Curious and Interesting Things

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019 COcoNuTS @networksvox Interesting Things

Random Randomness References

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS @networksvox Interesting Things

Random Randomness References

000 000

Dac 2 of 47

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS @networksvox Interesting Things

Random Randomness

References

990 3 of 47

Outline

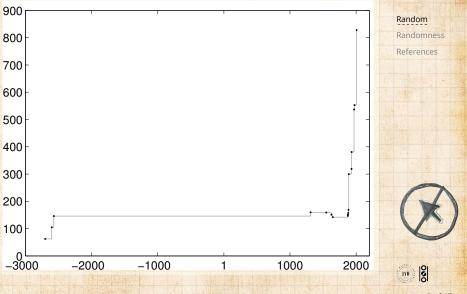
COcoNuTS @networksvox Interesting Things

Random

Randomness

References

Random


Randomness

References

S

990 4 of 47

What's this?

Dac 5 of 47

COcoNuTS @networksvox Interesting Things

Advances in sociotechnical algorithms:

"Mastering the game of Go with deep neural networks and tree search" Silver and Silver, Nature, **529**, 484–489, 2016.^[6] COcoNuTS @networksvox Interesting Things

Random Randomness References

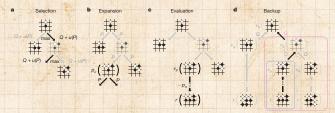


Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation traverses the tree by selecting the Alpha By thin Assimuted Value Q, plus a bonus *u*(*P*) that depends on a stored prior probability *P* for that dege, b, The leaf node may be expanded; the new node is processed once by the policy network *p*₀ and the output probabilities are stored as prior probabilities *P* for each action *c*, at the end of a simulation, the leaf node is evaluated in two ways: using the value network v_{0} and by running a rollout to the end of the game with the fast rollout policy p_{n} , then computing the winner with function r, **d**, Action values Q are updated to track the mean value of all evaluations $r(\cdot)$ and $v_{0}(\cdot)$ in the subtree below that action.

Nature News (2016): Digital Intuition
 Wired (2012): Network Science of the game of Go

990 6 of 47

And State Sta

"Rules for Biologically Inspired Adaptive Network Design" C Tero et al., Science, **327**, 439-442, 2010.^[7] COcoNuTS @networksvox Interesting Things

Random Randomness References

0 hr 5 hr

Urban deslime in action: https://www.youtube.com/watch?v=GwKuFREOgmo

The Unknown

200 7 of 47

"Citations to articles citing Benford's law: A Benford analysis" Tariq Ahmad Mir, Preprint available at http://arxiv.org/abs/1602.01205, 2016.^[4]

Random Randomness References

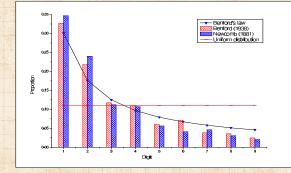


Fig. 1: The observed proportions of first digits of citations received by the articles citing FB and SN on September 30, 2012. For comparison the proportions expected from BL and uniform distributions are also shown.

UVN SO

THE LAW OF DIGITS FIRS

Applied knot theory:

"Designing tie knots by random walks" Fink and Mao, Nature, **398**, 31–32, 1999.^[1]

COcoNuTS @networksvox Interesting Things

Random Randomness References

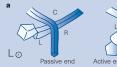
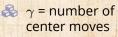


Figure 1 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. **a**, The two ways of beginning a knot, $L_{\rm o}$ and $L_{\rm o}$. For knots beginning with $L_{\rm o}$, the tie must begin inside-out. **b**, The four-in-hand, denoted by the sequence $L_{\rm o}$ R₀ $L_{\rm o}$ C₀ T. **c**, A knot may be represented by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the walk 1116.

Applied knot theory:


Table 1	Aesthetic	tie knots
---------	-----------	-----------

h 1	γ	γ/h	K(h, γ)	S	b	Name	Sequence	
3 1	1	0.33	1	0	0		$L_{\odot}R_{\otimes}C_{\odot}T$	
4 1	1	0.25	1	- 1	1	Four-in-hand	$L_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
5 2	2	0.40	2	- 1	0	Pratt knot	$L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$	
6 2	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\odot}C_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
7 2	2	0.29	6	-1	1		$L_{\odot}R_{\otimes}L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
7 3	3	0.43	4	0	1		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}R_{\otimes}C_{\circ}T$	
8 2	2	0.25	8	0	2		$L_{\otimes}R_{\odot}L_{\otimes}C_{\odot}R_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
8 3	3	0.38	12	- 1	0	Windsor	$L_{\otimes}C_{\odot}R_{\otimes}L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
9 3	3	0.33	24	0	0		$L_{\odot}R_{\otimes}C_{\odot}L_{\otimes}R_{\odot}C_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
9 4	4	0.44	8	-1	2		$L_{\circ}C_{\otimes}R_{\circ}C_{\otimes}L_{\circ}C_{\otimes}R_{\circ}L_{\otimes}C_{\circ}T$	

Knots are characterized by half-winding number h, centre number γ , centre fraction γ/h , knots per class $K(h, \gamma)$, symmetry s, balance b, name and sequence.

h = number of moves

20

 $K(h,\gamma) = \frac{1}{2^{\gamma-1} \binom{h-\gamma-2}{\gamma-1}}$

 $s = \sum_{i=1}^{h} x_i \text{ where } x = -1$ for *L* and +1 for *R*.

 $b = \frac{1}{2} \sum_{i=2}^{h-1} |\omega_i + \omega_{i-1}|$ where $\omega = \pm 1$ represents winding
direction.

COcoNuTS @networksvox Interesting Things

Random

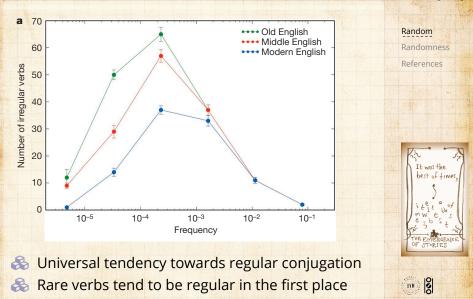
Randomness

References

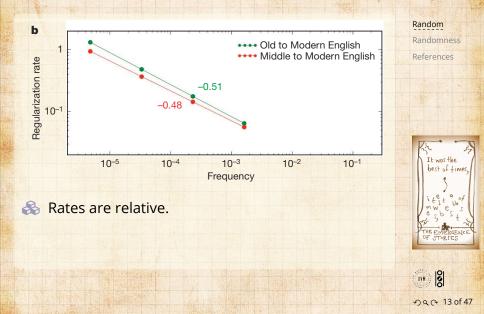
Cleaning up the code that is English:

"Quantifying the evolutionary dynamics of language" Lieberman et al., Nature, **449**, 713–716, 2007. ^[2] COcoNuTS @networksvox Interesting Things

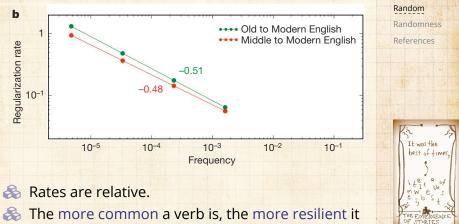
Random Randomness References


Exploration of how verbs with irregular conjugation gradually become regular over time.

Comparison of verb behavior in Old, Middle, and Modern English.


UVN SO

COcoNuTS @networksvox Interesting Things



nac 12 of 47

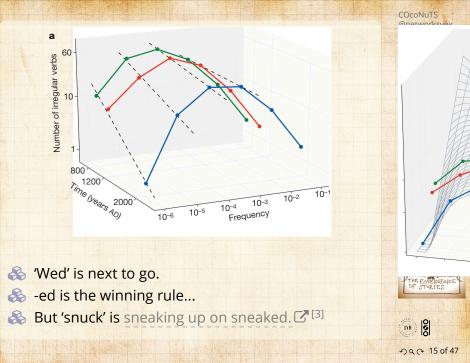
COcoNuTS @networksvox Interesting Things

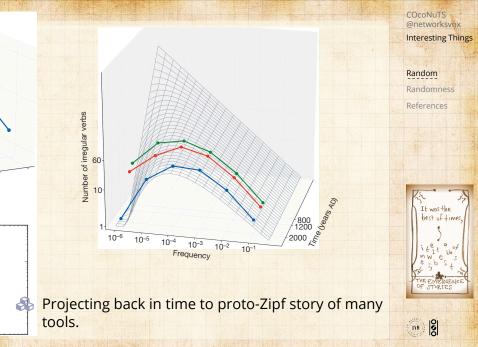
COcoNuTS @networksvox Interesting Things

is to change.

DQC 13 of 47

UVN SO


Table 1 | The 177 irregular verbs studied


Frequency	Verbs	Regularization (%)	Half-life (yr)	
10-1-1	be, have	0	38,800	
10-2-10-1	come, do, find, get, give, go, know, say, see, take, think	0	14,400	
10-3-10-2	begin, break, bring, buy, choose, draw, drink, drive, eat, fall, fight, forget, grow, hang, help, hold, leave, let, lie, lose,	10	5,400	
	reach, rise, run, seek, set, shake, sit, sleep, speak, stand, teach, throw, understand, walk, win, work, write			
10-4-10-3	arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, carve, chew, climb, cling, creep, dare, dig, drag, flee, float,	43	2,000	
	flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide,			
	slip, smoke, spin, spring, starve, steal, step, stretch, strike, stroke, suck, swallow, swear, sweep, swim, swing, tear,			
10-5-10-4	wake, wash, weave, weep, weigh, wind, yell, yield bark, bellow, bid, blend, braid, brew, cleave, cringe, crow,	72	700	
	dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, milk, mourn, mow, prescribe, redden, reek, row, scrape,	A PARA		
	seethe, shear, shed, shove, slay, slit, smite, sow, span, spurn, sting, stink, strew, stride, swell, tread, uproot, wade,			
10-6-10-5	warp, wax, wield, wring, writhe bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew,	91	300	

177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As we move down the list, an increasingly large fraction of the verbs are red; the frequency-dependent regularization of irregular verbs becomes immediately apprent.

Red = regularized

 \circledast Estimates of half-life for regularization ($\propto f^{1/2}$)

Personality distributions:

COcoNuTS @networksvox Interesting Things

A Theory of the Encourser, Providence, and Ryperson of Groepaphy Variation in Prychological Characteristics International Char "A Theory of the Emergence, Persistence, and Expression of Geographic Variation in Psychological Characteristics" Rentfrow, Gosling, and Potter, Perspectives on Psychological Science, **3**, 339–369, 2008. ^[5] Random Randomness References

Five Factor Model (FFM): Extraversion [E] Agreeableness [A] Conscientiousness [C] Neuroticism [N] Openness [O] "...a robust and widely accepted framework for conceptualizing the structure of personality... Although the FFM is not universally accepted in the field..."^[5]

Dac 17 of 47

UVN SO

Personality distributions:

COCONUTS @networksvox Interesting Things

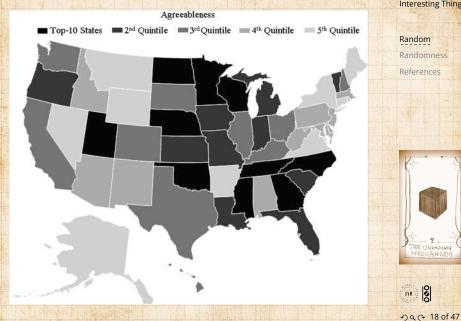
Random

Randomness

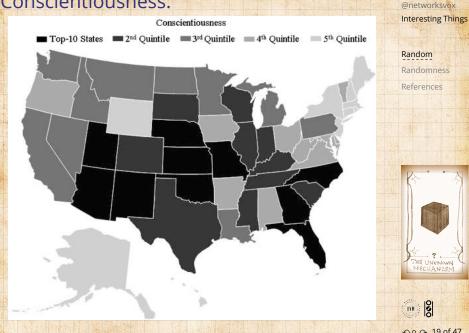
References

"A Theory of the Emergence, Persistence, and Expression of Geographic Variation in Psychological Characteristics" Rentfrow, Gosling, and Potter, Perspectives on Psychological Science, 3, 339-369, 2008. [5]

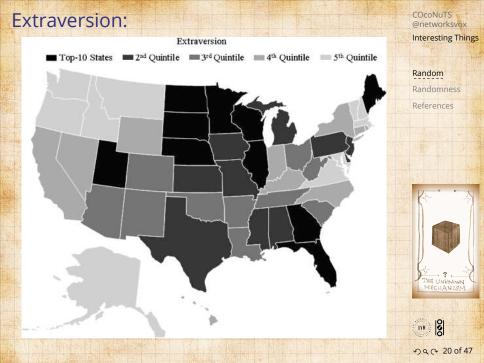
Five Factor Model (FFM): Extraversion [E] Agreeableness [A] Conscientiousness [C] 🚳 Neuroticism [N] Openness [0]


"...a robust and widely accepted framework for conceptualizing the structure of personality... Although the FFM is not universally accepted in the field..." [5]

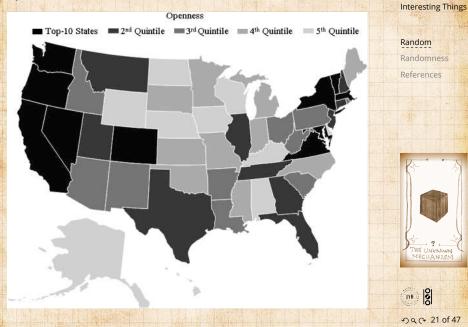
A concern: self-reported data.


UVN SO

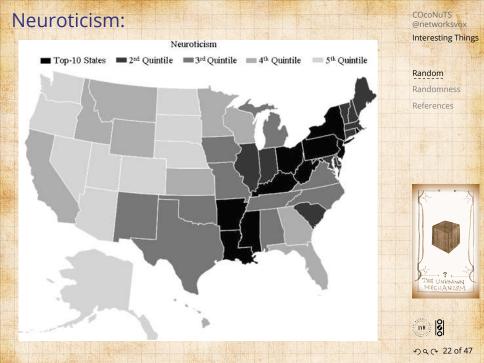
Agreeableness:



COcoNuTS @networksvox Interesting Things


Conscientiousness:

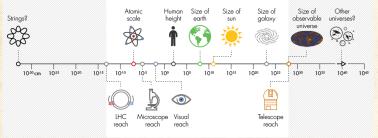
COcoNuTS



Openness

COcoNuTS

@networksvox


Limits of testability and happiness in Science: From A Fight for the soul of Science I in Quanta Magazine (2016/02):

COcoNuTS @networksvox Interesting Things

Random Randomness References

The Ends of Evidence

Humans can probe the universe over a vast range of scales (white area), but many modern physics theories involve scales outside of this range (grey).

na @ 23 of 47

Europe:


COcoNuTS @networksvox Interesting Things

Random

Randomness

References

DQ @ 24 of 47

John Conway's Doomsday rule C for determining a date's day of the week:

Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.
1898	1899	1900	1901	1902	1903	-	1904	1905	1906	1907	→	1908	1909
1910	1911	→	1912	1913	1914	1915		1916	1917	1918	1919	→	1920
1921	1922	1923	->	1924	1925	1926	1927	→	1928	1929	1930	1931	->
1932	1933	1934	1935		1936	1937	1938	1939	→	1940	1941	1942	1943
→	1944	1945	1946	1947		1948	1949	1950	1951	->	1952	1953	1954
1955		1956	1957	1958	1959	-+	1960	1961	1962	1963	→	1964	1965
1966	1967	-	1968	1969	1970	1971	-	1972	1973	1974	1975	→	1976
1977	1978	1979	→	1980	1981	1982	1983	→	1984	1985	1986	1987	
1988	1989	1990	1991	-	1992	1993	1994	1995	-	1996	1997	1998	1999
	2000	2001	2002	2003	→	2004	2005	2006	2007	→	2008	2009	2010
2011		2012	2013	2014	2015		2016	2017	2018	2019	→	2020	2021
2022	2023	→	2024	2025	2026	2027	→	2028	2029	2030	2031	→	2032
2033	2034	2035	→	2036	2037	2038	2039	→	2040	2041	2042	2043	→
2044	2045	2046	2047		2048	2049	2050	2051	→	2052	2053	2054	2055
→	2056	2057	2058	2059		2060	2061	2062	2063	->	2064	2065	2066
2067	→	2068	2069	2070	2071	→	2072	2073	2074	2075	→	2076	2077
2078	2079	→	2080	2081	2082	2083	→	2084	2085	2086	2087	→	2088
2089	2090	2091	-	2092	2093	2094	2095	→	2096	2097	2098	2099	2100

Works for Gregorian (1582–, haphazardly) and the increasingly inaccurate Julian calendars (400 and 28 years cycles).

Apparently inspired by Lewis Carroll's work on a perpetual calendar. COcoNuTS @networksvox Interesting Things

Random

Randomness

References

DQ @ 25 of 47

Outline:

- Determine "anchor day" for a given century, then find Doomsday for a given year in that century.
- Remember special Doomsday dates and work from there.
- 🚳 Naturally: Load this year's Doomsday into brain.

Century's anchor day (Gregorian, Sunday \equiv 0):

 $5 \times \left(\left\lfloor \frac{YYYY}{100} \right\rfloor \mod 4 \right) \mod 7 + \mathsf{Tuesday}$

Offset:

 $\left(365YY + \left\lfloor \frac{YY}{4} \right\rfloor \right) \mod 7 = \left(YY + \left\lfloor \frac{YY}{4} \right\rfloor \right) \mod 7$

COcoNuTS @networksvox Interesting Things

Random Randomness References

990 26 of 47

COcoNuTS @networksvox Interesting Things

Memorable Doomsdays:

Month	Memorable date	Month/Day	Mnemonic ^[6]
January	January 3 (common years), January 4 (leap years)	1/3 or 1/4	the 3rd 3 years in 4 and the 4th in the 4th
February	February 28 (common years), February 29 (leap years)	2/28 or 2/29	last day of February
March	"March 0"	3/0	last day of February
April	April 4	4/4	4/4, 6/6, 8/8, 10/10, 12/12
Мау	May 9	5/9	9-to-5 at 7-11
June	June 6	6/6	4/4, 6/6 , 8/8, 10/10, 12/12
July	July 11	7/11	9-to-5 at 7-11
August	August 8	8/8	4/4, 6/6, 8/8 , 10/10, 12/12
September	September 5	9/5	9-to-5 at 7-11
October	October 10	10/10	4/4, 6/6, 8/8, 10/10 , 12/12
November	November 7	11/7	9-to-5 at 7-11
December	December 12	12/12	4/4, 6/6, 8/8, 10/10, 12/12

Random

Randomness

References

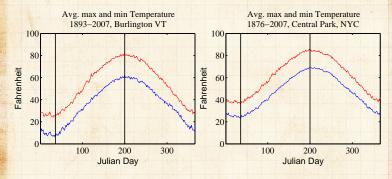
8

Pi day (March 14), July 4, Halloween, and Boxing Day are always Doomsdays.

DQ @ 27 of 47

The bissextile year

"The Julian calendar, which was developed in 46 BC by Julius Caesar, and became effective in 45 BC, distributed an extra ten days among the months of the Roman Republican calendar. Caesar also replaced the intercalary month by a single intercalary day, located where the intercalary month used to be. To create the intercalary day, the existing ante diem sextum Kalendas Martias (February 24) was doubled, producing ante diem bis sextum Kalendas Martias. Hence, the year containing the doubled day was a bissextile (bis sextum, "twice sixth") year. For legal purposes, the two days of the bis sextum were considered to be a single day, with the second half being intercalated; but in common practice by 238, when Censorinus wrote, the intercalary day was followed by the last five days of February, a. d. VI, V, IV, III and pridie Kal. Mart. (the days numbered 24, 25, 26, 27, and 28 from the beginning of February in a common year), so that the intercalated day was the first half of the doubled day. Thus the intercalated day was effectively inserted between the 23rd and 24th days of February."


COcoNuTS @networksvox Interesting Things

Random Randomness References

 \bigotimes

w |8

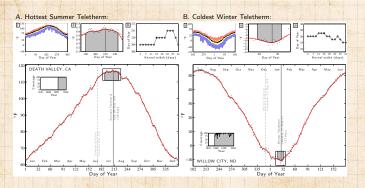
The Teletherm, an early conception:

COcoNuTS @networksvox Interesting Things

Random Randomness References

& Hibernal Teletherm \approx February 4.

Halfway between Winter Solstice and Spring Equinox

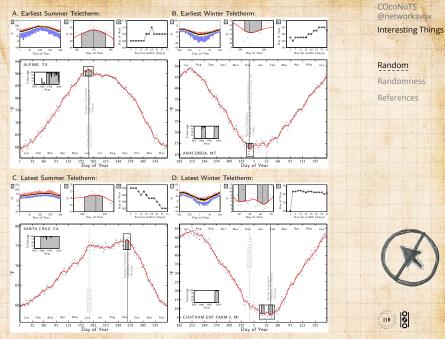

🛞 Bonus: Groundhog Day 🗹, Imbolc 📿, ...

Aesteval Teletherm \approx July 19 (164 days later).

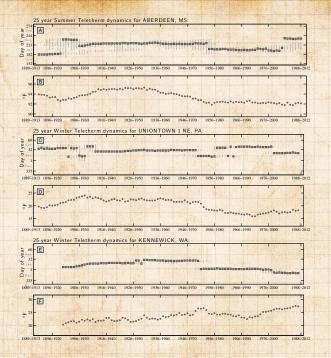
In review: "Tracking the Teletherms: The spatiotemporal dynamics of the hottest and coldest days of the year" C, Dodds, Mitchell, Reagan, and Danforth.

COcoNuTS @networksvox Interesting Things

Random Randomness References


 \gtrsim 2 × 1218 similar figures for the US.

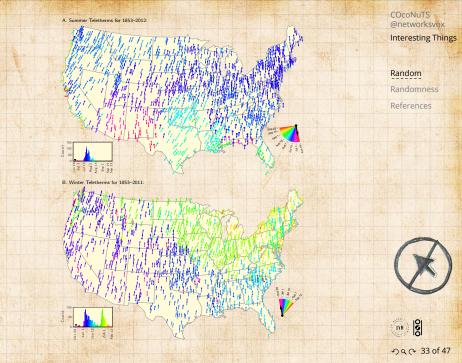
6000ish pages of Supplementary Information (all figures)

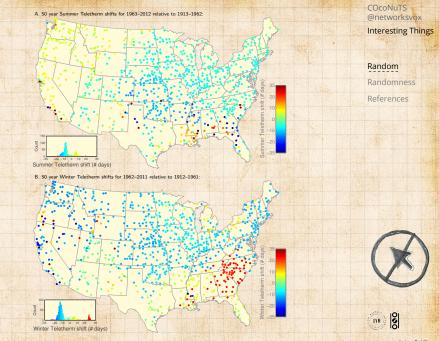

Interactive website.

20 C 30 of 47

DQQ 31 of 47

COcoNuTS @networksvox Interesting Things


Random


Randomness

References

DQ @ 32 of 47

Dac 34 of 47

COcoNuTS @networksvox Interesting Things

Random

Randomness

References

lmportant detour: The final digits of primes are not entirely random C (how did we not know this?).

COCONUTS @networksvox Interesting Things

Random

Randomness

References

- Important detour: The final digits of primes are not entirely random C (how did we not know this?).
- 🚳 Start flipping a coin ...

COcoNuTS @networksvox Interesting Things

- Important detour: The final digits of primes are not entirely random C (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?

COcoNuTS @networksvox Interesting Things

- Important detour: The final digits of primes are not entirely random (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Solution Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?

COcoNuTS @networksvox Interesting Things

- Important detour: The final digits of primes are not entirely random (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?

COcoNuTS @networksvox Interesting Things

Random Randomness References

2 a a 35 of 47

- Important detour: The final digits of primes are not entirely random (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?
- Estimate: On average, how many flips does it take to first see the sequence HH?

COcoNuTS @networksvox Interesting Things

Random Randomness References

2 a a 35 of 47

UVN S

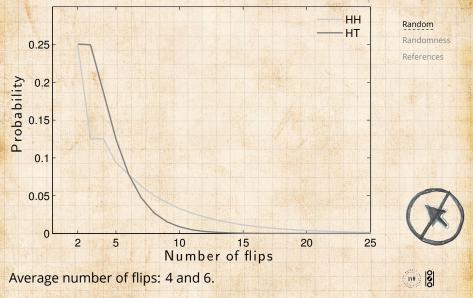
- Important detour: The final digits of primes are not entirely random (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?
- Estimate: On average, how many flips does it take to first see the sequence HH?
- What's the probability of first flipping a HT sequence on the n - 1th and nth flips?

COcoNuTS @networksvox Interesting Things

Random Randomness References

na @ 35 of 47

UVN S


- Important detour: The final digits of primes are not entirely random ^C (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?
- Estimate: On average, how many flips does it take to first see the sequence HH?
- What's the probability of first flipping a HT sequence on the n - 1th and nth flips?
- What's the probability of first flipping two heads in a row (HH) on the (n-1)th and nth flips?

COcoNuTS @networksvox Interesting Things

COcoNuTS @networksvox Interesting Things

COcoNuTS @networksvox Interesting Things

Random

Randomness

References

From here

 (\mathbf{x})

DQ @ 37 of 47

COcoNuTS @networksvox Interesting Things

Accidents of evolution¹ give us 5 + 5 = 10 fingers and hence base 10. Random Randomness References

From here 2.

DQ @ 37 of 47

COcoNuTS @networksvox Interesting Things

Randomness

References

From here

Accidents of evolution¹ give us 5 + 5 = 10 fingers and hence base 10.

We could be happy with base 6, 8, 12, ...

 \bigotimes

DQC 37 of 47

COcoNuTS @networksvox Interesting Things

Randomness

References

ANT GREEJUG

From here

Accidents of evolution¹ give us 5 + 5 = 10 fingers and hence base 10.

We could be happy with base 6, 8, 12, ...

We like these:

- 60 seconds in a minute
- 60 minutes in an hour.
- $2 \times 12 = 24$ hours in a day.
- ♥ 360 degrees in a circle.

UVN SO

COcoNuTS @networksvox Interesting Things

KAT (REC.)-(9

From here

Accidents of evolution¹ give us 5 + 5 = 10 fingers and hence base 10.

We could be happy with base 6, 8, 12, ...

We like these:

- 60 seconds in a minute
- 60 minutes in an hour.
- $2 \times 12 = 24$ hours in a day.
- ♥ 360 degrees in a circle.

¹Maybe 5 fingers are not an accident C

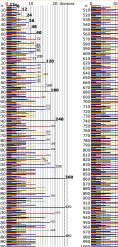
う へ へ 37 of 47

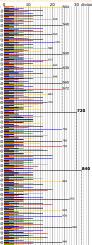
We've liked these kinds of numbers for a long time:

7 1	19	11	*	21	*** 7	31	10	41	148	51
77 2	177	12	*	22	*** 77	32	1217	42	10 17	52
YYY 3	177	13	**	23	***	33	-	43	-	53
2 4	400	14	支援	24	类每	34	委督	44	奏每	54
XX 5	₹ ₩	15	**	25	₩₩	35	夜程	45	续辑	55
6	▲辍	16	ま	26	業報	36	使報	46	续報	56
2 7	金	17	金段	27	衾破	37	夜留	47	续報	57
8	<₩	18	金田	28	***	38	夜報	48	续報	58
耕 9	₹	19	支羽	29	義報	39	使報	49	续辑	59
∢ 10	44	20	***	30	**	40	**	50		

COcoNuTS @networksvox Interesting Things

Random Randomness References


2000 BC: Babylonian base 60/Sexagesimal system.


Other bases (or radices): 2, 10, 12 (duodecimal/dozenal), 6 (senary), 8, 16, 20 (vigesimal), 60.

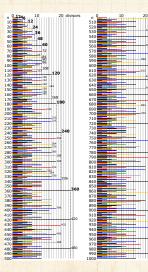
うへで 38 of 47

UVN SO

Highly composite numbers:

HCN = natural number with more divisors than any smaller natural number. COcoNuTS @networksvox Interesting Things

Random Randomness References



By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

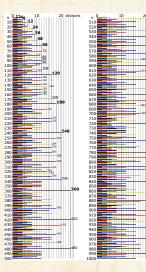
DQC 39 of 47

Highly composite numbers:

 HCN = natural number with more divisors than any smaller natural number.
 2, 4, 6, 12, 24, 36, 48, 60, 120, 180,

48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040 (Plato's optimal city population (2), ... COcoNuTS @networksvox Interesting Things

Random Randomness References



By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

DQC 39 of 47

Highly composite numbers:

 HCN = natural number with more divisors than any smaller natural number.
 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 260, 720, 844

240, 360, 720, 840, 1260, 1680, 2520, 5040 (Plato's optimal city population (27), ...

Solution OEIS sequence A002182

COcoNuTS @networksvox Interesting Things

Random Randomness References

By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

na @ 39 of 47

Superior highly composite numbers: 🗹

# prime factors	SHCN n	prime factorization	prime # di exponents			primorial factorization
1	2	2	1	2	2	2
2	6	2 · 3	1,1	2 ²	4	6
3	12	$2^2 \cdot 3$	2,1	3×2	6	2 · 6
4	60	$2^2 \cdot 3 \cdot 5$	2,1,1	3×2 ²	12	2 · 30
5	120	$2^3 \cdot 3 \cdot 5$	3,1,1	4×2 ²	16	$2^2 \cdot 30$
6	360	$2^3 \cdot 3^2 \cdot 5$	3,2,1	4×3×2	24	$2 \cdot 6 \cdot 30$
7	2520	$2^3\cdot 3^2\cdot 5\cdot 7$	3,2,1,1	4×3×2 ²	48	$2 \cdot 6 \cdot 210$
8	5040	$2^4\cdot 3^2\cdot 5\cdot 7$	4,2,1,1	5×3×2 ²	60	$2^2 \cdot 6 \cdot 210$
9	55440	$2^4\cdot 3^2\cdot 5\cdot 7\cdot 11$	4,2,1,1,1	5×3×2 ³	120	$2^2 \cdot 6 \cdot 2310$
10	720720	$2^4\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13$	4,2,1,1,1,1	5×3×2 ⁴	240	$2^2 \cdot 6 \cdot 30030$

COcoNuTS @networksvox Interesting Things

Random

Randomness

References

SHCN = natural number n whose number of divisors exceeds that of any other number when scaled relative to itself in a sneaky way:

$$\frac{d(n)}{n^{\epsilon}} \geq \frac{d(j)}{j^{\epsilon}} \text{ and } \frac{d(n)}{n^{\epsilon}} > \frac{d(k)}{k^{\epsilon}}$$

for j < n < k and some $\epsilon > 0$.

There's more: Superabundant numbers

 $\underset{\sim}{\otimes} n$ is superabundant if:

$$\frac{\sigma_1(n)}{n} > \frac{\sigma_1(j)}{j}$$

for j < n and where $\sigma_x(n) = \sum_{d \mid n} d^x$ is the divisor function.

449 numbers are both superabundant and highly composite.

Yet more: Colossally abundant numbers: 🖸

 $\Re n$ is colossally abundant if for all *j* and some $\epsilon > 0$:

$$\frac{\sigma_1(n)}{n^{1+\epsilon}} \geq \frac{\sigma_1(j)}{j^{1+\epsilon}}$$

Infinitely many but only 22 less than 10^{18} .

COcoNuTS @networksvox Interesting Things

Some very, very silly units of measurement courtesy of the Imperial system 🖸:

22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.

Random Randomness References

DQ @ 42 of 47

Some very, very silly units of measurement courtesy of the Imperial system **C**:

22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
 1 acre = 1 furlong × 1 chain = 43,560 square feet.

COcoNuTS @networksvox Interesting Things

Random Randomness References

UVN S

Some very, very silly units of measurement courtesy of the Imperial system 🖸:

Also:

22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
1 acre = 1 furlong × 1 chain = 43,560 square feet.
160 fluid ounces in a gallon.

Random Randomness References

UVR OO

Randomness

References

Some very, very silly units of measurement courtesy of the Imperial system 🔀:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- & 1 acre = 1 furlong \times 1 chain = 43,560 square feet.
- 🚳 160 fluid ounces in a gallon.
- 🚳 14 pounds in a stone.

Also:

UVR OO

Randomness

References

Some very, very silly units of measurement courtesy of the Imperial system 🖸:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- 1 acre = 1 furlong × 1 chain = 43,560 square feet.
- 🚳 160 fluid ounces in a gallon.
- 🚳 14 pounds in a stone.
- 🚓 Hundredweight = 112 pounds.

Also:

DQ @ 42 of 47

UVR OO

Randomness

References

Some very, very silly units of measurement courtesy of the Imperial system 🖸:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- 1 acre = 1 furlong × 1 chain = 43,560 square feet.
- 🚳 160 fluid ounces in a gallon.
- 🚳 14 pounds in a stone.
- Hundredweight = 112 pounds.

Also:

🗞 Fahrenheit, Celcius, and Kelvin.

🧼 👸 ୬ ୨.୧. 42 of 47

Some very, very silly units of measurement courtesy of the Imperial system 🖸:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- 1 acre = 1 furlong × 1 chain = 43,560 square feet.
- 🚳 160 fluid ounces in a gallon.
- 🚳 14 pounds in a stone.
- 🚓 Hundredweight = 112 pounds.

Also:

- 🗞 Fahrenheit, Celcius, and Kelvin.
- 🚳 The entire metric system.

Dac 42 of 47

UVN OO

Training with stories as fuel:

COcoNuTS @networksvox Interesting Things

Random

Randomness References

na (~ 43 of 47

Randomness:

COcoNuTS @networksvox

Interesting Things

Random

Randomness

References

うへで 44 of 47

References I

[1] T. M. Fink and Y. Mao. Designing tie knots by random walks. Nature, 398:31–32, 1999. pdf 🗗

[2] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. A. Nowak. Quantifying the evolutionary dynamics of language. Nature, 449:713–716, 2007. pdf 2

J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman.
 Quantitative analysis of culture using millions of digitized books.
 Science Magazine, 2010. pdf

COcoNuTS @networksvox Interesting Things

Random Randomness

References

DQ @ 45 of 47

References II

COcoNuTS @networksvox Interesting Things

Random Randomness

References

[4] T. A. Mir. Citations to articles citing Benford's law: A Benford analysis, 2016. Preprint available at http://arxiv.org/abs/1602.01205. pdf 7

[5] P. J. Rentfrow, S. D. Gosling, and J. Potter. A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics. Perspectives on Psychological Science, 3:339–369,

2008. pdf

[6] D. Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529:484–489, 2016. pdf \bigotimes

References III

COcoNuTS @networksvox Interesting Things

Random

Randomness

References

 [7] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327(5964):439–442, 2010. pdf

