Mixed, correlated

Directed random

Mixed random

Mixed Randon Network Contagion

Spreading condition

Nutshell References

少 Q (~ 17 of 35

Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes. a distance d away from the original seed as f(d).
- Infected edge growth equation:

$$f(d+1) = \mathbf{R}f(d).$$

- Applies for discrete time and continuous time contagion processes.
- \Re Now see $B_{k_0,1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).

COcoNuTS Mixed, correlated

Directed random

Mixed random networks

Mixed Random Spreading condition Full generalization Triggering probabilit

References

ჟ q (~ 18 of 35

Global spreading condition:

- Useful change of notation for making results more general: write $P^{(\mathsf{u})}(\vec{k}\,|\,*)=rac{k_\mathsf{u}P_{\vec{k}}}{\langle k_\mathsf{u} \rangle}$ and $P^{(\mathbf{i})}(\vec{k}\,|\,*)=rac{k_{\mathbf{i}}P_{k}}{\langle k_{\mathbf{i}}
 angle}$ where * indicates the starting node's degree is irrelevant (no correlations).
- & Also write $B_{k_0k_1,*}$ to indicate a more general infection probability, but one that does not depend on the edge's origin.
- Now have, for the example of mixed, uncorrelated

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} P^{(\mathbf{u})}(\vec{k} \mid *) \bullet (k_{\mathbf{u}} - 1) & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{u}} \\ P^{(\mathbf{u})}(\vec{k} \mid *) \bullet k_{\mathbf{o}} & P^{(\mathbf{i})}(\vec{k} \mid *) \bullet k_{\mathbf{o}} \end{array} \right] \bullet B_{k_{\mathbf{u}}k_{\mathbf{i}}, *}$$

COcoNuTS

@networksvox

Mixed, correlated

Directed random

Mixed random networks

Mixed Random

Spreading condition Full generalization Triggering probabilit

References

少 Q (~ 21 of 35

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random

Mixed random

Network Contagion

Nutshell

Global spreading condition:

Mixed, uncorrelated random netwoks:

- Now have two types of edges spreading infection: directed and undirected.
- Gain ratio now more complicated:

Gain ratio now has a matrix form:

Two separate gain equations:

- 1. Infected directed edges can lead to infected directed or undirected edges.
- 2. Infected undirected edges can lead to infected directed or undirected edges.
- \Leftrightarrow Define $f^{(u)}(d)$ and $f^{(o)}(d)$ as the expected number of infected undirected and directed edges leading to nodes a distance d from seed.

COcoNuTS @networksvox Mixed, correlated random networks

Directed random networks Mixed random

Mixed Random Network Contagion Spreading condition Triggering pro

Nutshell References

少 Q (~ 19 of 35

Summary of contagion conditions for uncorrelated networks:

 \mathbb{A} I. Undirected, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\cdot\cdot\cdot}} P^{(\mathsf{u})}(k_{\mathsf{u}}\,|\,*) \bullet (k_{\mathsf{u}}-1) \bullet B_{k_{\mathsf{u}},*}$$

 \mathfrak{F} II. Directed, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{i}}, k_{\mathrm{o}}} P^{(\mathrm{i})}(k_{\mathrm{i}}, k_{\mathrm{o}} \, | \, *) \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}}, *}$$

III. Mixed Directed and Undirected, Uncorrelated—

$$\left[\begin{array}{c}f^{(\mathrm{U})}(d+1)\\f^{(\mathrm{O})}(d+1)\end{array}\right]=\mathbf{R}\left[\begin{array}{c}f^{(\mathrm{U})}(d)\\f^{(\mathrm{O})}(d)\end{array}\right]$$

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} P^{(\mathbf{U})}(\vec{k} \mid *) \bullet (k_{\mathbf{U}} - 1) & P^{(\mathbf{I})}(\vec{k} \mid *) \bullet k_{\mathbf{U}} \\ P^{(\mathbf{U})}(\vec{k} \mid *) \bullet k_{\mathbf{O}} & P^{(\mathbf{I})}(\vec{k} \mid *) \bullet k_{\mathbf{O}} \end{array} \right] \bullet B_{k_{\mathbf{U}}k_{\mathbf{I}},*}$$

•> q (~ 22 of 35

Correlated version:

- $f^{(\mathrm{U})}(d+1) = \sum_{\vec{k}} \left[\frac{k_{\mathrm{U}} P_{\vec{k}}}{\langle k_{\mathrm{U}} \rangle} \bullet (k_{\mathrm{U}} 1) \bullet B_{k_{\mathrm{U}} + k_{\mathrm{I}}, 1} f^{(\mathrm{U})}(d) + \frac{k_{\mathrm{I}} P_{\vec{k}}}{\langle k_{\mathrm{I}} \rangle} \bullet k_{\mathrm{U}} \bullet B_{k_{\mathrm{U}} + k_{\mathrm{I}}, 1} f^{(\mathrm{O})}(d) \right]$
- $f^{(\mathbf{0})}(d+1) = \sum_{\vec{i}_{\cdot}} \left[\frac{k_{\mathbf{U}} P_{\vec{k}}}{\langle k_{\mathbf{U}} \rangle} \bullet k_{\mathbf{0}} B_{k_{\mathbf{U}} + k_{\mathbf{i}}, 1} f^{(\mathbf{U})}(d) + \frac{k_{\mathbf{i}} P_{\vec{k}}}{\langle k_{\mathbf{i}} \rangle} \bullet k_{\mathbf{0}} \bullet B_{k_{\mathbf{U}} + k_{\mathbf{i}}, 1} f^{(\mathbf{0})}(d) \right]$

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{ccc} \frac{k_{\mathrm{u}} P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet \left(k_{\mathrm{u}} - 1 \right) & \frac{k_{\mathrm{l}} P_{\vec{k}}}{\langle k_{\mathrm{l}} \rangle} \bullet k_{\mathrm{u}} \\ \frac{k_{\mathrm{u}} P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet k_{\mathrm{o}} & \frac{k_{\mathrm{l}} P_{\vec{k}}}{\langle k_{\mathrm{l}} \rangle} \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{k_{\mathrm{u}} + k_{\mathrm{l}}, 1}$$

 $\left[\begin{array}{c}f^{(\mathrm{u})}(d+1)\\f^{(\mathrm{o})}(d+1)\end{array}\right]=\mathbf{R}\left[\begin{array}{c}f^{(\mathrm{u})}(d)\\f^{(\mathrm{o})}(d)\end{array}\right]$

 \Re Spreading condition: max eigenvalue of $\mathbf{R} > 1$.

- Now have to think of transfer of infection from edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes.
- \Re Replace $P^{(i)}(\vec{k} \mid *)$ with $P^{(i)}(\vec{k} \mid \vec{k}')$ and so on.
- Edge types are now more diverse beyond directed and undirected as originating node type matters.
- & Sums are now over \vec{k}' .

COcoNuTS

Mixed, correlated

Directed random

Mixed random networks Definition Correlations

Mixed Random

Network Contagion

Spreading condition Full generalization Triggering probabilit

Nutshell References

∮) q (~ 23 of 35

Summary of contagion conditions for correlated networks:

IV. Undirected, Correlated— $f_{k_{\shortparallel}}(d+1) = \sum_{k_{\shortparallel}'} R_{k_{\shortparallel}k_{\shortparallel}'} f_{k_{\shortparallel}'}(d)$

$$R_{k_\mathsf{u} k_\mathsf{u}'} = P^{(\mathsf{u})}(k_\mathsf{u} \,|\, k_\mathsf{u}') \bullet (k_\mathsf{u} - 1) \bullet B_{k_\mathsf{u} k_\mathsf{u}'}$$

 V. Directed, $\mathsf{Correlated} - f_{k_{\rm i}k_{\rm o}}(d+1) = \sum_{k'_{\rm i},k'_{\rm o}} R_{k_{\rm i}k_{\rm o}k'_{\rm i}k'_{\rm o}} f_{k'_{\rm i}k'_{\rm o}}(d)$

$$R_{k_{\rm i}k_{\rm o}k'_{\rm i}k'_{\rm o}} = P^{(\rm i)}(k_{\rm i},k_{\rm o}\,|\,k'_{\rm i},k'_{\rm o}) \bullet k_{\rm o} \bullet B_{k_{\rm i}k_{\rm o}k'_{\rm i}k'_{\rm o}}$$

VI. Mixed Directed and Undirected, Correlated—

$$\left[\begin{array}{c} f^{(\mathrm{u})}_{\vec{k}}(d+1) \\ f^{(\mathrm{o})}_{\vec{k}}(d+1) \end{array}\right] = \sum_{k'} \mathbf{R}_{\vec{k}\vec{k}'} \left[\begin{array}{c} f^{(\mathrm{u})}_{\vec{k}'}(d) \\ f^{(\mathrm{o})}_{\vec{k}'}(d) \end{array}\right]$$

$$\mathbf{R}_{\vec{k}\vec{k}'} = \left[\begin{array}{cc} P^{(\mathrm{U})}(\vec{k}\,|\,\vec{k}') \bullet (k_{\mathrm{U}}-1) & P^{(\mathrm{I})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{U}} \\ P^{(\mathrm{U})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{O}} & P^{(\mathrm{I})}(\vec{k}\,|\,\vec{k}') \bullet k_{\mathrm{O}} \end{array} \right] \bullet B_{\vec{k}\vec{k}'}$$

Mixed, correlated random networks Summary of triggering probabilities for uncorrelated networks: [3] 🗖

I. Undirected, Uncorrelated—

$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}'} P^{(\mathrm{u})}(k_{\mathrm{u}}' \, | \, \cdot) B_{k_{\mathrm{u}}'1} \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{u}}'-1} \right] \label{eq:Qtrig}$$

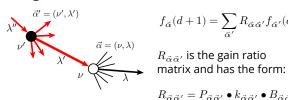
$$P_{\mathrm{trig}} = S_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}^{\prime}} P(k_{\mathrm{u}}^{\prime}) \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{u}}^{\prime}} \right]$$

II. Directed, Uncorrelated—

$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}} P^{(\mathrm{u})}(k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}|\cdot) B_{k_{\mathrm{i}}^{\prime}1} \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{o}}^{\prime}}\right]$$

$$S_{\mathrm{trig}} = \sum_{k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}} P(k_{\mathrm{i}}^{\prime}, k_{\mathrm{o}}^{\prime}) \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{o}}^{\prime}} \right]$$

Full generalization:



 $f_{\vec{\alpha}}(d+1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha}\vec{\alpha}'} f_{\vec{\alpha}'}(d)$

$$R_{\vec{\alpha}\vec{\alpha}'} = P_{\vec{\alpha}\vec{\alpha}'} \bullet k_{\vec{\alpha}\vec{\alpha}'} \bullet B_{\vec{\alpha}\vec{\alpha}'}.$$

- $\Re P_{\vec{\alpha}\vec{\alpha}'}$ = conditional probability that a type λ' edge emanating from a type ν' node leads to a type ν
- $\& k_{\vec{\alpha}\vec{\alpha}'}$ = potential number of newly infected edges of type λ emanating from nodes of type ν .
- $\& B_{\vec{\alpha}\vec{\alpha}'}$ = probability that a type ν node is eventually infected by a single infected type λ' link arriving from a neighboring node of type ν' .
- Generalized contagion condition:

$$\max |\mu| : \mu \in \sigma(\mathbf{R}) > 1$$

- As we saw earlier, the triggering probability for simple contagion on random networks can be determined with a straightforward physical argument.
- Two good things:

$$Q_{\rm trig} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - \left(1 - Q_{\rm trig} \right)^{k-1} \right],$$

$$P_{\rm trig} = S_{\rm trig} = \sum_k P_k \bullet \left[1 - (1 - Q_{\rm trig})^k \right] \,. \label{eq:ptrig}$$

- Equivalent to result found via the eldritch route of generating functions.
- Generating functions arguably make some kinds of calculations easier (but perhaps we don't care about component sizes that much).
- On the other hand, a plainspoken physical argument helps us generalize to correlated networks more easily.

COcoNuTS @networksvox

Directed random

Mixed Random

Spreading condition Full generalization Triggering probabili

References

IVM S 少 q (~ 24 of 35

Mixed, correlated random networks

Directed random networks

Mixed random

Mixed Random Network Contagion Full generalization

Nutshell

References

•> q (~ 26 of 35

COcoNuTS

Mixed, correlated

networks:

Directed random

networks

Mixed Random Contagion
Spreading con
Full generaliza

Triggering probabilities

Nutshell References

∮0 q (~ 28 of 35

Summary of triggering probabilities for uncorrelated networks:

 \mathbb{R} IV. Undirected, Correlated— $Q_{trig}(k_{\mathsf{u}}) =$

& V. Directed, Correlated— $Q_{\text{trig}}(k_{\mathsf{i}}, k_{\mathsf{o}}) =$

 $\sum_{k'_{\mathsf{u}}} P^{(\mathsf{u})}(k'_{\mathsf{u}} | k_{\mathsf{u}}) B_{k'_{\mathsf{u}} 1} \left[1 - (1 - Q_{\mathsf{trig}}(k'_{\mathsf{u}}))^{k'_{\mathsf{u}} - 1} \right]$

 $S_{\mathrm{trig}} = \sum_{\mathbf{k'}} P(k_{\mathrm{u}}') \left[1 - (1 - Q_{\mathrm{trig}}(k_{\mathrm{u}}'))^{k_{\mathrm{u}}'} \right]$

 $\sum_{k',k'} P^{(\mathsf{u})}(k'_{\mathsf{i}},k'_{\mathsf{o}}|\,k_{\mathsf{i}},k_{\mathsf{o}}) B_{k'_{\mathsf{i}}1} \left[1 - (1 - Q_{\mathsf{trig}}(k'_{\mathsf{i}},k'_{\mathsf{o}}))^{k'_{\mathsf{o}}} \right]$

 $S_{\mathrm{trig}} = \sum_{\mathbf{k'},\mathbf{k'}} P(k_{\mathrm{i}}',k_{\mathrm{o}}') \left[1 - (1 - Q_{\mathrm{trig}}(k_{\mathrm{i}}',k_{\mathrm{o}}'))^{k_{\mathrm{o}}'}\right]$

III. Mixed Directed and Undirected, Uncorrelated—

$$Q_{\rm trig}^{\rm (u)} = \sum_{\vec{k}'} P^{\rm (u)}(\vec{k}'|\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}-1} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$Q_{\rm trig}^{\rm (o)} = \sum_{\vec{i}, \prime} P^{\rm (i)}(\vec{k}'|\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$S_{\rm trig} = \sum_{\vec{k}'} P(\vec{k}') \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

COcoNuTS @networksvox Mixed, correlated random networks

Directed random networks

Mixed random networks Definition Correlations

Network Contagion

Triggering probabilities Nutshell

References

• ୨ ବ ଜ 30 of 35

COcoNuTS

Mixed, correlated Summary of triggering probabilities for correlated

Directed random

Mixed random networks Definition Correlations

Mixed Random

Network
Contagion
Spreading condition
Full generalization
Triggering probabilities

Nutshell References

•9 α (~ 31 of 35

Summary of triggering probabilities for correlated networks:

NI. Mixed Directed and Undirected, Correlated—

$$\begin{split} Q_{\mathrm{trig}}^{(\mathrm{U})}(\vec{k}) &= \sum_{\vec{k}'} P^{(\mathrm{U})}(\vec{k}'|\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\mathrm{trig}}^{(\mathrm{U})}(\vec{k}'))^{k'_{\mathrm{U}}-1} (1 - Q_{\mathrm{trig}}^{(\mathrm{O})}(\vec{k}'))^{k'_{\mathrm{O}}} \right] \\ Q_{\mathrm{trig}}^{(\mathrm{O})}(\vec{k}) &= \sum_{\vec{k}'} P^{(\mathrm{I})}(\vec{k}'|\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\mathrm{trig}}^{(\mathrm{U})}(\vec{k}'))^{k'_{\mathrm{U}}} (1 - Q_{\mathrm{trig}}^{(\mathrm{O})}(\vec{k}'))^{k'_{\mathrm{O}}} \right] \\ S_{\mathrm{trig}} &= \sum_{\vec{k}'} P(\vec{k}') \left[1 - (1 - Q_{\mathrm{trig}}^{(\mathrm{U})}(\vec{k}'))^{k'_{\mathrm{U}}} (1 - Q_{\mathrm{trig}}^{(\mathrm{O})}(\vec{k}'))^{k'_{\mathrm{O}}} \right] \end{split}$$

References II

[4] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64:026118, 2001. pdf

COcoNuTS @networksvox

Mixed, correlated

Directed random

Mixed random networks

Mixed Random Network
Contagion
Spreading condition
Full generalization
Triggering probabil

References

•9 q (~ 35 of 35

Nutshell:

- Mixed, correlated random networks with undirected and directed edges form natural inclusive generalization of purely undirected and purely directed random networks.
- Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.
- These conditions can be generalized to arbitrary random networks with arbitrary node and edge
- More generalizations: bipartite affiliation graphs and multilayer networks.

COcoNuTS @networksvox Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Contagion

Nutshell References

•> < ← 33 of 35

References I

[1] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks.

Phys. Rev. E, 72:016106, 2005. pdf

[2] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks.

Phys. Rev. E, 83:056122, 2011. pdf

[3] K. D. Harris, J. L. Payne, and P. S. Dodds. Direct, physically-motivated derivation of triggering probabilities for contagion processes acting on correlated random networks.

http://arxiv.org/abs/1108.5398, 2014.

COcoNuTS

Mixed, correlated

Directed random

Mixed Random Contagion
Spreading condit
Full generalizatio
Triggering probal

Nutshell References

夕 Q ← 34 of 35