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On the optimal form of branching supply and collection networks

Peter Sheridan Dodds1, ∗

1 Department of Mathematics and Statistics, Center for Complex Systems,

& the Vermont Advanced Computing Center, University of Vermont, Burlington, VT, 05401

(Dated: September 6, 2009)

For the problem of efficiently supplying material to a spatial region from a single source, we
present a simple scaling argument based on branching network volume minimization that identifies
limits to the scaling of sink density. We discuss implications for two fundamental and unresolved
problems in organismal biology and geomorphology: how basal metabolism scales with body size
for homeotherms and the scaling of drainage basin shape on eroding landscapes.

PACS numbers: 89.75.Fb,89.75.Hc,87.19.U-,92.40.Gc

In both natural and man-made systems, branching net-
works universally facilitate the essential task of supplying
material from a central source to a widely distributed
sink population. Branching networks also underlie the
complementary process of collecting material from many
sources at a single sink. Such networks typically exhib-
it structural self-similarity over many orders of magni-
tude: river networks drain continents [1, 2, 3], arterial
and venal networks move blood between the macroscopic
heart and microscopic capillaries [4], and trees and plants
orient leaves in space taking on the roles of both structure
and transportation.

We address the following questions regarding supply
networks: (1) What is the minimum network volume
required to continually supply material from a source to
a population of sinks in some spatial region Ω?; and (2)
How does this optimal solution scale if Ω is rescaled allo-
metrically? (For convenience, we use the language of dis-
tribution, i.e., a single source supplying many sinks.) Our
approach is inspired by that of Banavar et al. [5, 6] who
sought to derive scaling properties of optimal transporta-
tion networks in isometrically growing regions based on
a flow rate argument; Banavar et al.’s approach followed
the seminal work of West et al. [7] who suggested supply
networks were key to understanding the metabolic limi-
tations of organisms, and focused on network impedance
minimization (see [8, 9]). In contrast to this previ-
ous work, our treatment is explicitly geometric. We
also accommodate four other key features: the ambient
dimension, allometrically growing regions, variable sink
density, and varying speed of material transportation.

We consider the problem of network supply for a gen-
eral class of d-dimensional spatial regions in a D ≥ d
dimensional space. Each region Ω has volume V and
overall dimensions L1 × L2 × · · · × Ld (see Fig. 1a). We
allow these length scales to scale as Li ∝ V γi , creating
families of allometrically similar regions. For isometric
growth, all dimensions scale uniformly meaning γi = 1/d,
while for allometric growth, we must have at least one of
the {γi} being different (Fig. 1b). For the general case
of allometry, we choose an ordering of {γi} such that the
length scales are arranged from most dominant to least
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FIG. 1: (a) We consider families of d-dimensional spatial
regions that scale allometrically with Li ∝ V γi , and exist in a
D-dimensional space where D ≥ d. For the d=D=2 example
shown, γmax = γ1 > γ2, and L1 grows faster than L2. We
require that each spatial region is star-convex, i.e., from at
least one point all other points are directly observable, and
the single source must be located at any one of these cen-
tral points. (b) Distribution (or collection) networks can be
thought of as a superposition of virtual vessels. In the exam-
ple shown, the source (circle) supplies material to the three
sinks (squares). (c) Allowing virtual vessels to expand as they
move away from the source captures a potential decrease in
speed in material flow. For scaling of branching network form
to be affected, the radius r of a virtual vessel must scale with
vessel length s (measured from the sink) as s−ε.

dominant: γmax = γ1 ≥ . . . ≥ γd.

We assume that isolated sinks are located throughout
a contiguous spatial region Ω (volume V ) which contains
a single source located at "x = "0. We allow sink den-
sity to follow ρ ∼ ρ0(V )(1 + a||"x||)−ζ where a is fixed,
ζ ≥ 0, and ||"x|| is the distance from the source. When
the exponent ζ = 0, ρ is constant throughout the region
(as for capillaries in organisms), but remains a function
of the region’s overall volume V . While decreasing sink
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“Measuring the happiness of large-scale written
expression: Songs, blogs, and presidents.”, Dodds
and Danforth, Journal of Happiness Studies, 11,
441–456, 2009. [9]

Temporal Patterns of Happiness and Information in a
Global Social Network: Hedonometrics and Twitter
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Abstract

Individual happiness is a fundamental societal metric. Normally measured through self-report, happiness has often been
indirectly characterized and overshadowed by more readily quantifiable economic indicators such as gross domestic
product. Here, we examine expressions made on the online, global microblog and social networking service Twitter,
uncovering and explaining temporal variations in happiness and information levels over timescales ranging from hours to
years. Our data set comprises over 46 billion words contained in nearly 4.6 billion expressions posted over a 33 month span
by over 63 million unique users. In measuring happiness, we construct a tunable, real-time, remote-sensing, and non-
invasive, text-based hedonometer. In building our metric, made available with this paper, we conducted a survey to obtain
happiness evaluations of over 10,000 individual words, representing a tenfold size improvement over similar existing word
sets. Rather than being ad hoc, our word list is chosen solely by frequency of usage, and we show how a highly robust and
tunable metric can be constructed and defended.
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Introduction

One of the great modern scientific challenges we face lies in

understanding macroscale sociotechnical phenomena–i.e., the

behavior of decentralized, networked systems inextricably involv-

ing people, information, and machine algorithms–such as global

economic crashes and the spreading of ideas and beliefs [1].

Accurate description through quantitative measurement is essen-

tial to the advancement of any scientific field, and the shift from

being data scarce to data rich has revolutionized many areas [2–5]

ranging from astronomy [6–8] to ecology and biology [9] to

particle physics [10]. For the social sciences, the now widespread

usage of the Internet has led to a collective, open recording of an

enormous number of transactions, interactions, and expressions,

marking a clear transition in our ability to quantitatively

characterize, and thereby potentially understand, previously

hidden as well as novel microscale mechanisms underlying

sociotechnical systems [11].

While there are undoubtedly limits to that which may

eventually be quantified regarding human behavior, recent studies

have demonstrated a number of successful and diverse method-

ologies, all impossible (if imaginable) prior to the Internet age.

Three examples relevant to public health, markets, entertainment,

history, evolution of language and culture, and prediction are (1)

Google’s digitization of over 15 million books and an initial

analysis of the last two hundred years, showing language usage

changes, censorship, dynamics of fame, and time compression of

collective memory [12,13]; (2) Google’s Flu Trends [14–16] which

allows for real-time monitoring of flu outbreaks through the proxy

of user search; and (3) the accurate prediction of box office success

based on the rate of online mentions of individual movies [17] (see

also [18]).

Out of the many possibilities in the ‘Big Data’ age of social

sciences, we focus here on measuring, describing, and under-

standing the well-being of large populations. A measure of ‘societal

happiness’ is a crucial adjunct to traditional economic measures

such as gross domestic product and is of fundamental scientific

interest in its own right [19–22].

Our overall objective is to use web-scale text analysis to

remotely sense societal-scale levels of happiness using the singular

source of the microblog and social networking service Twitter.

Our contributions are both methodological and observational.

First, our method for measuring the happiness of a given text,

which we introduced in [23] and which we improve upon greatly

in the present work, entails word frequency distributions combined

with independently assessed numerical estimates of the ‘happiness’

of over 10,000 words obtained using Amazon’s Mechanical Turk

[24]. We describe our method in full below and demonstrate its

robustness. We refer to our data set as ‘language assessment by

Mechanical Turk 1.0’, which abbreviates as labMT 1.0, and we

provide all data as Data Set S1.

Second, using Twitter as a data source, we are able to explore

happiness as a function of time, space, demographics, and network

structure, with time being our focus here. Twitter is extremely

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e26752

“Temporal patterns of happiness and
information in a global social network:
Hedonometrics and Twitter”
Dodds et al.,
PLoS ONE, 6, e26752, 2011. [11]
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Abstract

Over the last million years, human language has emerged and evolved as a fundamental instrument of social
communication and semiotic representation. People use language in part to convey emotional information, leading to the
central and contingent questions: (1) What is the emotional spectrum of natural language? and (2) Are natural languages
neutrally, positively, or negatively biased? Here, we report that the human-perceived positivity of over 10,000 of the most
frequently used English words exhibits a clear positive bias. More deeply, we characterize and quantify distributions of word
positivity for four large and distinct corpora, demonstrating that their form is broadly invariant with respect to frequency of
word use.
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Introduction

While we regard ourselves as social animals, we have a history of

actions running from selfless benevolence to extreme violence at all

scales of society, and we remain scientifically and philosophically

unsure as to what degree any individual or group is or should be

cooperative and pro-social. Traditional economic theory of human

behavior, for example, assumes that people are inherently and

rationally selfish–a core attribute of homo economicus–with the

emergence of global cooperation thus rendered a profound mystery

[1,2]. Yet everyday experience and many findings of psychology,

behavioral economics, and neuroscience indicate people favour

seemingly irrational heuristics [3,4] over strict rationality as

exemplified in loss-aversion [5], confirmation bias [6], and altruistic

punishment [7]. Religions and philosophies similarly run the gamut

in prescribing the right way for individuals to behave, from the

universal non-harming advocated by Jainism, Gandhi’s call for non-

violent collective resistance, and exhortations toward altruistic

behavior in all major religions, to arguments for the necessity of a

Monarch [8], the strongest forms of libertarianism, and the

‘‘rational self-interest’’ of Ayn Rand’s Objectivism [9].

In taking the view that humans are in part story-tellers–homo

narrativus–we can look to language itself for quantifiable evidence of

our social nature. How is the structure of the emotional content

rendered in our stories, fact or fiction, and social interactions

reflected in the collective, evolutionary construction of human

language? Previous findings are mixed: suggestive evidence of a

positive bias has been found in small samples of English words

[10–12], framed as the Pollyanna Hypothesis [10] and Linguistic

Positivity Bias [12], while experimental elicitation of emotional

words has instead found a strong negative bias [13].

To test the overall positivity of the English language, and in

contrast to previous work [11,13,14], we chose words based solely

on frequency of use, the simplest and most impartial gauge of word

importance. We focused on measuring happiness, or psychological

valence [15], as it represents the dominant emotional response

[16,17]. With this approach, we examined four large-scale text

corpora (see Tab. 1 for details): Twitter, The Google Books Project

(English), The New York Times, and Music lyrics. These corpora,

which we will refer to as TW, GB, NYT, and ML, cover a wide

range of written expression including broadcast media, opinion,

literature, songs, and public social interactions ([18]), and span the

gamut in terms of grammatical and orthographic correctness.

We took the top 5000 most frequently used words from each

corpus, and merged them to form a resultant list of 10,222 unique

words. We then used Amazon’s Mechanical Turk [19,20] to

obtain 50 independent evaluations per word on a 1 to 9 integer

scale, asking participants to rate their happiness in response to

each word in isolation (1 = least happy, 5 = neutral, and 9=most

happy [14,21]). While still evolving, Mechanical Turk has proved

over the last few years to be a reliable and fast service for carrying

out large-scale social science research [22–26].

We computed the average happiness score and standard

deviation for each word. We obtained sensible results that showed

excellent statistical agreement with previous studies for smaller

word sets, including a translated Spanish version (see [14,20,

27] for details). The highest and lowest scores were

havg(‘laughter’)=8.50 and havg(‘terrorist’)=1.30, with expectedly

neutral words averaging near 5, e.g., havg(‘the’)=4.98 and

havg(‘it’)=5.02. We refer to our ongoing studies as Language

Assessment by Mechanical Turk, using the abbreviation labMT

1.0 data set for the present work (the full data set is provided as

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e29484

“Positivity of the English language”, Kloumann et
al., PLoS ONE, 7, e29484, 2012. [23]
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Abstract

The emergence and global adoption of social media has rendered possible the

real-time estimation of population-scale sentiment, an extraordinary capacity which

has profound implications for our understanding of human behavior. Given the

growing assortment of sentiment-measuring instruments, it is imperative to

understand which aspects of sentiment dictionaries contribute to both their

classification accuracy and their ability to provide richer understanding of texts. Here,

we perform detailed, quantitative tests and qualitative assessments of 6

dictionary-based methods applied to 4 different corpora, and briefly examine a

further 20 methods. We show that while inappropriate for sentences,

dictionary-based methods are generally robust in their classification accuracy for

longer texts. Most importantly they can aid understanding of texts with reliable and

meaningful word shift graphs if (1) the dictionary covers a sufficiently large portion of

a given text’s lexicon when weighted by word usage frequency; and (2) words are

scored on a continuous scale.

Keywords: sentiment; sentiment analysis; sentiment dictionaries; language; natural

language processing; data visualization; text visualization

1 Introduction

As we move further into what might be called the Sociotechnocene — with increasingly

more interactions, decisions, and impact being made by globally distributed people and

algorithms — the myriad human social dynamics that have shaped our history have be-

come far more visible and measurable than ever before. Of the many ways we are now

able to characterize social systems in microscopic detail, sentiment detection for pop-

ulations at all scales has become a prominent research arena. Attempts to leverage on-

line expression for sentiment mining include prediction of stock markets [–], assessing

responses to advertising, real-time monitoring of global happiness [], and measuring a

health-related quality of life []. The diverse set of instruments produced by this work

now provide indicators that help scientists understand collective behavior, inform pub-

lic policy makers, and, in industry, gauge the sentiment of public response to marketing

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

“Sentiment analysis methods for understanding
large-scale texts: A case for using continuum-scored
words and word shift graphs”, Reagan et al., EPJ
Data Science, 6, , 2017. [31]
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Economics, Schmeconomics

Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big mathematical
models of forecasting the economy ...

If I could figure out a way to determine
whether or not people are more fearful or
changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better than any
way I know.” http://wikipedia.org
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Economics, Schmeconomics

Greenspan continues:
“The trouble is that we can’t figure that out. I’ve been in the
forecasting business for 50 years. I’m no better than I ever was,
and nobody else is. Forecasting 50 years ago was as good or as
bad as it is today. And the reason is that human nature hasn’t
changed. We can’t improve ourselves.”

Jon Stewart:

“You just bummed the @*!# out of me.”

wildbluffmedia.com

 From the Daily Show (September 18, 2007; @5:13)

 The full inteview is here.

This is a Collateralized Debt Obligation:
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Robert Kennedy on the Gross Domestic Product
(GDP) in 1968:
“It measures everything except that which makes life
worthwhile. And it can tell us everything about
America except why we are proud that we are
Americans.” [21, 20]
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Basic Science ≃ Describe + Explain:

Lord Kelvin (possibly):

 “To measure is to know.”

 “If you cannot measure it, you
cannot improve it.”

But also:
 “There is nothing new to be

discovered in physics now. All
that remains is more and more
precise measurement.”

 “X-rays will prove to be a hoax.”
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A brief history of measuring time:
 Megaliths for Big Time
 Sundials, 1500 BC, Egypt (solid for over 2000 years)
 Escapements (200s), Hourglasses (1300s?),

Pendulum clocks (Galileo, 1500s)
 Chronometers, 1700s:

“Longitude: The True Story of a Lone Genius
Who Solved the Greatest Scientific Problem
of His Time , publisher=Bloomsbury
Publishing, US”
by Dava Sobel (2007). [33]

 Billionths of a second accuracy: Atomic clocks
(Lord Kelvin, 1879)
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Measuring temperature was thought impossible:

From “Bias in Mental Testing”, Arthur Jensen, 1980 [17]

per @SilverVVulpes: Also: Inventing Temperature, Hasok
Chang, 2004 [3]
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Measuring temperature was thought impossible:

From “Bias in Mental Testing”, Arthur Jensen, 1980 [17]

per @SilverVVulpes: Also: Inventing Temperature, Hasok
Chang, 2004 [3]
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What matters and what’s measurable:
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Panometer—Three kinds of lexical meters:

1. Principled lexical meters:
 The Hedonometer.
 The Lexicocalorimeter.

2. Ground truth lexical meters:
 Insomniometer.
 Hangoverometer.

3. Bootstrap lexical meters:
 Boredometer.
 Hashtagometers.

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
18 of 155

Measuring Happiness:

Socrates et al.:
eudaimonia [18]

Bentham:
hedonistic
calculus

Jefferson:
…the pursuit of
happiness
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Early drafts:
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Happiness:

Even the odd modern economist
is happy:

“Happiness” by Richard
Layard [24]

[amazon]
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What makes us happy?—Layard’s
summary:
Dominant factors:

 Family
relationships

 Financial
situation

 Work
 Community and

Friends

 Health
 Personal Values
 Personal

Freedom

Unimportant factors:

 Age
 Gender
 Education

 Inherent
intelligence

 Looks
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Desiring happiness—not just for boffins:
 Average people routinely report being happy is

what they want most in life [24, 25, 8]

 And it matters: “Happy people live longer:…”
Survey by Diener and Chan. [8]

National indices of
well-being:
 Bhutan
 UK
 France
 Australia

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
24 of 155

Some easy knocks:

“The Passionate State of Mind: And Other
Aphorisms”
by Eric Hoffer (1954). [16]

“The search for happiness is one of the chief sources
of unhappiness.”
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Some easy knocks:

Colbert: “Happiness is totally overrated …”
“Happiness is for the weak.”

Full interview with Jennifer Senior here (2014/02/03)
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30 Rock, S7E8:

JD: “Before she died, Colleen told me—she just wants me to be
happy. ‘I just want you to be happy.’ You know who you say that
to? A loser. Someone who can’t hope for anything more in life
than just being happy. You say that to someone who has
disappointed you.”
LL: “Jack.”
JD: “No. It’s perfect. She’s a genius. One last twist of the knife. Well,
thank you for coming, Lemon, but I better get going. The funeral is
tomorrow. Colleen wanted to be buried before the rest of the
family found out and sold her body to a haunted house. And, of
course, I get to eulogize Colleen at the service. One more chance
to disappoint her as she looks up at me from her throne In hell.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.amazon.com/Happiness-Lessons-Science-Richard-Layard/dp/1594200394
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.amazon.com/dp/1933435097/
http://www.amazon.com/dp/1933435097/
http://www.amazon.com/dp/1933435097/
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.cc.com/video-clips/nocpjv/the-colbert-report-jennifer-senior
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Meaning rather than happiness:

“Mindfulness in Plain English”
by Henepola Gunaratana (1992). [15]

“Flow”
by Mihaly Csikszentmihalyi (1990). [6]

 Can we measure Flow in a big data way?
 Maybe drops in social media usage indicate

people are doing okay?
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Emotional content

So how does one measure
1. happiness?
2. levels of other emotional states?

Just ask people how happy they are.
 Experience sampling [5, 7, 6] (Csikszentmihalyi et al.)
 Day reconstruction [19] (Kahneman et al.)

But self-reporting has some drawbacks:
 relies on memory and self-perception
 induces misreporting [26]

 costly

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
30 of 155

Happiness, attention, and doing:

Fig. 1. Mean happiness reported during each ac-
tivity (top) and while mind wandering to unpleas-
ant topics, neutral topics, pleasant topics or not
mind wandering (bottom). Dashed line indicates
mean of happiness across all samples. Bubble area
indicates the frequency of occurrence. The largest
bubble (“not mind wandering”) corresponds to
53.1% of the samples, and the smallest bubble
(“praying/worshipping/meditating”) corresponds to
0.1% of the samples.

Killingsworth and
Gilbert, Science,
2010 [22]
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We’d like to build an ‘hedonometer’:

 An instrument to ‘remotely-sense’
emotional states and levels, in
real time or post hoc.

Ideally:

 Transparent
 Fast
 Based on written

expression
 Uses human

evaluation

 Non-reactive
 Complementary to

self-reported
measures

 Improvable
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We don’t want to end up here:

Science Policy
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Or here: Facebook Lexicon Sentiment
Analysis (2008)

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.amazon.com/dp/0861719069/
http://www.amazon.com/dp/0861719069/
http://www.amazon.com/dp/0061339202/
http://www.amazon.com/dp/0061339202/
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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Facebook Lexicon Sentiment Analysis

Binary decision on emotional content

 Limitation: Sentiments are classified as either
positive or negative.

 ‘I like Sarah Palin’ given same score as ‘Sarah
Palin’s voice fills me with unbridled joy!’
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Measuring Emotional Content
 Idea: Build on measures of the emotional content

of individual words.
 Osgood et al. (1957) [30] identified

a basis of three psychological variables as
semantic differentials:
 Valence: bad ↔ good
 Arousal: passive ↔ active
 Dominance: weak ↔ strong
 Also often: Evaluation, Activity, and Potency.
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ANEW study

 ANEW = “Affective Norms for English Words”

 Study: participants shown lists of isolated words
 Asked to grade each word’s valence, arousal, and

dominance level
 Integer scale of 1–9

 𝑁 =1034 words—previously identified as bearing
emotional weight

 Participants = College students (*cough*)
 Results published by Bradley and Lang (1999) [2]
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1999 ANEW study—three 1–9 scales: [2]
valence:

arousal:

dominance:
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ANEW study:

Valence = Happiness:
 Valence scale presented to participants as a

‘happy-unhappy scale.’
 Participants were further told:

“At one extreme of this scale, you are happy,
pleased, satisfied, contented, hopeful. …

The other end of the scale is when you feel
completely unhappy, annoyed, unsatisfied,
melancholic, despaired, or bored.”
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ANEW study words—examples

0 50 100150200
1

2

3

4

5

6

7

8

9

funeral/rape/suicide

trauma/hostage/disgusted

fault/corrupt/lawsuit

derelict/neurotic/vanity

engine/paper/street

optimism/pancakes/church

glory/luxury/trophy

love/paradise/triumphant

frequency

va
le

nc
e v
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Analysing text:
 Simplest measure for a text:𝜃avg = 𝑁∑𝑖=1 𝑝𝑖𝜃𝑖

where 𝑝𝑖 is fractional abundance of word 𝑖 and 𝜃 is
average valence, arousal, or dominance for word 𝑖.

 Focus on happiness (valence), 𝜃 = ℎ.
 Average happiness typically falls between 5 and 7.

Measuring the perceived happiness of a
text:

ANEW
words

11. perfume

14. lie

k=1. love
2. mother
3. baby
4. beauty
5. truth
6. people
7. strong
8. young
9. girl
10. movie

12. queen
13. name

8.72
8.39
8.22
7.82
7.80
7.33
7.11
6.89
6.87
6.86
6.76
6.44
5.55
2.79

1
1
3
1
1

1
2
4
1
1
1
1
1

from a movie scene.

’cause the lie becomes the truth.

And be careful of what you do

She’s just a girl who claims

Billie Jean is not my lover,

that I am the one.

Michael Jackson’s Billie Jean

vMichael
Jackson

vThriller

= 7.1

= 6.4

= 6.3

=v
text ∑

k
fk

vBillie Jean

∑

k
vkfk

fk

“She was more like a beauty queen

2
And mother always told me,

be careful who you love.

vk
Lyrics for

 Temperature-like measure—large numbers only.
 Not meant to be used at level of sentence,

paragraph, song, tweet, ...
 Important: Social measure of sentiment.
 Later: see instrument is tunable.

Daft Punk’s “Around the World”:

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world
.

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Around the world, around the world
Around the world, around the world
Around the world, around the world
Around the world, around the world

Magic: Low entropy, high energy.
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Song Lyrics—average happiness
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Song Lyrics—measurement robustness
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Song Lyrics—average happiness of genres:

1960 1970 1980 1990 2000 2010
4.5

5

5.5

6

6.5

7

year

m
ea

n 
va

le
nc

e 
v av

g

 

 

Gospel/Soul (6.91)
Pop (6.69)
Reggae (6.40)
Rock (6.27)
Rap/Hip−Hop (6.01)
Punk (5.61)
Metal/Industrial (5.10)

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Around_the_World_(Daft_Punk_song)
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds


Happiness Word Shift Graph (early version):

−20 −10 0 10

25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1 love ↓

lonely ↓
hate ↑
pain ↑
baby ↓
death ↑
dead ↑
home ↓
sick ↑
fear ↑
hit ↑
hell ↑
fall ↑
sin ↑
lost ↑

sad ↓
burn ↑
lie ↑
scared ↑
afraid ↑
music ↓

life ↑
god ↑

trouble ↓
loneliness ↓

Per word valence shift ∆
i

W
or

d 
nu

m
be

r i

Per word drop in valence of lyrics from 1980−2007 relative to valence of lyrics from 1960−1979:

lonely ↓
sad ↓

trouble ↓
loneliness ↓

devil ↓
Decreases in relatively
low valence words
contribute to increase
in average valence

life ↑
god ↑

truth ↑
party ↑

sex ↑
Increases in relatively
high valence words
contribute to increase
in average valence

hate ↑
pain ↑
death ↑
dead ↑
sick ↑

Increases in relatively
low valence words
contribute to drop
in average valence

love ↓
baby ↓
home ↓
music ↓
good ↓

Decreases in relatively
high valence words
contribute to drop
in average valence

Key:

 Word shifts are word clouds for grown ups.

Word data shift details:

Given two texts 𝑇ref and 𝑇comp:

 Measure difference in average happiness:ℎ(comp)
avg − ℎ(ref)

avg

 Evident question: Which words contribute the
most to this change?

 Break difference down by contributions from
individual words:𝛿ℎavg,i = 100∣ℎ(comp)

avg − ℎ(ref)
avg ∣ [ℎavg(𝑤𝑖) − ℎ(ref)

avg ]⏟⏟⏟⏟⏟⏟⏟+/− [𝑝(comp)𝑖 − 𝑝(ref)𝑖 ]⏟⏟⏟⏟⏟⏟⏟↑/↓
 Must have: ∑𝑖 𝛿ℎavg,i = ±100
 Rank words by |𝛿ℎavg,i|
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Word data shift details:

ℎ(comp)
avg − ℎ(ref)

avg = 𝑁∑𝑖=1 ℎavg(𝑤𝑖)𝑝(comp)𝑖 − 𝑁∑𝑖=1 ℎavg(𝑤𝑖)𝑝(ref)𝑖
= 𝑁∑𝑖=1 ℎavg(𝑤𝑖) [𝑝(comp)𝑖 − 𝑝(ref)𝑖 ]

= 𝑁∑𝑖=1 [ℎavg(𝑤𝑖) − ℎ(ref)
avg ] [𝑝(comp)𝑖 − 𝑝(ref)𝑖 ]

where𝑁∑𝑖=1 ℎ(ref)
avg [𝑝(comp)𝑖 − 𝑝(ref)𝑖 ] = ℎ(ref)

avg

𝑁∑𝑖=1 [𝑝(comp)𝑖 − 𝑝(ref)𝑖 ]
= ℎ(ref)

avg (1 − 1) = 0.
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+↑: Increased usage of relatively positive words—If a word
is happier than text 𝑇ref (+) and appears relatively
more often in text 𝑇comp (↑), then the contribution to
the difference ℎ(comp)

avg − ℎ(ref)
avg is positive;−↓: Decreased usage of relatively negative words—If a

word is less happy than text 𝑇ref (−) and appears
relatively less often in text 𝑇comp (↓), then the
contribution to the difference ℎ(comp)

avg − ℎ(ref)
avg is also

positive;+↓: Decreased usage of relatively positive words—If a word
is happier than text 𝑇ref (+) and appears relatively less
often in text 𝑇comp (↓), then the contribution to the
difference ℎ(comp)

avg − ℎ(ref)
avg is negative; and−↑: Increased usage of relatively negative words—If a word

is less happy than text 𝑇ref (−) and appears relatively
more often in text 𝑇comp (↑), then the contribution to
the difference ℎ(comp)

avg − ℎ(ref)
avg is also negative.
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Top 50 of ≃ 20,000 artists:
Rank Artist ℎavg
1 All-4-One 7.15
2 Luther Vandross 7.12
3 S Club 7 7.05
4 K Ci & JoJo 7.04
5 Perry Como 7.04
6 Diana Ross & The Supremes 7.03
7 Buddy Holly 7.02
8 Faith Evans 7.01
9 The Beach Boys 7.01
10 Jon B 6.98
11 Dru Hill 6.96
12 Earth Wind & Fire 6.95
13 Ashanti 6.95
14 Otis Redding 6.93
15 Faith Hill 6.93
16 NSync 6.93
17 The Supremes 6.91
18 The Partridge Family 6.91
19 Kelly Price 6.89
20 Tamia 6.89
21 Avant 6.88
22 Jennifer Lopez 6.88
23 Vanessa Williams 6.87
24 Babyface 6.87
25 E Rotic 6.87

Rank Artist ℎavg
26 Sarah Connor 6.86
27 Darlene Zschech 6.86
28 Mary J Blige 6.86
29 Steve Miller Band 6.86
30 New Edition 6.86
31 Mandy Moore 6.86
32 Alicia Keys 6.85
33 Cher 6.85
34 Modern Talking 6.85
35 Mario 6.84
36 Aretha Franklin 6.84
37 Jessica Simpson 6.84
38 112 6.84
39 Backstreet Boys 6.83
40 Billy Gilman 6.83
41 B2K 6.82
42 Stevie Wonder 6.82
43 John Legend 6.81
44 Ricky Nelson 6.79
45 Lionel Richie 6.79
46 98 Degrees 6.79
47 Boyzone 6.79
48 Gerald Levert 6.79
49 Nat King Cole 6.78
50 Marques Houston 6.78

(criteria: ≥ 50 songs and ≥ 1000 ANEW words)
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Bottom 50 of ≃ 20,000 artists:
Rank Artist ℎavg
1 Slayer 4.80
2 Misfits 4.88
3 Staind 4.93
4 Slipknot 4.98
5 Darkthrone 4.98
6 Death 5.02
7 Black Label Society 5.05
8 Pig 5.08
9 Voivod 5.14
10 Fear Factory 5.15
11 Iced Earth 5.16
12 Simple Plan 5.16
13 Machine Head 5.17
14 Metallica 5.19
15 Dimmu Borgir 5.20
16 Mudvayne 5.21
17 Linkin Park 5.22
18 Papa Roach 5.22
19 Audioslave 5.24
20 Rage Against The Machine 5.24
21 Cradle Of Filth 5.25
22 Dark Tranquility 5.26
23 Jack Off Jill 5.28
24 Evanescence 5.30
25 Twiztid 5.33

Rank Artist ℎavg
26 Nine Inch Nails 5.34
27 Sevendust 5.34
28 Annihilator 5.35
29 Biohazard 5.36
30 Insane Clown Posse 5.36
31 Megadeth 5.36
32 Manowar 5.37
33 Zebrahead 5.38
34 Danzig 5.39
35 Acid Drinkers 5.40
36 Dag Nasty 5.40
37 Iron Maiden 5.40
38 Flotsam And Jetsam 5.41
39 Powerman 5000 5.42
40 Anthrax 5.43
41 Rhapsody 5.43
42 Korn 5.43
43 Rage 5.44
44 Accept 5.45
45 Esham 5.46
46 Blind Guardian 5.46
47 White Zombie 5.47
48 Helloween 5.50
49 W A S P 5.50
50 Green Day 5.50

(criteria: ≥ 50 songs and ≥ 1000 ANEW words)
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Text: ℎavg Words with a similar score:

Soul/Gospel
lyrics [10]

6.9 chocolate (6.88), leisurely (6.88), penthouse
(6.81)

Pop lyrics [10] 6.7 dream (6.73), honey (6.73), sugar (6.74)
Dante’s Paradise [?] 6.5 muffin (6.57), rabbit (6.57), smooth (6.58)
Tweets, 9/9/2008 to
12/31/2010

6.4 thought (6.39), face (6.39), blond (6.42)

Rock lyrics [10] 6.3 church (6.28), tree (6.32), air (6.34)
Enron Emails [?] 6.2 clouds (6.18), alert (6.20), computer (6.24)
State of the Union
Messages [10]

6.1 grass (6.12), idol (6.12), bottle (6.15)

New York Times
(1987–2007) [32]

6.0 hotel (6.00), tennis (6.02), wonder (6.03)

Blogs [10] 5.8 owl (5.80), whistle (5.81), humble (5.86)
Dante’s Inferno [?] 5.5 glacier (5.50), repentant (5.53), mischief (5.57)
Heavy Metal
lyrics [10]

5.4 lamp (5.41), elevator (5.44), truck (5.47)
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Lexicon Valley, Episode #62, June 17, 2015
 Mike Vuolo and Bob Garfield.

Language has a Positivity Bias. How did we measure that?

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
58 of 155

Data sets:
 Blog phrases containing “I feel...”, “I am feeling”,

etc., taken from wefeelfine.org (API, 2005–2010)

 Created by
Jonathan Harris
& Sep Kamvar
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So I really consider myself a storyteller. But I don’t
really tell stories in the usual way, in the sense that I
don’t usually tell my own stories. Instead, I’m really
interested in building tools that allow large numbers of
other people to tell their stories, people all around the
world. I do this because I think that people actually
have a lot in common. I think people are very similar,
but I also think that we have trouble seeing that.
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wefeelfine.org:
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wefeelfine.org:
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Blogs—Overall trend
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From wefeelfine.org by Jonathan Harris & Sep
Kamvar
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 Average happiness as a function of the age
bloggers report they will turn in the year of their
posting.
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Blogs—Age

 Self-report studies find little variation in happiness
with age [12, 13]

 Surprising: Expect a rise and fall.
 A ‘challenge’ for theory...
 Related to the Easterlin Paradox:

Money doesn’t buy happiness
 But maybe it does a little bit—Veenhoven &

Hagerty (2003) and Wolfers & Stevenson (2008).
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Blogs—Latitude
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5.85

latitude |degrees|

Near equator—social factors
 Increase in ‘sad’, ‘bored’,

‘lonely’, ‘stupid’, ‘guilty’
 Decrease in ‘good’ and

‘people’

Near poles—
social/psychological/climate
 Increase in ‘sick’, ‘guilty’,

‘cold’, ‘depressed’, and
‘headache’ and decrease of
‘love’ and ‘life.’

 Offset by decrease in ‘hurt’
and ‘pain.’

 More ‘bed’ and ‘sleep.’
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Presidential happiness:
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labMT 1.0:
language assessment by Mechanical Turk

Four corpora:
 Twitter
 Google Books
 Music Lyrics
 New York

Times

 5000 most frequently used words for each corpus.
 10,222 words, 50 evaluations each, 1–9 scale: [27]

1 2 3 4 5 6 7 8 9
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valence word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

1 laughter 8.50 0.93 3600 – – 1728
2 happiness 8.44 0.97 1853 2458 – 1230
3 love 8.42 1.11 25 317 328 23
4 happy 8.30 0.99 65 1372 1313 375
5 laughed 8.26 1.16 3334 3542 – 2332
6 laugh 8.22 1.37 1002 3998 4488 647
7 laughing 8.20 1.11 1579 – – 1122
8 excellent 8.18 1.10 1496 1756 3155 –
9 laughs 8.18 1.16 3554 – – 2856
10 joy 8.16 1.06 988 2336 2723 809
11 successful 8.16 1.08 2176 1198 1565 –
12 win 8.12 1.08 154 3031 776 694
13 rainbow 8.10 0.99 2726 – – 1723
14 smile 8.10 1.02 925 2666 2898 349
15 won 8.10 1.22 810 1167 439 1493
16 pleasure 8.08 0.97 1497 1526 4253 1398
17 smiled 8.08 1.07 – 3537 – 2248
18 rainbows 8.06 1.36 – – – 4216
19 winning 8.04 1.05 1876 – 1426 3646
20 celebration 8.02 1.53 3306 – 2762 4070
21 enjoyed 8.02 1.53 1530 2908 3502 –
22 healthy 8.02 1.06 1393 3200 3292 4619
23 music 8.02 1.12 132 875 167 374
24 celebrating 8.00 1.14 2550 – – –
25 congratulations 8.00 1.63 2246 – – –
26 weekend 8.00 1.29 317 – 833 2256
27 celebrate 7.98 1.15 1606 – 3574 2108
28 comedy 7.98 1.15 1444 – 2566 –
29 jokes 7.98 0.98 2812 – – 3808
30 rich 7.98 1.32 1625 1221 1469 890
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valence word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

       
10193 violence 1.86 1.05 4299 1724 1238 2016
10194 cruel 1.84 1.15 2963 – – 1447
10195 cry 1.84 1.28 1028 3075 – 226
10196 failed 1.84 1.00 2645 1618 1276 2920
10197 sickness 1.84 1.18 4735 – – 3782
10198 abused 1.83 1.31 – – – 4589
10199 tortured 1.82 1.42 – – – 4693
10200 fatal 1.80 1.53 – 4089 – 3724
10201 killings 1.80 1.54 – – 4914 –
10202 murdered 1.80 1.63 – – – 4796
10203 war 1.80 1.41 468 175 291 462
10204 kills 1.78 1.23 2459 – – 2857
10205 jail 1.76 1.02 1642 – 2573 1619
10206 terror 1.76 1.00 4625 4117 4048 2370
10207 die 1.74 1.19 418 730 2605 143
10208 killing 1.70 1.36 1507 4428 1672 998
10209 arrested 1.64 1.01 2435 4474 1435 –
10210 deaths 1.64 1.14 – – 2974 –
10211 raped 1.64 1.43 – – – 4528
10212 torture 1.58 1.05 3175 – – 3126
10213 died 1.56 1.20 1223 866 208 826
10214 kill 1.56 1.05 798 2727 2572 430
10215 killed 1.56 1.23 1137 1603 814 1273
10216 cancer 1.54 1.07 946 1884 796 3802
10217 death 1.54 1.28 509 307 373 433
10218 murder 1.48 1.01 2762 3110 1541 1059
10219 terrorism 1.48 0.91 – – 3192 –
10220 rape 1.44 0.79 3133 – 4115 2977
10221 suicide 1.30 0.84 2124 4707 3319 2107
10222 terrorist 1.30 0.91 3576 – 3026 –
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std dev word valence std dev twitter g-books nyt lyrics
rank rank rank rank rank

1 f��king 4.64 2.93 448 – – 620
2 f✫✫kin 3.86 2.74 1077 – – 688
3 f✫✫ked 3.56 2.71 1840 – – 904
4 pussy 4.80 2.66 2019 – – 949
5 whiskey 5.72 2.64 – – – 2208
6 slut 3.57 2.63 – – – 4071
7 cigarettes 3.31 2.60 – – – 3279
8 f✫✫k 4.14 2.58 322 – – 185
9 mortality 4.38 2.55 – 3960 – –
10 cigarette 3.09 2.52 – – – 2678
11 motherf✫✫kers 2.51 2.47 – – – 1466
12 churches 5.70 2.46 – 2281 – –
13 motherf✫✫king 2.64 2.46 – – – 2910
14 capitalism 5.16 2.45 – 4648 – –
15 porn 4.18 2.43 1801 – – –
16 summer 6.40 2.39 896 1226 721 590
17 beer 5.92 2.39 839 4924 3960 1413
18 execution 3.10 2.39 – 2975 – –
19 wines 6.28 2.37 – – 3316 –
20 zombies 4.00 2.37 4708 – – –
21 aids 4.28 2.35 2983 3996 1197 –
22 capitalist 4.84 2.34 – 4694 – –
23 revenge 3.71 2.34 – – – 2766
24 mcdonalds 5.98 2.33 3831 – – –
25 beatles 6.44 2.33 3797 – – –
26 islam 4.68 2.33 – 4514 – –
27 pay 5.30 2.32 627 769 460 499
28 alcohol 5.20 2.32 2787 2617 3752 3600
29 muthaf✫✫kin 3.00 2.31 – – – 4107
30 christ 6.16 2.31 2509 909 4238 1526
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Twitter—living in the now:
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 Quantifying the quotidian.
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Twitter—living in the now:
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 Makes the unexpected believable...

The happiest distribution:
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 Work by Tyler Gray et al., unpublished.
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Individual tweets have all kinds of potential
impact:

 Meme come true: Fleetwood Mac re-enter US
charts thanks to Twitter post (2018/04/04)

 Trump’s tweets (Amazon is a buy?)
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Mentions of CIA on Twitter, end of 2011:

 See story here for example [slate].
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The daily unravelling of the human mind:
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 “Social Scientists wade into the Tweet stream” by
Greg Miller,
Science, 333, 1814–1815, 2011 [28]
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Per word average happiness shift δhavg,r (%)

W
or

d
ra

nk
r
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Text element and context correlate in happiness
scores:
 Compare ambient happiness with text element

happiness.
 Spearman correlation coefficient:𝑟𝑠 ≃ 0.79, 𝑝-value < 10−10.
 An on-average result: says nothing about any

individual sentence.
 Extra random piece: stemming is fallible.
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Ambient happiness:
Word h

(amb)
avg Total Tweets h

(norm)
avg

1. happy +0.430 1.65e+07 (13) +1.104 (1)
2. Christmas +0.404 4.89e+06 (35) +0.953 (3)
3. vegan +0.315 1.84e+05 (90) -0.015 (46)
4. :) +0.274 1.04e+07 (20) +0.630 (12)
5. family +0.251 5.01e+06 (32) +0.716 (7)
6. :-) +0.228 1.67e+06 (60) +0.560 (16)
7. our +0.207 1.41e+07 (16) +0.159 (33)
8. win +0.204 7.98e+06 (26) +0.924 (4)
9. vacation +0.200 9.35e+05 (67) +0.817 (5)
10. party +0.170 6.44e+06 (29) +0.679 (9)
11. love +0.164 4.67e+07 (6) +0.977 (2)
12. friends +0.155 7.67e+06 (27) +0.685 (8)
13. hope +0.149 1.18e+07 (18) +0.515 (19)
14. coffee +0.147 2.80e+06 (46) +0.518 (18)
15. cash +0.146 1.28e+06 (63) +0.601 (14)
16. sun +0.144 2.39e+06 (52) +0.737 (6)
17. income +0.137 5.10e+05 (76) +0.621 (13)
18. summer +0.135 3.00e+06 (43) +0.221 (29)
19. church +0.131 1.81e+06 (58) -0.016 (47)
20. Valentine +0.127 2.47e+05 (84) +0.593 (15)
21. Stephen Colbert +0.126 2.38e+04 (99) +0.001 (45)
22. USA +0.113 2.16e+06 (54) +0.325 (26)
23. ! +0.106 3.44e+06 (40) +0.195 (31)
24. winter +0.101 1.26e+06 (64) +0.050 (43)
25. God +0.099 8.58e+06 (25) +0.468 (20)
26. hot +0.095 7.12e+06 (28) -0.172 (54)
27. ;) +0.094 2.61e+06 (48) +0.326 (25)
28. Jesus +0.094 2.03e+06 (56) +0.247 (28)
29. today +0.092 2.56e+07 (9) +0.126 (36)
30. kiss +0.072 1.70e+06 (59) +0.632 (11)
31. yes +0.056 1.16e+07 (19) +0.321 (27)
32. tomorrow +0.054 1.04e+07 (21) +0.086 (38)
33. you +0.052 1.73e+08 (3) +0.111 (37)
34. heaven +0.041 7.42e+05 (71) +0.674 (10)
35. ;-) +0.041 9.39e+05 (66) +0.395 (23)
36. we +0.035 3.91e+07 (7) +0.146 (34)
37. yesterday +0.033 3.08e+06 (42) -0.168 (53)
38. dark +0.031 1.58e+06 (61) -0.766 (81)
39. ? +0.030 2.32e+06 (53) -0.503 (68)
40. RT +0.028 3.39e+08 (1) -0.443 (66)
41. Michael Jackson +0.018 8.26e+05 (70) -0.213 (59)
42. night +0.014 1.71e+07 (12) +0.074 (40)
43. life +0.012 1.40e+07 (17) +0.422 (22)
44. health -0.000 2.58e+06 (50) +0.447 (21)
45. sex -0.008 3.55e+06 (39) +0.542 (17)
46. work -0.010 1.84e+07 (11) -0.174 (56)
47. girl -0.010 1.01e+07 (22) +0.331 (24)
48. boy -0.026 4.93e+06 (33) +0.062 (41)
49. I -0.048 3.08e+08 (2) -0.062 (49)
50. commute -0.048 9.01e+04 (94) -0.206 (57)

Word h
(amb)
avg Total Tweets h

(norm)
avg

51. snow -0.051 2.60e+06 (49) +0.083 (39)
52. Jon Stewart -0.052 5.21e+04 (97) -0.024 (48)
53. school -0.056 9.26e+06 (24) +0.050 (42)
54. Lehman Brothers -0.078 8.50e+03 (100) -0.721 (79)
55. them -0.090 1.54e+07 (15) -0.280 (60)
56. right -0.090 1.92e+07 (10) +0.126 (35)
57. woman -0.115 2.54e+06 (51) +0.202 (30)
58. left -0.118 4.89e+06 (34) -0.383 (63)
59. me -0.119 1.44e+08 (4) +0.160 (32)
60. election -0.127 5.60e+05 (75) -0.306 (61)
61. Sarah Palin -0.128 2.26e+05 (87) -0.681 (76)
62. no -0.132 9.51e+07 (5) -1.415 (90)
63. rain -0.134 3.23e+06 (41) +0.050 (44)
64. climate -0.135 3.64e+05 (80) -0.160 (51)
65. gay -0.152 2.73e+06 (47) -0.552 (72)
66. lose -0.157 2.06e+06 (55) -1.181 (86)
67. they -0.159 2.74e+07 (8) -0.208 (58)
68. oil -0.162 1.38e+06 (62) -0.411 (65)
69. cold -0.162 3.67e+06 (36) -0.546 (71)
70. I feel -0.173 5.17e+06 (31) -0.129 (50)
71. man -0.175 1.59e+07 (14) -0.163 (52)
72. Republican -0.181 2.30e+05 (86) -0.539 (70)
73. sad -0.187 3.56e+06 (38) -1.366 (89)
74. gas -0.193 1.02e+06 (65) -0.471 (67)
75. economy -0.203 6.09e+05 (73) -0.525 (69)
76. Obama -0.205 2.98e+06 (44) -0.173 (55)
77. Democrat -0.226 9.32e+04 (93) -0.384 (64)
78. Congress -0.231 3.92e+05 (79) -0.580 (74)
79. hell -0.250 6.27e+06 (30) -1.551 (96)
80. sick -0.262 3.58e+06 (37) -1.630 (97)
81. Muslim -0.262 2.15e+05 (88) -0.569 (73)
82. war -0.270 1.96e+06 (57) -2.040 (100)
83. Pope -0.277 1.52e+05 (91) -0.316 (62)
84. hate -0.282 9.65e+06 (23) -1.520 (94)
85. Glenn Beck -0.282 1.14e+05 (92) -0.776 (82)
86. Islam -0.299 1.87e+05 (89) -0.710 (78)
87. George Bush -0.333 3.23e+04 (98) -0.747 (80)
88. Goldman Sachs -0.337 5.27e+04 (96) -0.984 (84)
89. depressed -0.339 2.81e+05 (82) -1.541 (95)
90. Senate -0.340 4.48e+05 (78) -0.601 (75)
91. BP -0.355 5.82e+05 (74) -0.902 (83)
92. gun -0.367 6.81e+05 (72) -1.476 (93)
93. drugs -0.382 5.10e+05 (77) -1.452 (91)
94. headache -0.437 8.57e+05 (69) -1.881 (98)
95. :-( -0.455 3.40e+05 (81) -1.174 (85)
96. :( -0.472 2.89e+06 (45) -1.288 (88)
97. Afghanistan -0.703 2.74e+05 (83) -1.458 (92)
98. mosque -0.709 6.98e+04 (95) -0.694 (77)
99. flu -0.735 9.01e+05 (68) -1.912 (99)
100. Iraq -0.773 2.39e+05 (85) -1.282 (87)
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Simpson lexical size, 𝑁S:
Word h

(amb)
avg Total Tweets h

(norm)
avg

1. happy +0.430 1.65e+07 (13) +1.104 (1)
2. Christmas +0.404 4.89e+06 (35) +0.953 (3)
3. vegan +0.315 1.84e+05 (90) -0.015 (46)
4. :) +0.274 1.04e+07 (20) +0.630 (12)
5. family +0.251 5.01e+06 (32) +0.716 (7)
6. :-) +0.228 1.67e+06 (60) +0.560 (16)
7. our +0.207 1.41e+07 (16) +0.159 (33)
8. win +0.204 7.98e+06 (26) +0.924 (4)
9. vacation +0.200 9.35e+05 (67) +0.817 (5)
10. party +0.170 6.44e+06 (29) +0.679 (9)
11. love +0.164 4.67e+07 (6) +0.977 (2)
12. friends +0.155 7.67e+06 (27) +0.685 (8)
13. hope +0.149 1.18e+07 (18) +0.515 (19)
14. coffee +0.147 2.80e+06 (46) +0.518 (18)
15. cash +0.146 1.28e+06 (63) +0.601 (14)
16. sun +0.144 2.39e+06 (52) +0.737 (6)
17. income +0.137 5.10e+05 (76) +0.621 (13)
18. summer +0.135 3.00e+06 (43) +0.221 (29)
19. church +0.131 1.81e+06 (58) -0.016 (47)
20. Valentine +0.127 2.47e+05 (84) +0.593 (15)
21. Stephen Colbert +0.126 2.38e+04 (99) +0.001 (45)
22. USA +0.113 2.16e+06 (54) +0.325 (26)
23. ! +0.106 3.44e+06 (40) +0.195 (31)
24. winter +0.101 1.26e+06 (64) +0.050 (43)
25. God +0.099 8.58e+06 (25) +0.468 (20)
26. hot +0.095 7.12e+06 (28) -0.172 (54)
27. ;) +0.094 2.61e+06 (48) +0.326 (25)
28. Jesus +0.094 2.03e+06 (56) +0.247 (28)
29. today +0.092 2.56e+07 (9) +0.126 (36)
30. kiss +0.072 1.70e+06 (59) +0.632 (11)
31. yes +0.056 1.16e+07 (19) +0.321 (27)
32. tomorrow +0.054 1.04e+07 (21) +0.086 (38)
33. you +0.052 1.73e+08 (3) +0.111 (37)
34. heaven +0.041 7.42e+05 (71) +0.674 (10)
35. ;-) +0.041 9.39e+05 (66) +0.395 (23)
36. we +0.035 3.91e+07 (7) +0.146 (34)
37. yesterday +0.033 3.08e+06 (42) -0.168 (53)
38. dark +0.031 1.58e+06 (61) -0.766 (81)
39. ? +0.030 2.32e+06 (53) -0.503 (68)
40. RT +0.028 3.39e+08 (1) -0.443 (66)
41. Michael Jackson +0.018 8.26e+05 (70) -0.213 (59)
42. night +0.014 1.71e+07 (12) +0.074 (40)
43. life +0.012 1.40e+07 (17) +0.422 (22)
44. health -0.000 2.58e+06 (50) +0.447 (21)
45. sex -0.008 3.55e+06 (39) +0.542 (17)
46. work -0.010 1.84e+07 (11) -0.174 (56)
47. girl -0.010 1.01e+07 (22) +0.331 (24)
48. boy -0.026 4.93e+06 (33) +0.062 (41)
49. I -0.048 3.08e+08 (2) -0.062 (49)
50. commute -0.048 9.01e+04 (94) -0.206 (57)

Word h
(amb)
avg Total Tweets h

(norm)
avg

51. snow -0.051 2.60e+06 (49) +0.083 (39)
52. Jon Stewart -0.052 5.21e+04 (97) -0.024 (48)
53. school -0.056 9.26e+06 (24) +0.050 (42)
54. Lehman Brothers -0.078 8.50e+03 (100) -0.721 (79)
55. them -0.090 1.54e+07 (15) -0.280 (60)
56. right -0.090 1.92e+07 (10) +0.126 (35)
57. woman -0.115 2.54e+06 (51) +0.202 (30)
58. left -0.118 4.89e+06 (34) -0.383 (63)
59. me -0.119 1.44e+08 (4) +0.160 (32)
60. election -0.127 5.60e+05 (75) -0.306 (61)
61. Sarah Palin -0.128 2.26e+05 (87) -0.681 (76)
62. no -0.132 9.51e+07 (5) -1.415 (90)
63. rain -0.134 3.23e+06 (41) +0.050 (44)
64. climate -0.135 3.64e+05 (80) -0.160 (51)
65. gay -0.152 2.73e+06 (47) -0.552 (72)
66. lose -0.157 2.06e+06 (55) -1.181 (86)
67. they -0.159 2.74e+07 (8) -0.208 (58)
68. oil -0.162 1.38e+06 (62) -0.411 (65)
69. cold -0.162 3.67e+06 (36) -0.546 (71)
70. I feel -0.173 5.17e+06 (31) -0.129 (50)
71. man -0.175 1.59e+07 (14) -0.163 (52)
72. Republican -0.181 2.30e+05 (86) -0.539 (70)
73. sad -0.187 3.56e+06 (38) -1.366 (89)
74. gas -0.193 1.02e+06 (65) -0.471 (67)
75. economy -0.203 6.09e+05 (73) -0.525 (69)
76. Obama -0.205 2.98e+06 (44) -0.173 (55)
77. Democrat -0.226 9.32e+04 (93) -0.384 (64)
78. Congress -0.231 3.92e+05 (79) -0.580 (74)
79. hell -0.250 6.27e+06 (30) -1.551 (96)
80. sick -0.262 3.58e+06 (37) -1.630 (97)
81. Muslim -0.262 2.15e+05 (88) -0.569 (73)
82. war -0.270 1.96e+06 (57) -2.040 (100)
83. Pope -0.277 1.52e+05 (91) -0.316 (62)
84. hate -0.282 9.65e+06 (23) -1.520 (94)
85. Glenn Beck -0.282 1.14e+05 (92) -0.776 (82)
86. Islam -0.299 1.87e+05 (89) -0.710 (78)
87. George Bush -0.333 3.23e+04 (98) -0.747 (80)
88. Goldman Sachs -0.337 5.27e+04 (96) -0.984 (84)
89. depressed -0.339 2.81e+05 (82) -1.541 (95)
90. Senate -0.340 4.48e+05 (78) -0.601 (75)
91. BP -0.355 5.82e+05 (74) -0.902 (83)
92. gun -0.367 6.81e+05 (72) -1.476 (93)
93. drugs -0.382 5.10e+05 (77) -1.452 (91)
94. headache -0.437 8.57e+05 (69) -1.881 (98)
95. :-( -0.455 3.40e+05 (81) -1.174 (85)
96. :( -0.472 2.89e+06 (45) -1.288 (88)
97. Afghanistan -0.703 2.74e+05 (83) -1.458 (92)
98. mosque -0.709 6.98e+04 (95) -0.694 (77)
99. flu -0.735 9.01e+05 (68) -1.912 (99)
100. Iraq -0.773 2.39e+05 (85) -1.282 (87)
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Public Opinion Polling with Twitter

Emily M. Cody,1, ∗ Andrew J. Reagan,1, † Peter Sheridan Dodds,1, ‡ and Christopher M. Danforth1, §

1Department of Mathematics & Statistics, Vermont Complex Systems Center,

Computational Story Lab, & the Vermont Advanced Computing Core,

The University of Vermont, Burlington, VT 05401.

(Dated: August 9, 2016)

Solicited public opinion surveys reach a limited subpopulation of willing participants and are
expensive to conduct, leading to poor time resolution and a restricted pool of expert-chosen survey
topics. In this study, we demonstrate that unsolicited public opinion polling through sentiment
analysis applied to Twitter correlates well with a range of traditional measures, and has predictive
power for issues of global importance. We also examine Twitter’s potential to canvas topics seldom
surveyed, including ideas, personal feelings, and perceptions of commercial enterprises. Two of our
major observations are that appropriately filtered Twitter sentiment (1) predicts President Obama’s
job approval three months in advance, and (2) correlates well with surveyed consumer sentiment.
To make possible a full examination of our work and to enable others’ research, we make public over
10,000 data sets, each a seven-year series of daily word counts for tweets containing a frequently
used search term.

I. INTRODUCTION

Public opinion data can be used to determine pub-
lic awareness, to predict outcomes of events, and to infer
characteristics of human behaviors. Indeed, readily avail-
able public opinion data is valuable to researchers, poli-
cymakers, marketers, and many other groups, but is dif-
ficult to generate. Solicited polls can be expensive, pro-
hibitively time consuming, and may only reach a limited
number of people on a limited number of days. Polling ac-
curacy evidently relies on accessing representative popu-
lations and high response rates. Poor temporal sampling
will weaken any poll’s value as individual opinions vary
in time and in response to social influence[12, 43].

With the continued rise of social media as a communi-
cation platform, the ability to construct unsolicited pub-
lic opinion polls has become a possibility for researchers
though parsing of massive text-based datasets. Social
media provides extraordinary access to public expressions
in real time, and has been shown to play a role in human
behavior [23].

With its open platform, Twitter has proved to be a
boon for many research enterprises [37], having been used
to explore a variety of social and linguistic phenomena
[10, 30, 31]; harnessed as a data source to create an
earthquake reporting system in Japan [42]; made pos-
sible detection of influenza outbreaks [7]; and used to
analyze overall public health [38]. Predictions made us-
ing Twitter have focused on elections [22, 44], the spread
of disease [41], crime [46], and the stock market [35].
These studies demonstrate a proof-of-concept, avoiding
the more difficult task of building operational systems
for continued forecasting.

∗ emily.cody@uvm.edu
† andrew.reagan@uvm.edu
‡ peter.dodds@uvm.edu
§ chris.danforth@uvm.edu

We must be clear that for all its promise, prediction
via social media is difficult. Indeed, we have seen a num-
ber of high profile failures such as Google Flu trends [29]
and various attempts to predict election outcomes [21].
OpinionFinder was used in [9] to evaluate tweets contain-
ing direct expressions of emotion as in ‘I feel’, or ‘I am
feeling’, and shown not to have predictive power for the
stock market

Despite limitations which we address later in Sec. IV,
Twitter data reveals an unprecedented view of human
behavior and opinion related to major issues of global
importance [32]. In a previous study [14], we analyzed
the sentiment surrounding climate change conversation
on Twitter. We discovered that sentiment varies in re-
sponse to climate change news and events, and that the
conversation is dominated by activists. Another study
by Helmuth et al. analyzed tweets by United States Sen-
ators to determine which research oriented science orga-
nizations and which senators are best at getting science-
related findings into the hands of the general public [24].
Twitter is also often used to analyze public opinion of
political issues [8, 17, 45], and in several previous works
as an opinion polling resource. In an application using
neural networks called TrueHappiness, users enter one of
300,000 words to obtain a sentiment estimation based on
this word’s usage in a massive Wikipedia data set, and
on previously collected sentiment scores for 10,222 words
on Amazon’s Mechanical Turk [16, 18], hereafter referred
to as the labMT word set In another application called
RACCOON, users are invited to enter a query term and
a rough sketch to obtain words or phrases on Twitter
that correlate well with the inputs [6]. Google Correlate
is a similar tool that discovers Google searches for terms
or phrases that match well with real-world time series [3].
Financial term searches from Google Trends was shown
by Preis et al. [39] to correlate with Dow Jones economic
indices.

We argue that Twitter is a better source for opin-
ion mining than Wikipedia, used in TrueHappiness, due
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Twitter’s Feels predict Obama’s Approval Rating:
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Ambient happiness for “Obama”:
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Ambient happiness for “Walmart”:

Free gift card 

Employee trampled 
Tracy Morgan sues 
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Ambient happiness for “snow”:

B C
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Dunbar number action:
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so much.

 Unpublished.
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392 C.A. Bliss  et al. / Journal of  Computational Science 3 (2012)  388–397

Fig.  5.  A visualization of the 162,445 nodes  in  the reciprocal reply network for the week  beginning December 9,  2008  (Week 14)  is depicted. Node colors  represent  connected

components,  a total of  15,342,  with  the  giant component (shown in blue)  comprising 76  % of  all nodes. The  size  of each node is proportional  to its degree. The  visualization

was  made  using  Gephi [39]. (For interpretation  of  the  references to color in  this  figure  legend, the  reader  is referred to the web  version of the  article.)

from a  power  law using the Kolmogorov–Smirnov  test and find  no

evidence against  the null  hypothesis for the  week (D =  2.28 ×  10−2,

p  =  0.095,  n =  203,852). We find  the  same  exponent and  statistically

stronger  evidence of  a power law for a sample  month  (see  Fig.  A1).

This  suggests  that these distributions’  tails may  be  fit  by a power

law.

3.2. Measuring  happiness

The application of  the  hedonometer  gives reasonable  results

when  applied  to  a large body  of text, but  can be  misleading  when

applied  to  smaller  units of language  [11]. To provide a sense of  how

sensitive  this  measure is  to  the  number of  labMT  words  posted

by  users, we  sampled  happiness–happiness pairs, (hvi
, hvj

)  whose

respective users, vi and vj , had  posted at  least  ˛  total  labMT  words

during  a  sample week (week  beginning January  27, 2009). For  these

users, we  compute happiness  assortativity  and show the varia-

tion with ˛  in Fig. 8. For �h  =  0, there is less variation due  to

the  numerous words  centered around  the mean happiness score

regardless of  the threshold, ˛.  Tuning  both  parameters too  high

results in  few  sampled words  and corrupts the interpretation of  the

results.

Figs. 9 and  10  reveal a weakening  happiness–happiness corre-

lation  for  users in the week networks  as the path  length between

nodes  increases.  All  correlations, for each  week, were  significant

(p  <  10−10). This  suggests  that  the  network  is  assortative  with

“Twitter reciprocal reply networks exhibit
assortativity with respect to happiness”
Bliss, Kloumann, Harris, Danforth, and Dodds.
Journal of Computational Science, 3, 388–397,
2012. [1]

 Decay in happiness correlation in social network.

 Not a test of contagion …
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The very surprising tunable hedonometer:
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Online instrument: hedonometer.org

 Machine: @andyreagan

 Planned happiness versus tragedies.

hedonometer.org

 Machine: @andyreagan
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hedonometer.org—word shifts:
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hedonometer.org—word shifts:
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hedonometer.org—word shifts:
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Make your own:
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Quokka Labs
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Abstract

The emergence and global adoption of social media has rendered possible the

real-time estimation of population-scale sentiment, an extraordinary capacity which

has profound implications for our understanding of human behavior. Given the

growing assortment of sentiment-measuring instruments, it is imperative to

understand which aspects of sentiment dictionaries contribute to both their

classification accuracy and their ability to provide richer understanding of texts. Here,

we perform detailed, quantitative tests and qualitative assessments of 6

dictionary-based methods applied to 4 different corpora, and briefly examine a

further 20 methods. We show that while inappropriate for sentences,

dictionary-based methods are generally robust in their classification accuracy for

longer texts. Most importantly they can aid understanding of texts with reliable and

meaningful word shift graphs if (1) the dictionary covers a sufficiently large portion of

a given text’s lexicon when weighted by word usage frequency; and (2) words are

scored on a continuous scale.

Keywords: sentiment; sentiment analysis; sentiment dictionaries; language; natural

language processing; data visualization; text visualization

1 Introduction

As we move further into what might be called the Sociotechnocene — with increasingly

more interactions, decisions, and impact being made by globally distributed people and

algorithms — the myriad human social dynamics that have shaped our history have be-

come far more visible and measurable than ever before. Of the many ways we are now

able to characterize social systems in microscopic detail, sentiment detection for pop-

ulations at all scales has become a prominent research arena. Attempts to leverage on-

line expression for sentiment mining include prediction of stock markets [–], assessing

responses to advertising, real-time monitoring of global happiness [], and measuring a

health-related quality of life []. The diverse set of instruments produced by this work

now provide indicators that help scientists understand collective behavior, inform pub-

lic policy makers, and, in industry, gauge the sentiment of public response to marketing

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

“Sentiment analysis methods for understanding
large-scale texts: A case for using continuum-scored
words and word shift graphs”
Reagan, Tivnan, Williams, Danforth, and Dodds.
EPJ Data Science, 6, , 2017. [31]

 Upshots: (1) do use wordshifts, and (2) do not use LIWC ...
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Happiness in Manhattan:

See Blog post on compstorylab.org

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
122 of 155

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
123 of 155

The Geography of Happiness:

 Mitchell et al., PLoS ONE, 2013. [29]

 It’s a paper that tweets: @geographyofhapp
 Online Appendices
 Much interesting and amusing press ...

 Online, interactive US map at hedonometer.org
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Online, interactive US map at hedonometer.org
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Online, interactive US map at hedonometer.org
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Happiness: Average word happiness calculated using
LabMT 1.0 and geotagged tweets from 2011

BRFSS score: Average score from the Behavioral Risk
Factor Surveillance System survey (2005−2008)

Gallup: Well−being index, based on survey data on life
evaluation, emotional health, physical health, healthy behavior,
work environment and basic access (2011)

Peace index: Composite index of Homicides per
100,000 people, violent crimes per 100,000 people, Jailed
population per 100,000 people, Police officers per 100,000
people,ease of access to small arms (2011)

AHR score: America’s Health Ranking, composite index
of Behavior, Community & Environment, Policy and Clinical Care
metrics (2011)

Gun violence: Shootings per 100,000 people (2011)

FIG. 2: Scatter plot matrix of correlations between different well-being measures. Points are colored by p-value, statistically

insignificant correlations above p = 0.01 are shown in red. Spearman’s r and p-value are reported in the inset.
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Happiest Cities:

6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.2

Asheville, NC

Amarillo, TX

Porterville, CA

Boulder, CO

Nashua, NH−−MA

Lafayette, CO

Logan, UT

Gilroy, CA

Davis, CA

Santa Rosa, CA

San Clemente, CA

Simi Valley, CA

Longmont, CO

Idaho Falls, ID

Napa, CA

havg
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Saddest Cities (Sorry Beaumont):

5.88 5.89 5.9 5.91 5.92 5.93

Port Arthur, TX

Waterbury, CT

Montgomery, AL

Dalton, GA

Houma, LA

Alexandria, LA

Texarkana, TX

Lima, OH

Texas City, TX

Rapid City, SD

Flint, MI

Albany, GA

Shreveport, LA

Monroe, LA

Beaumont, TX

havg
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Blog post: Where is the happiest city in the US?
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example. Of course, individuals observed to have a large radius could
be tourists, or they could have a long commute. Nevertheless, we find
no statistical evidence for this trend. Comparing individuals whose
average location falls in an area of small vs. large tweet density, we
observe little difference in their average gyradii (not shown).
Moving beyond these four urban areas and looking at 472 cities in

the U.S., we do find a moderate correlation between the mean gyr-
adius and city land area (Pearson r5 0.24, p5 23 1027); Fig. S3 and
Table S4 show the top and bottom cities with respect to gyradii.
To investigate the shape of human mobility, we normalize each

individual’s trajectory to a common reference frame (see Methods).
In Fig. 3, we plot a heat map of the probability density function of the
normalized locations of all individuals. For the purposes of this dis-
cussion, we will refer to deviations from an individual’s expected
location in the normalized reference frame as occurring in the direc-
tions north, south, east, and west. Several features of the map reveal
interesting patterns of movement. First, the overall west-to-east tear-
drop shape of the contours demonstrates that people travel predo-
minantly along their principle axis, namely heading west from the
origin along y/sy 5 0, with deviations in the orthogonal direction
becoming shorter and less frequent as they move farther away from
the origin.
Second, the appearance of two spatially distinct yellow regions

separated by a less populated green region suggests that people spend
the vast majority of their time near two locations. We refer to these
locations as the work and home locales8, where the home locale is

centered on the dark red region roughly 1 standard deviation east of
the origin, and the work locale is centered approximately 2 standard
deviations west of the origin. These locations highlight the bimodal
distribution of principal axis corridor messages (Fig. 4A).
Finally, a clear asymmetry is observed about the x/sx 5 0 axis

indicating the increasingly isotropic variation in movement sur-
rounding the home locale, as compared to the work locale. We inter-
pret this to be a reflection of the tendency to bemore familiar with the
surroundings of one’s home, and to explore these surroundings in a
more social context (Fig. 4B). The symmetry observed when reflect-
ing about the y/sy 5 0-axis is strong, demonstrating the remarkable
consistency of the movement patterns revealed by the data.
In an effort to characterize the temporal and spatial structure

observed in Fig. 3, in Fig. 5 we examine locations frequently visited
by the most active members of our data set, namely the roughly 300
individuals for whom we received at least 800 geolocated messages.
We suspect that these individuals enabled the geolocating feature to
be on by default for all messages, as implied by the roughly O(104)
geolocated messages suggested by the gardenhose rate. In Fig. 5, we
focus on these individuals specifically; of all participants, their pro-
lific tweet activity most accurately reflects their movement profile.
The main figure shows the probability of tweeting from each

locale, with locales ordered by rank, for each individual8. We find

that P H
að Þ
i

� �

!R H
að Þ
i

� �

{1:3

which is approximately a Zipf distri-

bution29. This finding indicates that regardless of the number of tweet

Figure 2 | The gyradius, calculated for each individual, is shown for each tweet authored in four example cities. Tweet activity reflects population

density, with urban areas clearly visible in each city. Histograms of gyradii for each city are shown in Fig. S1, alongwith tweet locations colored by distance

from expected location (Fig. S2). The number of tweets shown for each city isN5 56650 (Chicago),N5 103,213 (Los Angeles),N5 42,089 (New York

City), and N 5 45,754 (San Francisco). Note that higher resolution versions of the four panels above can be found online28. Maps were created using

Matlab.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2625 | DOI: 10.1038/srep02625 3

“Happiness and the Patterns of Life: A
Study of Geolocated Tweets”
Frank, Mitchell, Dodds, Danforth, and
Dodds.
Nature Scientific Reports, 3, 2625, 2013. [14]

Table 1 | Example language assessment by Mechanical Turk
(labMT)27,30 words and scores. Words with neutral scores 4

word

Figure 6 | (A) Average happiness of words written as a function of distance from an author’s expected location, with tweets grouped into ten equally

populated bins. Expressed happiness grows logarithmically with distance distance from expected location. (B) A similar trend is observed when

individuals are grouped into ten equally populated bins according to their gyradius. Both trends persist through variations in binning and different

measures of mobility.

www.nature.com/

SCIENTIFIC

 We grow fonder as we wander.
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Anger:
word avg 𝜎
war 4.16 1.01

torture 3.92 1.16
murdered 3.84 1.14

motherf✫✫ker 3.82 1.29
anger 3.80 1.26
killer 3.78 1.38
fury 3.63 1.56

bombing 3.58 1.39⋮ ⋮ ⋮
play 1.06 0.31
idea 1.06 0.31

daughter-in-law 1.06 0.24
piano 1.06 0.31
stars 1.06 0.24
tasty 1.04 0.20

thankful 1.02 0.14
happy 1.00 0.00

Disgust:
word avg 𝜎
war 4.16 1.01

tortured 3.74 1.28
whore 3.67 1.39

murdered 3.66 1.41
asshole 3.56 1.28

killer 3.55 1.50
motherf✫✫ker 3.54 1.36

died 3.48 1.43
holocaust 3.40 1.64⋮ ⋮ ⋮

hawaii 1.06 0.24
arts 1.06 0.42
joy 1.04 0.20

relaxing 1.04 0.28
foundation 1.04 0.20

relax 1.04 0.20
piano 1.04 0.28

presence 1.00 0.00

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
140 of 155

Fear:
word avg 𝜎
war 4.20 1.02

tortured 4.18 1.39
death 4.18 1.21
killer 4.11 1.37

murdered 4.06 1.10
jail 3.90 1.08⋮ ⋮ ⋮

banana 1.08 0.34
right 1.08 0.34

properties 1.08 0.27
cute 1.06 0.24
topic 1.06 0.24
active 1.06 0.24

wonderful 1.06 0.31
dear 1.06 0.31
bath 1.02 0.14

Surprise:
word avg 𝜎

motherf✫✫ker 3.93 1.35
murdered 3.66 1.37
bombing 3.52 1.49

death 3.50 1.51
fatal 3.50 1.43

lottery 3.46 1.54
torture 3.42 1.54

slap 3.41 1.49
died 3.38 1.47

earthquake 3.32 1.54⋮ ⋮ ⋮
flag 1.30 0.67

doors 1.30 0.64
b/c 1.28 0.75

stuart 1.26 0.63
pro 1.24 0.59

beans 1.24 0.59
johnson 1.18 0.65
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angerdisgust

sadness

fear surprise

happiness

earthquake:

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
142 of 155

grreww

wah

eek wow

ha!

earthquake:
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earthquake:

 Images from Scott McCloud’s “Making Comics.” [27]

http://www.uvm.edu/pdodds/research/papers/others/everything/frank2013a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/frank2013a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/frank2013a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds


laughter: war: rotting:

tortured: lottery: veterans:

laughter: war: rotting:

tortured: lottery: veterans:

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
146 of 155

References I

[1] C. A. Bliss, I. M. Kloumann, K. D. Harris, C. M.
Danforth, and P. S. Dodds.
Twitter reciprocal reply networks exhibit
assortativity with respect to happiness.
Journal of Computational Science, 3:388–397,
2012. pdf

[2] M. M. Bradley and P. J. Lang.
Affective norms for english words (anew): Stimuli,
instruction manual and affective ratings.
Technical report c-1, University of Florida,
Gainesville, FL, 1999.

[3] H. Chang.
Inventing temperature: Measurement and
scientific progress.
Oxford University Press, 2004.

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
147 of 155

References II

[4] E. M. Cody, A. J. Reagan, P. S. Dodds, and C. M.
Danforth.
Public opinion polling with Twitter, 2016.
Available online at
https://arxiv.org/abs/1608.02024. pdf

[5] T. Conner Christensen, L. Feldman Barrett,
E. Bliss-Moreau, K. Lebo, and C. Kaschub.
A practical guide to experience-sampling
procedures.
Journal of Happiness Studies, 4:53–78, 2003.

[6] M. Csikszentmihalyi.
Flow.
Harper & Row, New York, 1990.

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
148 of 155

References III

[7] M. Csikszentmihalyi, R. Larson, and S. Prescott.
The ecology of adolescent activity and
experience.
Journal of Youth and Adolescence, 6:281–294,
1977.

[8] E. Diener and M. Y. Chan.
Happy people live longer: Subjective well-being
contributes to health and longevity.
Applied Psychology: Health and Well-Being,
3:1–43, 2011. pdf

[9] P. S. Dodds and C. M. Danforth.
Measuring the happiness of large-scale written
expression: Songs, blogs, and presidents.
Journal of Happiness Studies, 11(4):441–456,
2009. pdf

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
149 of 155

References IV

[10] P. S. Dodds and C. M. Danforth.
Measuring the happiness of large-scale written
expression: songs, blogs, and presidents.
Journal of Happiness Studies, 2009.
doi:10.1007/s10902-009-9150-9. pdf

[11] P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A.
Bliss, and C. M. Danforth.
Temporal patterns of happiness and information
in a global social network: Hedonometrics and
Twitter.
PLoS ONE, 6:e26752, 2011. pdf

[12] R. A. Easterlin.
Income and happiness: towards a unified theory.
The Economic Journal, 111:465–484, 2001. pdf

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2012/bliss2012a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
https://arxiv.org/abs/1608.02024
http://www.uvm.edu/pdodds/research/papers/others/2016/cody2016b.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2011/diener2011a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2009/dodds2009c.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2009/dodds2009b.pdf
http://www.uvm.edu/pdodds/research/papers/others/2011/dodds2011e.pdf
http://www.uvm.edu/pdodds/research/papers/others/2001/easterlin2001a.pdf


COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
150 of 155

References V

[13] R. A. Easterlin.
Explaining happiness.
Proc. Natl. Acad. Sci., 100:11176–11183, 2003.
pdf

[14] M. R. Frank, L. Mitchell, P. S. Dodds, and C. M.
Danforth.
Happiness and the patterns of life: A study of
geolocated Tweets.
Nature Scientific Reports, 3:2625, 2013. pdf

[15] H. Gunaratana.
Mindfulness in Plain English.
Wisdom Publications, Somerville, Massachusetts,
1992.

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
151 of 155

References VI

[16] E. Hoffer.
The Passionate State of Mind: And Other
Aphorisms.
Buccaneer Books, 1954.

[17] A. R. Jensen.
Bias in mental testing.
1980.

[18] W. T. Jones.
The Classical Mind.
Harcourt, Brace, Jovanovich, New York, 1970.

[19] D. Kahneman, A. B. Krueger, D. A. Schkade,
N. Schwarz, and A. A. Stone.
A survey method for characterizing daily life
experience: The day reconstruction method.
Science, 306(5702):1776–1780, 2004. pdf

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
152 of 155

References VII
[20] K. Kennedy Townsend.

The Pursuit of Happiness: What the Founders
meant—And didn’t.
The Atlantic, 2011.
http://www.theatlantic.com/business/archive/2011/06/the-
pursuit-of-happiness-what-the-founders-meant-
and-didnt/240708/.

[21] K. Kennedy Townsend.
What makes life worthwhile? GDP won’t tell you.
The Atlantic, 2011.
http://www.theatlantic.com/business/archive/2011/06/what-
makes-life-worthwhile-gdp-wont-tell-
you/240343/.

[22] M. A. Killingsworth and D. T. Gilbert.
A wondering mind is an unhappy mind.
Science Magazine, 330:932, 2010. pdf

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
153 of 155

References VIII

[23] I. M. Kloumann, C. M. Danforth, K. D. Harris, C. A.
Bliss, and P. S. Dodds.
Positivity of the English language.
PLoS ONE, 7:e29484, 2012. pdf

[24] R. Layard.
Happiness.
The Penguin Press, London, 2005.

[25] S. Lyubomirsky.
The How of Happiness.
The Penguin Press, New York, 2007.

[26] C. Martinelli and S. W. Parker.
Deception and misreporting in a social program.
forthcoming in Journal of the European Economic
Association, 2007. pdf

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
154 of 155

References IX

[27] S. McCloud.
Making Comics.
William Morrow, 2006.

[28] G. Miller.
Social Scientists wade into the Tweet stream.
Science Magazine, 333:1814–1815, 2011. pdf

[29] L. Mitchell, M. R. Frank, K. D. Harris, P. S. Dodds,
and C. M. Danforth.
The geography of happiness: Connecting Twitter
sentiment and expression, demographics, and
objective characteristics of place.
PLoS ONE, 8:e64417, 2013. pdf

[30] C. Osgood, G. Suci, and P. Tannenbaum.
The Measurement of Meaning.
University of Illinois, Urbana, IL, 1957.

COcoNuTS
@networksvox

Happiness

Introduction

Measurement

Happiness
Some motivation

Measuring emotional
content

Hedonometer

Analysis

Songs

Blogs

SOTU

Geography

Movement

Other Emotions

References

.
.
.
.
.

.
155 of 155

References X

[31] A. J. Reagan, B. F. Tivnan, J. R. Williams, C. M.
Danforth, and P. S. Dodds.
Sentiment analysis methods for understanding
large-scale texts: A case for using
continuum-scored words and word shift graphs.
EPJ Data Science, 6, 2017. pdf

[32] E. Sandhaus.
The New York Times Annotated Corpus.
Linguistic Data Consortium, Philadelphia, 2008.

[33] D. Sobel.
Longitude: The True Story of a Lone Genius Who
Solved the Greatest Scientific Problem of His
Time.
Bloomsbury Publishing, US.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2003/easterlin2003a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2013/frank2013a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2004/kahneman2004a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.theatlantic.com/business/archive/2011/06/the-pursuit-of-happiness-what-the-founders-meant-and-didnt/240708/
http://www.theatlantic.com/business/archive/2011/06/the-pursuit-of-happiness-what-the-founders-meant-and-didnt/240708/
http://www.theatlantic.com/business/archive/2011/06/the-pursuit-of-happiness-what-the-founders-meant-and-didnt/240708/
http://www.theatlantic.com/business/archive/2011/06/what-makes-life-worthwhile-gdp-wont-tell-you/240343/
http://www.theatlantic.com/business/archive/2011/06/what-makes-life-worthwhile-gdp-wont-tell-you/240343/
http://www.theatlantic.com/business/archive/2011/06/what-makes-life-worthwhile-gdp-wont-tell-you/240343/
http://www.uvm.edu/pdodds/research/papers/others/2010/killingsworth2010a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2012/kloumann2012a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2007/martinelli2007a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2011/miller2011a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2013/mitchell2013a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2017/reagan2017a.pdf

	Introduction
	Measurement
	Happiness
	Some motivation
	Measuring emotional content
	Hedonometer
	Analysis
	Songs
	Blogs
	SOTU
	Geography
	Movement
	Other Emotions

	References

