Mixed, correlated random networks

Last updated: 2019/01/14, 23:14:28

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

Triggering probabilities

Nutshell

These slides are brought to you by:

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Definition Correlations

Mixed Random Network Contagion

Spreading condition
Full generalization
Triggering probabilities

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Mixed Random Network Contagion Spreading condition

Spreading condition
Full generalization
Triggering probabilities

Nutshell

References

9 a @ 3 of 35

Outline

Directed random networks

Mixed random networks Definition Correlations

Mixed Random Network Contagion Spreading condition Full generalization Triggering probabilities

Nutshell

References

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

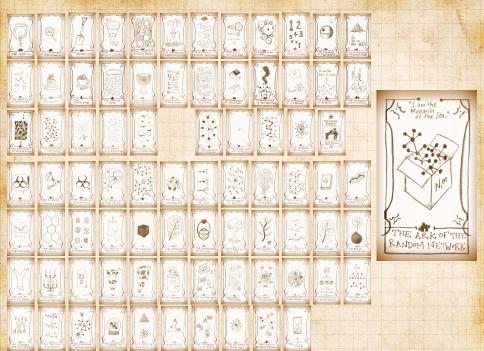
Mixed random networks

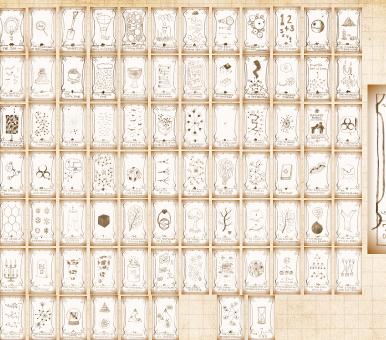
Mixed Random Network

Spreading condition

Triggering probabilities

Nutshell



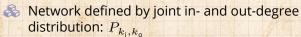


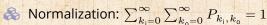
Random directed networks:

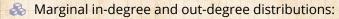
So far, we've largely studied networks with undirected, unweighted edges.

Now consider directed, unweighted edges.

 \aleph Nodes have k_i and k_o incoming and outgoing edges, otherwise random.







$$P_{k_{\rm i}} = \sum_{k_{\rm o}=0}^{\infty} P_{k_{\rm i},k_{\rm o}} \text{ and } P_{k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} P_{k_{\rm i},k_{\rm o}}$$

Required balance:

$$\langle k_{\rm i}\rangle = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{k_{\rm i},k_{\rm o}} = \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{k_{\rm i},k_{\rm o}} = \langle k_{\rm o}\rangle$$

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

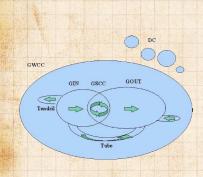
Triggering probabilities

Nutshell

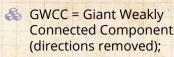
References

20 0 7 of 35

Directed network structure:



From Boguñá and Serano. [1]



- 备 GIN = Giant In-Component;
- GOUT = Giant Out-Component;
- GSCC = Giant Strongly Connected Component;
- DC = Disconnected Components (finite).

When moving through a family of increasingly connected directed random networks, GWCC usually appears before GIN, GOUT, and GSCC which tend to appear together. [4, 1]

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

Triggering probabilities

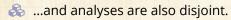
Nutshell

References

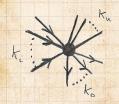
29 € 8 of 35

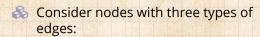
Important observation:

Directed and undirected random networks are separate families ...

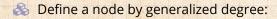


Need to examine a larger family of random networks with mixed directed and undirected edges.





- 1. k_u undirected edges,
- 2. k_i incoming directed edges,
- 3. k_0 outgoing directed edges.



$$\vec{k} = [k_{\mathsf{u}} \ k_{\mathsf{i}} \ k_{\mathsf{o}}]^{\mathsf{T}}.$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Network
Contagion
Spreading condition
Full generalization
Triggering probabilities

Mixed Random

Nutshell

Joint degree distribution:

$$P_{\vec{k}}$$
 where $\vec{k} = [k_{\mathsf{u}} \ k_{\mathsf{i}} \ k_{\mathsf{o}}]^{\mathsf{T}}$.

As for directed networks, require in- and out-degree averages to match up:

$$\langle k_{\rm i} \rangle = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm i} P_{\vec{k}} = \sum_{k_{\rm u}=0}^{\infty} \sum_{k_{\rm i}=0}^{\infty} \sum_{k_{\rm o}=0}^{\infty} k_{\rm o} P_{\vec{k}} = \langle k_{\rm o} \rangle$$

- Otherwise, no other restrictions and connections are random.
- Directed and undirected random networks are disjoint subfamilies:

Undirected: $P_{\vec{k}} = P_{k} \delta_{k_1,0} \delta_{k_2,0}$,

Directed: $P_{\vec{k}} = \delta_{k_{\text{u}},0} P_{k_{\text{i}},k_{\text{o}}}$.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Mixed Random Network

Triggering probabilities

Nutshell

Correlations:

Now add correlations (two point or Markovian) □:

- 1. $P^{(u)}(\vec{k} | \vec{k}')$ = probability that an undirected edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node.
- 2. $P^{(i)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an in-directed edge relative to the destination node.
- 3. $P^{(0)}(\vec{k} | \vec{k}')$ = probability that an edge leaving a degree \vec{k}' nodes arrives at a degree \vec{k} node is an out-directed edge relative to the destination node.

Now require more refined (detailed) balance.

Conditional probabilities cannot be arbitrary.

- 1. $P^{(\mathsf{u})}(\vec{k}\,|\,\vec{k}')$ must be related to $P^{(\mathsf{u})}(\vec{k}'\,|\,\vec{k})$. 2. $P^{(\mathsf{o})}(\vec{k}\,|\,\vec{k}')$ and $P^{(\mathsf{i})}(\vec{k}\,|\,\vec{k}')$ must be connected.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

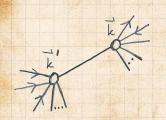
Correlations Mixed Random

Network Triggering probabilities

Nutshell

Correlations—Undirected edge balance:

- Randomly choose an edge, and randomly choose one end.
- \clubsuit Say we find a degree \vec{k} node at this end, and a degree \vec{k}' node at the other end.
- Define probability this happens as $P^{(u)}(\vec{k}, \vec{k}')$.
- Observe we must have $P^{(u)}(\vec{k}, \vec{k}') = P^{(u)}(\vec{k}', \vec{k})$.



Conditional probability connection:

$$P^{(\mathsf{u})}(\vec{k},\vec{k}') = P^{(\mathsf{u})}(\vec{k}\,|\,\vec{k}') \frac{k_{\mathsf{u}}'P(\vec{k}')}{\langle k_{\mathsf{u}}' \rangle}$$

$$P^{(\mathsf{u})}(\vec{k}',\vec{k}) = P^{(\mathsf{u})}(\vec{k}' \mid \vec{k}) \frac{k_{\mathsf{u}} P(\vec{k})}{\langle k_{\mathsf{u}} \rangle}.$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Correlations

Mixed Random Network

Spreading condition Triggering probabilities

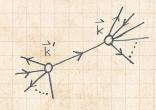
Nutshell

Correlations—Directed edge balance:

The quantities

$$rac{k_{
m o}P(ec{k})}{\langle k_{
m o}
angle}$$
 and $rac{k_{
m i}P(ec{k})}{\langle k_{
m i}
angle}$

give the probabilities that in starting at a random end of a randomly selected edge, we begin at a degree \vec{k} node and then find ourselves travelling:



- 1. along an outgoing edge, or
- 2. against the direction of an incoming edge.

We therefore have

$$P^{(\mathrm{dir})}(\vec{k},\vec{k}') = P^{(\mathrm{i})}(\vec{k}\,|\,\vec{k}') \frac{k_{\mathrm{o}}'P(\vec{k}')}{\langle k_{\mathrm{o}}' \rangle} = P^{(\mathrm{o})}(\vec{k}'\,|\,\vec{k}) \frac{k_{\mathrm{i}}P(\vec{k})}{\langle k_{\mathrm{i}} \rangle}. \label{eq:policy}$$

Note that $P^{(\text{dir})}(\vec{k}, \vec{k}')$ and $P^{(\text{dir})}(\vec{k}', \vec{k})$ are in general not related if $\vec{k} \neq \vec{k}'$.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Correlations

Mixed Random Network

Spreading condition Triggering probabilities

Nutshell

Global spreading condition: [2]

When are cascades possible?:

Consider uncorrelated mixed networks first.

Recall our first result for undirected random networks, that edge gain ratio must exceed 1:

$$\mathbf{R} = \sum_{k_{\mathrm{u}}=0}^{\infty} \frac{k_{\mathrm{u}} P_{k_{\mathrm{u}}}}{\langle k_{\mathrm{u}} \rangle} \bullet (k_{\mathrm{u}} - 1) \bullet B_{k_{\mathrm{u}},\,1} > 1.$$

Similar form for purely directed networks:

$$\mathbf{R} = \sum_{k_{i}=0}^{\infty} \sum_{k_{o}=0}^{\infty} \frac{k_{i} P_{k_{i}, k_{o}}}{\langle k_{i} \rangle} \bullet k_{o} \bullet B_{k_{i}, 1} > 1.$$

Both are composed of (1) probability of connection to a node of a given type; (2) number of newly infected edges if successful; and (3) probability of infection.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network Spreading condition

Triggering probabilities

Nutshell

Global spreading condition:

Local growth equation:

- Define number of infected edges leading to nodes a distance d away from the original seed as f(d).
- Infected edge growth equation:

$$f(d+1) = \mathbf{R}f(d).$$

- Applies for discrete time and continuous time contagion processes.
- Now see $B_{k_{\rm u},1}$ is the probability that an infected edge eventually infects a node.
- Also allows for recovery of nodes (SIR).

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Correlations

Mixed Random

Network Contagion Spreading condition

Full generalization
Triggering probabilities

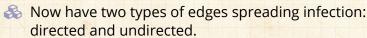
Nutshell

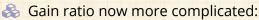
Global spreading condition:

COcoNuTS @networksvox

Mixed, correlated random networks

Mixed, uncorrelated random netwoks:





- Infected directed edges can lead to infected directed or undirected edges.
- Infected undirected edges can lead to infected directed or undirected edges.
- Define $f^{(u)}(d)$ and $f^{(o)}(d)$ as the expected number of infected undirected and directed edges leading to nodes a distance d from seed.

Directed random networks

Mixed random networks Definition

Mixed Random Network Contagion

Spreading condition
Full generalization
Triggering probabilities

Nutshell

References

i il

Gain ratio now has a matrix form:

$$\left[\begin{array}{c}f^{(\mathrm{u})}(d+1)\\f^{(\mathrm{o})}(d+1)\end{array}\right]=\mathbf{R}\left[\begin{array}{c}f^{(\mathrm{u})}(d)\\f^{(\mathrm{o})}(d)\end{array}\right]$$

Two separate gain equations:

$$f^{(\mathsf{u})}(d+1) = \sum_{\vec{k}} \left[\frac{k_{\mathsf{u}} P_{\vec{k}}}{\langle k_{\mathsf{u}} \rangle} \bullet (k_{\mathsf{u}} - 1) \bullet B_{k_{\mathsf{u}} + k_{\mathsf{i}}, 1} f^{(\mathsf{u})}(d) + \frac{k_{\mathsf{i}} P_{\vec{k}}}{\langle k_{\mathsf{i}} \rangle} \bullet k_{\mathsf{u}} \bullet B_{k_{\mathsf{u}} + k_{\mathsf{i}}, 1} f^{(\mathsf{o})}(d) \right]$$

$$f^{(\mathsf{o})}(d+1) = \sum_{\vec{k}} \left[\frac{k_{\mathsf{u}} P_{\vec{k}}}{\langle k_{\mathsf{u}} \rangle} \bullet k_{\mathsf{o}} B_{k_{\mathsf{u}} + k_{\mathsf{i}}, 1} f^{(\mathsf{u})}(d) + \frac{k_{\mathsf{i}} P_{\vec{k}}}{\langle k_{\mathsf{i}} \rangle} \bullet k_{\mathsf{o}} \bullet B_{k_{\mathsf{u}} + k_{\mathsf{i}}, 1} f^{(\mathsf{o})}(d) \right]$$

Gain ratio matrix:

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{c} \frac{k_{\mathrm{u}}P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet (k_{\mathrm{u}} - 1) & \frac{k_{\mathrm{i}}P_{\vec{k}}}{\langle k_{\mathrm{i}} \rangle} \bullet k_{\mathrm{u}} \\ \frac{k_{\mathrm{u}}P_{\vec{k}}}{\langle k_{\mathrm{u}} \rangle} \bullet k_{\mathrm{o}} & \frac{k_{\mathrm{i}}P_{\vec{k}}}{\langle k_{\mathrm{i}} \rangle} \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{k_{\mathrm{u}} + k_{\mathrm{i}}, 1}$$

& Spreading condition: max eigenvalue of $\mathbf{R} > 1$.

Global spreading condition:

Useful change of notation for making results more general: write $P^{(\mathsf{u})}(\vec{k}\,|\,*) = \frac{k_\mathsf{u} P_k}{\langle k_\mathsf{u} \rangle}$ and $P^{(\mathsf{i})}(\vec{k}\,|\,*) = \frac{k_\mathsf{i} P_k}{\langle k_\mathsf{i} \rangle}$ where * indicates the starting node's degree is irrelevant (no correlations).

Also write $B_{k_u k_i,*}$ to indicate a more general infection probability, but one that does not depend on the edge's origin.

Now have, for the example of mixed, uncorrelated random networks:

$$\mathbf{R} = \sum_{\vec{i}} \begin{bmatrix} P^{(\mathbf{u})}(\vec{k} \,|\, *) \bullet (k_{\mathbf{u}} - 1) & P^{(\mathbf{i})}(\vec{k} \,|\, *) \bullet k_{\mathbf{u}} \\ P^{(\mathbf{u})}(\vec{k} \,|\, *) \bullet k_{\mathbf{o}} & P^{(\mathbf{i})}(\vec{k} \,|\, *) \bullet k_{\mathbf{o}} \end{bmatrix} \bullet B_{k_{\mathbf{u}}k_{\mathbf{i}}, *}$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Mixed Random Network Contagion

Spreading condition
Full generalization
Triggering probabilities

Nutshell

Summary of contagion conditions for uncorrelated networks:

 \mathbb{R} I. Undirected, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{u}}} P^{(\mathrm{u})}(k_{\mathrm{u}} \, | \, \ast) \bullet (k_{\mathrm{u}} - 1) \bullet B_{k_{\mathrm{u}}, \ast}$$

 \mathbb{A} II. Directed, Uncorrelated— $f(d+1) = \mathbf{f}(d)$:

$$\mathbf{R} = \sum_{k_{\mathrm{i}}, k_{\mathrm{o}}} P^{(\mathrm{i})}(k_{\mathrm{i}}, k_{\mathrm{o}} \,|\, *) \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}}, *}$$

III. Mixed Directed and Undirected, Uncorrelated—

$$\left[\begin{array}{c} f^{(\mathsf{u})}(d+1) \\ f^{(\mathsf{o})}(d+1) \end{array} \right] = \mathbf{R} \left[\begin{array}{c} f^{(\mathsf{u})}(d) \\ f^{(\mathsf{o})}(d) \end{array} \right]$$

$$\mathbf{R} = \sum_{\vec{k}} \left[\begin{array}{cc} P^{(\mathsf{u})}(\vec{k}\,|\,*) \bullet (k_\mathsf{u}-1) & P^{(\mathsf{i})}(\vec{k}\,|\,*) \bullet k_\mathsf{u} \\ P^{(\mathsf{u})}(\vec{k}\,|\,*) \bullet k_\mathsf{o} & P^{(\mathsf{i})}(\vec{k}\,|\,*) \bullet k_\mathsf{o} \end{array} \right] \bullet B_{k_\mathsf{u}k_\mathsf{i},*}$$

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

Spreading condition Triggering probabilities

Nutshell

Correlated version:

Now have to think of transfer of infection from edges emanating from degree \vec{k}' nodes to edges emanating from degree \vec{k} nodes.

 $\red{8}$ Replace $P^{(\mathbf{i})}(\vec{k}\,|\,*)$ with $P^{(\mathbf{i})}(\vec{k}\,|\,\vec{k}')$ and so on.

Edge types are now more diverse beyond directed and undirected as originating node type matters.

& Sums are now over \vec{k}' .

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition Correlations

Mixed Random Network Contagion

Spreading condition
Full generalization
Triggering probabilities

Nutshell

References

Summary of contagion conditions for correlated networks:

IV. Undirected, $\text{Correlated--}f_{k_{\text{u}}}(d+1) = \sum_{k'_{\text{u}}} R_{k_{\text{u}}k'_{\text{u}}} f_{k'_{\text{u}}}(d)$

$$R_{k_\mathsf{u} k_\mathsf{u}'} = P^{(\mathsf{u})}(k_\mathsf{u} \,|\, k_\mathsf{u}') \bullet (k_\mathsf{u} - 1) \bullet B_{k_\mathsf{u} k_\mathsf{u}'}$$

 $\ \ \,$ V. Directed, $\ \ \, \text{Correlated--} f_{k_ik_o}(d+1) = \sum_{k_i',\,k_o'} R_{k_ik_ok_i'k_o'} f_{k_i'k_o'}(d)$

$$R_{k_{\mathrm{i}}k_{\mathrm{o}}k_{\mathrm{i}}'k_{\mathrm{o}}'} = P^{(\mathrm{i})}(k_{\mathrm{i}},k_{\mathrm{o}}\,|\,k_{\mathrm{i}}',k_{\mathrm{o}}') \bullet k_{\mathrm{o}} \bullet B_{k_{\mathrm{i}}k_{\mathrm{o}}k_{\mathrm{i}}'k_{\mathrm{o}}'}$$

VI. Mixed Directed and Undirected, Correlated—

$$\left[\begin{array}{c} f_{\vec{k}}^{(\mathrm{u})}(d+1) \\ f_{\vec{k}}^{(\mathrm{o})}(d+1) \end{array} \right] = \sum_{k'} \mathbf{R}_{\vec{k}\vec{k}'} \left[\begin{array}{c} f_{\vec{k}'}^{(\mathrm{u})}(d) \\ f_{\vec{k}'}^{(\mathrm{o})}(d) \end{array} \right]$$

$$\mathbf{R}_{\vec{k}\vec{k}'} = \left[\begin{array}{cc} P^{(\mathrm{u})}(\vec{k} \mid \vec{k}') \bullet (k_{\mathrm{u}} - 1) & P^{(\mathrm{i})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{u}} \\ P^{(\mathrm{u})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{o}} & P^{(\mathrm{i})}(\vec{k} \mid \vec{k}') \bullet k_{\mathrm{o}} \end{array} \right] \bullet B_{\vec{k}\vec{k}'}$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Mixed Random Network Contagion Spreading condition

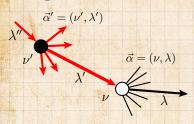
Full generalization
Triggering probabilities

Nutshell

References

少 Q ← 24 of 35

Full generalization:



$$f_{\vec{\alpha}}(d+1) = \sum_{\vec{\alpha}'} R_{\vec{\alpha}\vec{\alpha}'} f_{\vec{\alpha}'}(d)$$

 $R_{\vec{\alpha}\vec{\alpha}'}$ is the gain ratio matrix and has the form:

$$R_{\vec{\alpha}\vec{\alpha}'} = P_{\vec{\alpha}\vec{\alpha}'} \bullet k_{\vec{\alpha}\vec{\alpha}'} \bullet B_{\vec{\alpha}\vec{\alpha}'}.$$

- $P_{\vec{\alpha}\vec{\alpha}'}$ = conditional probability that a type λ' edge emanating from a type ν' node leads to a type ν node.
- & $k_{\vec{\alpha}\vec{\alpha}'}$ = potential number of newly infected edges of type λ emanating from nodes of type ν .
- & $B_{\vec{\alpha}\vec{\alpha}'}$ = probability that a type ν node is eventually infected by a single infected type λ' link arriving from a neighboring node of type ν' .
- Generalized contagion condition:

$$\max|\mu|:\mu\in\sigma\left(\mathbf{R}\right)>1$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks Definition

Mixed Random Network Contagion Spreading condition

Full generalization
Triggering probabilitie

Nutshell

References

9 a @ 26 of 35

- As we saw earlier, the triggering probability for simple contagion on random networks can be determined with a straightforward physical argument.
- Two good things:

$$Q_{\mathrm{trig}} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - \left(1 - Q_{\mathrm{trig}} \right)^{k-1} \right],$$

$$P_{\rm trig} = S_{\rm trig} = \sum_k P_k \bullet \left[1 - (1 - Q_{\rm trig})^k\right]. \label{eq:principal}$$

- Equivalent to result found via the eldritch route of generating functions.
- Generating functions arguably make some kinds of calculations easier (but perhaps we don't care about component sizes that much).
- On the other hand, a plainspoken physical argument helps us generalize to correlated networks more easily.

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

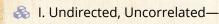
Mixed random networks Definition

Mixed Random Network Contagion

Full generalization
Triggering probabilities

Nutshell

Summary of triggering probabilities for uncorrelated networks: [3] □



$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}'} P^{(\mathrm{u})}(k_{\mathrm{u}}' \, | \, \cdot) B_{k_{\mathrm{u}}'1} \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{u}}'-1} \right] \label{eq:Qtrig}$$

$$P_{\mathrm{trig}} = S_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}'} P(k_{\mathrm{u}}') \left[1 - (1 - Q_{\mathrm{trig}})^{k_{\mathrm{u}}'} \right]$$

II. Directed, Uncorrelated—

$$Q_{\mathrm{trig}} = \sum_{k_{\mathrm{i}}',k_{\mathrm{o}}'} P^{(\mathrm{U})}(k_{\mathrm{i}}',k_{\mathrm{o}}'|\cdot) B_{k_{\mathrm{i}}'1} \left[1 - (1-Q_{\mathrm{trig}})^{k_{\mathrm{o}}'}\right]$$

$$S_{\rm trig} = \sum_{k_{\rm i}^\prime, \, k_{\rm o}^\prime} P(k_{\rm i}^\prime, k_{\rm o}^\prime) \left[1 - (1 - Q_{\rm trig})^{k_{\rm o}^\prime} \right] \label{eq:Strig}$$

Summary of triggering probabilities for uncorrelated networks:

III. Mixed Directed and Undirected, Uncorrelated—

$$Q_{\rm trig}^{\rm (u)} = \sum_{\vec{k}'} P^{\rm (u)}(\vec{k}'|\,\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}-1} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$Q_{\rm trig}^{\rm (o)} = \sum_{\vec{k}'} P^{\rm (i)}(\vec{k}'|\,\cdot) B_{\vec{k}'1} \left[1 - (1 - Q_{\rm trig}^{\rm (u)})^{k'_{\rm u}} (1 - Q_{\rm trig}^{\rm (o)})^{k'_{\rm o}} \right]$$

$$S_{\mathrm{trig}} = \sum_{\vec{k}^\prime} P(\vec{k}^\prime) \left[1 - (1 - Q_{\mathrm{trig}}^{\mathrm{(U)}})^{k_{\mathrm{u}}^\prime} (1 - Q_{\mathrm{trig}}^{\mathrm{(o)}})^{k_{\mathrm{o}}^\prime} \right]$$

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

Spreading condition

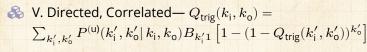
Triggering probabilities

Nutshell

Summary of triggering probabilities for correlated networks:



$$S_{\mathrm{trig}} = \sum_{k_{\mathrm{u}}'} P(k_{\mathrm{u}}') \left[1 - (1 - Q_{\mathrm{trig}}(k_{\mathrm{u}}'))^{k_{\mathrm{u}}'} \right] \label{eq:Strig}$$



$$S_{\mathrm{trig}} = \sum_{k^\prime, \, k^\prime} P(k^\prime_{\mathrm{i}}, k^\prime_{\mathrm{o}}) \left[1 - (1 - Q_{\mathrm{trig}}(k^\prime_{\mathrm{i}}, k^\prime_{\mathrm{o}}))^{k^\prime_{\mathrm{o}}} \right]$$

COcoNuTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

> Definition Correlations

Mixed Random Network Contagion Spreading condition

Full generalization
Triggering probabilities

Nutshell

References

Summary of triggering probabilities for correlated networks:

VI. Mixed Directed and Undirected, Correlated—

$$\begin{split} Q_{\text{trig}}^{(\text{u})}(\vec{k}) &= \sum_{\vec{k}'} P^{(\text{u})}(\vec{k}'|\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\text{trig}}^{(\text{u})}(\vec{k}'))^{k'_{\text{u}} - 1} (1 - Q_{\text{trig}}^{(\text{o})}(\vec{k}'))^{k'_{\text{o}}} \right] \\ Q_{\text{trig}}^{(\text{o})}(\vec{k}) &= \sum_{\vec{k}'} P^{(\text{i})}(\vec{k}'|\vec{k}) B_{\vec{k}'1} \left[1 - (1 - Q_{\text{trig}}^{(\text{u})}(\vec{k}'))^{k'_{\text{u}}} (1 - Q_{\text{trig}}^{(\text{o})}(\vec{k}'))^{k'_{\text{o}}} \right] \\ S_{\text{trig}} &= \sum_{\vec{k}'} P(\vec{k}') \left[1 - (1 - Q_{\text{trig}}^{(\text{u})}(\vec{k}'))^{k'_{\text{u}}} (1 - Q_{\text{trig}}^{(\text{o})}(\vec{k}'))^{k'_{\text{o}}} \right] \end{split}$$

Nutshell:

- Mixed, correlated random networks with undirected and directed edges form natural inclusive generalization of purely undirected and purely directed random networks.
- Spreading conditions and triggering probabilities of contagion processes can be determined using a direct, physical approach.
- These conditions can be generalized to arbitrary random networks with arbitrary node and edge types.
- More generalizations: bipartite affiliation graphs and multilayer networks.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network Triggering probabilities

Nutshell

References I

[1] M. Boguñá and M. Ángeles Serrano. Generalized percolation in random directed networks.

Phys. Rev. E, 72:016106, 2005. pdf

[2] P. S. Dodds, K. D. Harris, and J. L. Payne. Direct, phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks. Phys. Rev. E, 83:056122, 2011. pdf

[3] K. D. Harris, J. L. Payne, and P. S. Dodds. Direct, physically-motivated derivation of triggering probabilities for contagion processes acting on correlated random networks.

http://arxiv.org/abs/1108.5398, 2014.

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network Spreading condition

Triggering probabilities

Nutshell

References II

[4] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64:026118, 2001. pdf

COCONUTS @networksvox

Mixed, correlated random networks

Directed random networks

Mixed random networks

Mixed Random Network

Spreading condition

Triggering probabilities

Nutshell

