Generating Functions and Networks

Last updated: 2019/01/14, 22:05:08
Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

UVM

つac 1 of 60

These slides are brought to you by:

COcoNuTS
@networksvox
Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

These slides are also brought to you by:

Special Guest Executive Producer

0 On Instagram at pratchett the_cat $\sqrt{\top}$

Outline

Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

References
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

Outline

COcoNuTS @networksvox
Generating Functions and Networks

Generating Functions Definitions

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate each element with a distinct function or other mathematical object.

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate each element with a distinct function or other mathematical object.
Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate
each element with a distinct function or other mathematical object.
R Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results

A few examples
Average Component Size
References

UVM

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate
each element with a distinct function or other mathematical object.
\&
Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

R Roughly: transforms a vector in R^{∞} into a function defined on R^{1}.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

vym $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$
つac 8 of 60

Generatingfunctionology ${ }^{[1]}$

Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate
each element with a distinct function or other mathematical object.
©
Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

The generating function (g.f.) for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

R Roughly: transforms a vector in R^{∞} into a function defined on R^{1}.
Related to Fourier, Laplace, Mellin, ...

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM
$\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$

Simple examples：

Rolling dice and flipping coins：

$p_{k}^{(\odot)}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$.

$$
F^{(\odot)}(x)=\sum_{k=1}^{6} p_{k}^{(\odot)} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)
$$

Generating
 Functions
 Definitions
 Basic Properties
 Giant Component Condition
 Component sizes
 Useful results
 Size of the Giant
 Component
 A few examples
 Average Component Size
 References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つのく 9 of 60

Simple examples：

Rolling dice and flipping coins：

哏 $p_{k}^{(*)}=\mathbf{P r}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$ ．

$$
F^{(\odot)}(x)=\sum_{k=1}^{6} p_{k}^{(\odot)} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)
$$

．$p_{0}^{(\text {coin })}=\operatorname{Pr}($ head $)=1 / 2, p_{1}^{(\text {coin })}=\operatorname{Pr}($ tail $)=1 / 2$ ．

$$
F^{(\mathrm{coin})}(x)=p_{0}^{(\mathrm{coin})} x^{0}+p_{1}^{(\mathrm{coin})} x^{1}=\frac{1}{2}(1+x)
$$

Generating

Functions
Definitions
Basic Properties
Giant Componen Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つaく 9 of 60

Simple examples:

Rolling dice and flipping coins:
哏 $p_{k}^{(*)}=\mathbf{P r}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$.
$F^{(\odot)}(x)=\sum_{k=1}^{6} p_{k}^{(\odot)} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
. $p_{0}^{(\text {coin })}=\operatorname{Pr}($ head $)=1 / 2, p_{1}^{(\text {coin })}=\operatorname{Pr}($ tail $)=1 / 2$.

$$
F^{(\mathrm{coin})}(x)=p_{0}^{(\mathrm{coin})} x^{0}+p_{1}^{(\mathrm{coin})} x^{1}=\frac{1}{2}(1+x)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っa^ 9 of 60

Simple examples:

Rolling dice and flipping coins:
$p_{k}^{(\overbrace{0})}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$.

$$
F^{(\odot)}(x)=\sum_{k=1}^{6} p_{k}^{(\circledast)} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) .
$$

- $p_{0}^{(\text {coin })}=\operatorname{Pr}($ head $)=1 / 2, p_{1}^{(\text {coin })}=\operatorname{Pr}($ tail $)=1 / 2$.

$$
F^{(\mathrm{coin})}(x)=p_{0}^{(\mathrm{coin})} x^{0}+p_{1}^{(\mathrm{coin})} x^{1}=\frac{1}{2}(1+x)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

vvM
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Example

 @networksvox
Take a degree distribution with exponential decay:

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM

のac 10 of 60

Example

Generating
Functions and Networks

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}
$$

Example

Generating
Functions and Networks

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM

のac 10 of 60

Example

Generating
Functions and Networks

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UvM $\left\lvert\, \begin{aligned} & \text { O } \\ & 0\end{aligned}\right.$
っa@ 10 of 60

Example

Generating
Functions and Networks

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$.

vvM $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
のac 10 of 60

Example

Take a degree distribution with exponential decay:

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$.
R For probability distributions, we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}
$$

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Example

Take a degree distribution with exponential decay:

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}} .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$.
For probability distributions, we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}
$$

UVM $\left|\begin{array}{l}0 \\ b \\ 0\end{array}\right|$

Example

Take a degree distribution with exponential decay:

$$
P_{k}=c e^{-\lambda k}
$$

where geometricsumfully, we have $c=1-e^{-\lambda}$
The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}} .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$.
R For probability distributions, we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}=1
$$

wn : $\left|\begin{array}{l}0 \\ 0\end{array}\right|$

Outline

COcoNuTS ＠networksvox
Generating Functions and Networks

Generating Functions

Properties:

Average degree:
Generating
Functions and
Networks

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P_{k}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant Component

A few examples
Average Component Size

References

UYM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 12 of 60

Properties:

Average degree:

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UYM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っac 12 of 60

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Componen
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UYM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのल 12 of 60

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
っのल 12 of 60

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

In general, many calculations become simple, if a little abstract.

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

In general, many calculations become simple, if a little abstract.

For our exponential example:

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

Properties:

Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

In general, many calculations become simple, if a little abstract.

For our exponential example:

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

$$
\text { So: }\langle k\rangle=F^{\prime}(1)=\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)}
$$

Properties:

. 3 Average degree:

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

In general, many calculations become simple, if a little abstract.

Generating
Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

For our exponential example:

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

$$
\text { So: }\langle k\rangle=F^{\prime}(1)=\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)}
$$

Check for die and coin p.g.f.'s.

Useful pieces for probability distributions:

Useful pieces for probability distributions:

Normalization:

$$
F(1)=1
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Useful pieces for probability distributions:

Normalization:

$$
F(1)=1
$$

First moment:

$$
\langle k\rangle=F^{\prime}(1)
$$

Generating Functions and
Networks

Generating

Functions
Definitions
Basic Properties
Giant Componen
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Useful pieces for probability distributions:

Normalization:

$$
F(1)=1
$$

First moment:

$$
\langle k\rangle=F^{\prime}(1)
$$

Higher moments:

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

Generating
Functions and
Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Useful pieces for probability distributions:

$$
F(1)=1
$$

Normalization:

, First moment:

$$
\langle k\rangle=F^{\prime}(1)
$$

\& Higher moments:

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
k th element of sequence (general):

$$
P_{k}=\left.\frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} F(x)\right|_{x=0}
$$

A beautiful, fundamental thing:

The generating function for the sum of two random variables

$$
W=U+V
$$

is

$$
F_{W}(x)=F_{U}(x) F_{V}(x) .
$$

A beautiful, fundamental thing:

The generating function for the sum of two random variables

Generating

Functions
Definitions
Basic Properties
Giant Component Condition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM

のac 14 of 60

A beautiful, fundamental thing:

The generating function for the sum of two random variables

Functions
Definitions
Basic Properties
Giant Component

A beautiful, fundamental thing:

The generating function for the sum of two random variables

Generating
Functions
Definitions
Basic Properties
Giant Component Condition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM

つa^ 14 of 60

A beautiful, fundamental thing:

The generating function for the sum of two random variables

Generating
Functions
Definitions
Basic Properties
Giant Component Condition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

uvM

A beautiful, fundamental thing:

The generating function for the sum of two random variables

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM

のac 14 of 60

Outline

Generating Functions

Baslic Rromerties

Giant Component Condition

Component sizes

A few examples

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのく 15 of 60

Edge-degree distribution

Generating Functions and
Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 16 of 60

Edge-degree distribution

Generating
Functions and
Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM

のaल 16 of 60

Edge-degree distribution

Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
のac 16 of 60

Edge-degree distribution

Generating
Functions and
Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.
We'll now use this notation:

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

um : $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っac 16 of 60

Edge-degree distribution

Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.
We'll now use this notation:
$F_{P}(x)$ is the g.f. for P_{k}.

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Edge-degree distribution

Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.
. We'll now use this notation:
$F_{P}(x)$ is the g.f. for P_{k}.
$F_{R}(x)$ is the g.f. for R_{k}.

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Edge-degree distribution

Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.
Be'll now use this notation:
$F_{P}(x)$ is the g.f. for P_{k}.
$F_{R}(x)$ is the g.f. for R_{k}.

Giant component condition in terms of g.f. is:

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1 .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM

のac 16 of 60

Edge-degree distribution

Recall our condition for a giant component:

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Let's re-express our condition in terms of generating functions.
We first need the g.f. for R_{k}.
Be'll now use this notation:

$$
\begin{aligned}
& F_{P}(x) \text { is the g.f. for } P_{k} \text {. } \\
& F_{R}(x) \text { is the g.f. for } R_{k} .
\end{aligned}
$$

Giant component condition in terms of g.f. is:

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1 .
$$

Now find how F_{R} is related to $F_{P} \ldots$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

vum

Edge-degree distribution

 @networksvoxWe have
Generating
Functions and Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
っのल 17 of 60

Edge-degree distribution

 @networksvox
Generating

We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}O \\ 5 \\ 0\end{array}\right|$
っのल 17 of 60

Edge-degree distribution

Generating
We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っac 17 of 60

Edge-degree distribution

Generating
Functions and Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 17 of 60

Edge-degree distribution

We have

Generating

Functions and
Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 17 of 60

Edge－degree distribution

We have

Generating

Functions and
Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{aligned}
& F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
= & \frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Edge－degree distribution

We have

Generating

Functions and
Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{aligned}
& F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
= & \frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Edge-degree distribution

We have

Generating

Functions and
Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) .
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Edge-degree distribution

We have

Generating
Functions and Networks

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) .
\end{gathered}
$$

Finally, since $\langle k\rangle=F_{P}^{\prime}(1)$,

$$
F_{R}(x)=\frac{F_{P}^{\prime}(x)}{F_{P}^{\prime}(1)}
$$

Generating
 Functions

Definitions
Basic Properties
Giant Component
Cō"- ${ }^{-}$
Component sizes

Useful results

Size of the Giant
Component
A few examples
Average Component Size
References

Edge-degree distribution

Generating Functions and Networks

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ \text { On }\end{array}\right|$
っのल 18 of 60

Edge-degree distribution

Generating Functions and Networks

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.
Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$,

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
っの^ 18 of 60

Edge-degree distribution

Generating
Functions and Networks

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.
Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$,

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component Condition

Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
っの^ 18 of 60

Edge-degree distribution

Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.
Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$,

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Cō"- ${ }^{-}$
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Setting $x=1$, our condition becomes

$$
\frac{F_{P}^{\prime \prime}(1)}{F_{P}^{\prime}(1)}>1
$$

Outline

Generating Functions

Component sizes
Size of the Giant
Component
A few examples
Average Component Size
References
A few examples

uvM $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
っa\& 19 of 60

Size distributions

To figure out the size of the largest component (S_{1}), we need more resolution on component sizes.

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のaल 20 of 60

Size distributions

To figure out the size of the largest component (S_{1}), we need more resolution on component sizes.

Definitions:

- $\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$.

Basic Properties
Giant Component
Coridition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
のaल 20 of 60

Size distributions

To figure out the size of the largest component (S_{1}), we need more resolution on component sizes.

Definitions:

\& $\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$.
. $\rho_{n}=$ probability that a random end of a random link leads to a finite subcomponent of size $n<\infty$.

Size distributions

To figure out the size of the largest component (S_{1}), we need more resolution on component sizes.

Definitions:

- $\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$.
. $\rho_{n}=$ probability that a random end of a random link leads to a finite subcomponent of size $n<\infty$.

Local-global connection:

$$
P_{k}, R_{k} \Leftrightarrow \pi_{n}, \rho_{n}
$$

neighbors \Leftrightarrow components

Connecting probabilities:

Markov property of random networks connects π_{n}, ρ_{n}, and P_{k}.

Connecting probabilities:

Barkov property of random networks connects ρ_{n} and R_{k}.

edges

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つa® 22 of 60

G.f.'s for component size distributions:

COcoNuTS @networksvox

Generating Functions and
Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UYM $\left|\begin{array}{l}0 \\ \boldsymbol{O} \\ 0\end{array}\right|$
のac 23 of 60

G.f.'s for component size distributions:

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 23 of 60
G.f.'s for component size distributions:

The largest component:

Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.

Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
のaल 23 of 60
G.f.'s for component size distributions:

The largest component:

Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
Therefore: $S_{1}=1-F_{\pi}(1)$.

G.f.'s for component size distributions:

$$
F_{P}, F_{R}, F_{\pi}, \text { and } F_{\rho} .
$$

Outline

COcoNuTS @networksvox
Generating Functions and Networks

Generating Functions

Useful results

A few examples
Average Compone nt size

Useful results we'll need for g.f.'s

 @networksvoxGenerating Functions and Networks

Sneaky Result 1:

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

UYM
\mid
っac 25 of 60

Useful results we'll need for g.f.'s

 @networksvox
Sneaky Result 1:

Consider two random variables U and V whose values may be $0,1,2, \ldots$

Generating
 Functions
 Definitions
 Basic Properties
 Giant Component Condition
 Componentsizes
 Useful results
 Size of the Giant
 Component
 A few examples
 Average Component Size
 References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
っのल 25 of 60

Useful results we'll need for g.f.'s

Sneaky Result 1:

Consider two random variables U and V whose values may be $0,1,2, \ldots$
Write probability distributions as U_{k} and V_{k} and g.f.'s as F_{U} and F_{V}.

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaく 25 of 60

Useful results we'll need for g.f.'s

Sneaky Result 1:

Consider two random variables U and V whose values may be $0,1,2, \ldots$
Write probability distributions as U_{k} and V_{k} and g.f.'s as F_{U} and F_{V}.

SR1: If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 25 of 60

Useful results we'll need for g.f.'s

Sneaky Result 1:

- Consider two random variables U and V whose values may be $0,1,2, \ldots$
Write probability distributions as U_{k} and V_{k} and g.f.'s as F_{U} and F_{V}.

SR1: If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

then

$$
F_{W}(x)=F_{U}\left(F_{V}(x)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UvM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 25 of 60

Proof of SR1:

 @networksvoxGenerating
Write probability that variable W has value k as W_{k}.
Functions and
Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM
\mid
っac 27 of 60

Proof of SR1:

Write probability that variable W has value k as W_{k}.

Generating
Functions and
Networks

$$
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM

のaल 27 of 60

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left.i_{1}, i_{2}, i_{j}\right), i_{1}+i_{2}+\cdots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}}
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM
のac 27 of 60

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}}
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

$\therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}$

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
V_{k}=\sum_{j=0} V_{j} \times P_{i}
$$

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
\begin{aligned}
& W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}} \quad V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} \\
& i_{1}+i_{2}+\ldots+i_{j}=k \\
& \text { Generating } \\
& \text { Functions } \\
& \text { Definitions } \\
& \text { Basic Properties } \\
& \text { Giant Component } \\
& \text { Condition } \\
& \text { Componentsizes } \\
& \text { Useful results } \\
& \text { Size of the Giant } \\
& \text { Component } \\
& \text { A few examples } \\
& \text { Average Component Size } \\
& \therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} x^{k} \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty}
\end{aligned}
$$

Proof of SR1:

Write probability that variable W has value k as W_{k}.

$$
\begin{aligned}
& W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{\left.\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}\right\}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} \\
& i_{1}+i_{2}+\ldots+i_{j}=k \\
& \text { Generating } \\
& \text { Functions } \\
& \text { Definitions } \\
& \text { Basic Properties } \\
& \text { Giant Component } \\
& \text { Condition } \\
& \text { Component sizes } \\
& \text { Useful results } \\
& \text { Size of the Giant } \\
& \text { Component } \\
& \text { A few examples } \\
& \text { Average Component Size } \\
& \therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} x^{k} \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \cdots V_{i_{j}} x^{i_{j}}
\end{aligned}
$$

Proof of SR1:

With some concentration, observe:

Generating
Functions and Networks

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} \sum_{j} \sum_{k=0}^{\infty} V_{i_{1},} x^{\left.i_{1}, i_{2}, \ldots, i_{j}\right\}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}} \\
& i_{1}+i_{2}+\ldots+i_{j}=k \\
& x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM. $\left|\begin{array}{l}\mathbf{O} \\ \text { O. }\end{array}\right|$
っac 28 of 60

Proof of SR1:

With some concentration, observe:

$$
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left.\sum_{k} i_{1}, i_{2}, \ldots, i_{j}\right\} \\ i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2} \cdots} V_{i_{j}} x^{i_{j}}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っac 28 of 60

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\sum_{i} i_{i}, i_{2}, i_{i}, i_{j} \mid \\
i_{1}+i_{2}+\ldots+j_{j}=k}} V_{i_{1}} x^{i_{1} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}}} \\
& \underbrace{\left(\sum_{i^{\prime}}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}=\left(F_{V}(x)\right)^{j}}_{x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}} \\
&=\sum_{j=0}^{\infty} U_{j}\left(F_{V}(x)\right)^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM. $\left|\begin{array}{l}\mathbf{O} \\ \text { O. }\end{array}\right|$
っac 28 of 60

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}} \\
x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM. $\left|\begin{array}{l}\mathbf{O} \\ \text { O. }\end{array}\right|$
のаल 28 of 60

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}} \\
x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM. $\left|\begin{array}{l}\mathbf{O} \\ \text { O. }\end{array}\right|$
のаल 28 of 60

Proof of SR1:

With some concentration, observe:

Generating
Functions and Networks

$$
\begin{aligned}
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}} \\
x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Alternate, groovier proof in the accompanying assignment.

Useful results we'll need for g.f.'s

 @networksvoxGenerating
Functions and
Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$

```
Generating
Functions
    Definitions
    Basic Properties
    Giant Component
    Condition
    Componentsizes
    Useful results
    Size of the Giant
    Component
    A few examples
    Average Component Size
    References
```

 uvm \(\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|\)
 っa® 29 of 60

Useful results we'll need for g.f.'s

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1
$$

```
Generating
Functions
    Definitions
    Basic Properties
    Giant Component
    Condition
    Component sizes
    Useful results
    Size of the Giant
    Component
    A few examples
    Average Component Size
    References
```

 uvm \(\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|\)
 ๑a^ 29 of 60

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

uvm $\left\lvert\, \begin{aligned} & 0 \\ & \text { on }\end{aligned}\right.$
のac 29 of 60

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

um : $\left\lvert\, \begin{aligned} & 0 \\ & \text { on }\end{aligned}\right.$
つac 29 of 60

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition

Componentsizes

Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

um : $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っac 29 of 60

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x)
\end{gathered}
$$

Useful results we'll need for g.f.'s

Sneaky Result 2:

Start with a random variable U with distribution
$U_{k}(k=0,1,2, \ldots)$
SR2: If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

Reason: $V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$.

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x)
\end{gathered}
$$

Useful results we'll need for g.f.'s

COcoNuTS @networksvox
Generating Functions and Networks

Generalization of SR2:

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
のaल 30 of 60

Useful results we'll need for g.f.'s

Generalization of SR2:

(1) If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

Generating
 Functions

Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

UVM

っのल 30 of 60

Useful results we＇ll need for g．f．＇s

Generalization of SR2：

（1）If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

（2）If $V=U-i$ then

$$
F_{V}(x)=x^{-i} F_{U}(x)
$$

Generating

Functions
Definitions
Basic Properties
Giant Component

Condition

Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

UVM

っのく 30 of 60

Useful results we'll need for g.f.'s

Generalization of SR2:

(1) If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

(2) If $V=U-i$ then

$$
\begin{aligned}
& F_{V}(x)=x^{-i} F_{U}(x) \\
& \quad=x^{-i} \sum_{k=0}^{\infty} U_{k} x^{k}
\end{aligned}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component

A few examples
Average Component Size

References

Outline

Generating Functions

Size of the Giant Component

uvM $\left|\begin{array}{l}0 \\ 0\end{array}\right|$
のaल 31 of 60

Connecting generating functions:
Goal: figure out forms of the component generating functions, F_{π} and F_{ρ}.

R Relate π_{n} to P_{k} and ρ_{n} through one step of recursion.

COcoNuTS @networksvox
Generating Functions and Networks

Generating Functions Definitions Basic Properties Giant Component Condition Component sizes Useful results Size of the Giant Cömpōōēnt
A few examples

Connecting generating functions:

 @networksvoxGenerating Functions and Networks
$\pi_{n}=$ probability that a random node belongs to a finite component of size n

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のaल 33 of 60

Connecting generating functions:

$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 33 of 60

Connecting generating functions:

$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Therefore:

$$
F_{\pi}(x)=
$$

Connecting generating functions:

$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Therefore:

$$
F_{\pi}(x)=\underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

Connecting generating functions:

$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Therefore:

$$
F_{\pi}(x)=\underbrace{x}_{\text {SR2 }} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

Connecting generating functions:

$\pi_{n}=$ probability that a random node belongs to a finite component of size n
$=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component --
A few examples
Average Component Size
References
Therefore:

$$
F_{\pi}(x)=\underbrace{x}_{\text {SR2 }} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

Extra factor of x accounts for random node itself.

Connecting generating functions:

Generating
Functions and Networks

Relate ρ_{n} to R_{k} and ρ_{n} through one step of recursion.

Generating

Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component ${ }^{-\quad-1}$
A few examples
Average Component Size
References

uvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
aa^ 34 of 60

Connecting generating functions：

 ＠networksvox$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.
8 Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.
R Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.
R Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component-
A few examples
Average Component Size
References

Therefore:

$$
F_{\rho}(x)=
$$

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.

- Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Therefore:

$$
F_{\rho}(x)=\underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SRI }}
$$

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.

- Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Therefore:

$$
F_{\rho}(x)=\underbrace{x}_{\operatorname{SR} R} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SRI }}
$$

Connecting generating functions:

$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n.

- Invoke one step of recursion:
$\rho_{n}=$ probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$,
$=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Therefore:

$$
F_{\rho}(x)=\underbrace{x}_{\text {SRR }} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

8 Again, extra factor of x accounts for random node itself.

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 36 of 60

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Taking stock: We know $F_{P}(x)$ and

$$
F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) .
$$

Generating
Functions
Definitions
Basic Properties

Giant Component

Condition
Componentsizes
Useful results
Size of the Giant
Compōnent
A few examples
Average Component Size
References

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Taking stock: We know $F_{P}(x)$ and
$F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$.
We first untangle the second equation to find F_{ρ}

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compön̄ent---
A few examples
Average Component Size
References

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Raking stock: We know $F_{P}(x)$ and

$$
F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) .
$$

. We first untangle the second equation to find F_{ρ}
We can do this because it only involves F_{ρ} and F_{R}.

Generating
Functions
Definitions
Basic Properties
Giant Component

Condition

Component sizes
Useful results
Size of the Giant
Component ${ }^{-\cdots}$
A few examples
Average Component Size
References

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

Taking stock: We know $F_{P}(x)$ and $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$.

Generating
Functions
Definitions
Basic Properties
Giant Component

Condition

Component sizes
Useful results
Size of the Giant
Compōnēnt
A few examples
Average Component Size
References
We first untangle the second equation to find F_{ρ}
Be can do this because it only involves F_{ρ} and F_{R}.
The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R}.

Component sizes

COcoNuTS @networksvox
Generating Functions and Networks

Remembering vaguely what we are doing:

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Compōnent
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ \text { On }\end{array}\right|$
のaल 37 of 60

Component sizes

Generating Functions and Networks

Remembering vaguely what we are doing:
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Compōnent ---
A few examples
Average Component Size
References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っa^ 37 of 60

Component sizes

Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
Set $x=1$ in our two equations：

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Component sizes
Useful results
Size of the Giant
Compōnent
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っの凤 37 of 60

Component sizes

Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
Set $x=1$ in our two equations：

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } \quad F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
っの凤 37 of 60

Component sizes

Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
\＆Set $x=1$ in our two equations：

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Compōnent
A few examples
Average Component Size
References

Solve second equation numerically for $F_{\rho}(1)$ ．

Component sizes

Remembering vaguely what we are doing:
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$.
Set $x=1$ in our two equations:

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Componēnt ${ }^{-\cdots}$
A few examples
Average Component Size
References

Solve second equation numerically for $F_{\rho}(1)$.
\& Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$.

Component sizes

Example: Standard random graphs.

8. We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 38 of 60

Component sizes

Example: Standard random graphs.

$$
\begin{aligned}
\text { We can show } & F_{P}(x)=e^{-\langle k\rangle(1-x)} \\
& \Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)
\end{aligned}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 38 of 60

Component sizes

Example: Standard random graphs.

We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1}
\end{gathered}
$$ @networksvox

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compōnent ${ }^{---}$
A few examples
Average Component Size
References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のаल 38 of 60

Component sizes

Example: Standard random graphs.

We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{aligned}
& \quad \Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
& =\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
& =e^{-\langle k\rangle(1-x)}
\end{aligned}
$$

@networksvox
Generating
Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compōnēnt
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
っa@ 38 of 60

Component sizes

Example: Standard random graphs.

We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \ldots \text { aha! }
\end{gathered}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compōnent ${ }^{---}$
A few examples
Average Component Size

References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のаく 38 of 60

Component sizes

Example: Standard random graphs.
We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad . . . \text { aha! }
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component ${ }^{---}$
A few examples
Average Component Size

References

RHS's of our two equations are the same.

um : $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
のаल 38 of 60

Component sizes

Example: Standard random graphs.
We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \text {...aha! }
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

RHS's of our two equations are the same.
So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
uvm $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
のаく 38 of 60

Component sizes

Example: Standard random graphs.
We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \text {..aha! }
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

RHS's of our two equations are the same.
8
So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
Consistent with how our dirty (but wrong) trick
 worked earlier ...

Component sizes

Example: Standard random graphs.
We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{gathered}
\Rightarrow F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \\
=\langle k\rangle e^{-\langle k\rangle(1-x)} /\left.\langle k\rangle e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \text {..aha! }
\end{gathered}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compōnent
A few examples
Average Component Size

References

RHS's of our two equations are the same.

So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
Consistent with how our dirty (but wrong) trick
 worked earlier ...
$\pi_{n}=\rho_{n}$ just as $P_{k}=R_{k}$.

Component sizes

 ＠networksvox
We are down to

$F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right)$ and $F_{R}(x)=e^{-\langle k\rangle(1-x)}$ ．

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Compōnent－－－
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのく 39 of 60

Component sizes

 ＠networksvoxGenerating Functions and Networks
$F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right)$ and $F_{R}(x)=e^{-\langle k\rangle(1-x)}$.

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant
Compōnēnt
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのく 39 of 60

Component sizes

We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)} .
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

Component sizes

We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)} .
$$

Generating

Functions
Definitions
We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Compōnent ---
A few examples
Average Component Size

References

um : $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
のaल 39 of 60

Component sizes

We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)} .
$$

We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Basic Properties
Giant Component Condition
Componentsizes
Useful results
Size of the Giant Component ---
A few examples
Average Component Size

References

Component sizes

We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)} .
$$

We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Compön̄ent---
A few examples
Average Component Size

References

Outline

Generating Functions

A few examples

UVM 冬 $\left|\begin{array}{l}0 \\ 8 \\ 0\end{array}\right|$
っのल 40 of 60

A few simple random networks to contemplate and play around with:

Generating

 Functions andGenerating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ o \\ 0\end{array}\right|$
っのल 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function $\delta_{i j}=1$ if $i=j$ and 0 otherwise．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left\lvert\, \begin{aligned} & O \\ & \boldsymbol{O} \\ & \text { O }\end{aligned}\right.$
っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
－$P_{k}=\delta_{k 1}$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}0 \\ 5 \\ O\end{array}\right|$
っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
$P_{k}=\delta_{k 1}$ ．
－$P_{k}=\delta_{k 2}$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left\lvert\, \begin{aligned} & O \\ & \boldsymbol{O} \\ & \text { O }\end{aligned}\right.$
っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
（ $P_{k}=\delta_{k 1}$ ．
（ $P_{k}=\delta_{k 2}$ ．
（ $P_{k}=\delta_{k 3}$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
$P_{k}=\delta_{k 1}$ ．
－$P_{k}=\delta_{k 2}$ ．
－$P_{k}=\delta_{k 3}$ ．
（ $P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
$P_{k}=\delta_{k 1}$ ．
－$P_{k}=\delta_{k 2}$ ．
－$P_{k}=\delta_{k 3}$ ．
（s．$P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$ ．
－$P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $|$| O |
| :--- |
| \boldsymbol{O} |

っのく 41 of 60

A few simple random networks to contemplate and play around with：

Notation：The Kronecker delta function［ $\delta_{i j}=1$ if $i=j$ and 0 otherwise．
（s．$P_{k}=\delta_{k 1}$ ．
－$P_{k}=\delta_{k 2}$ ．
－$P_{k}=\delta_{k 3}$ ．
－$P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$ ．
\＆$P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$ ．
－$P_{k}=a \delta_{k 1}+(1-a) \delta_{k 3}$ ，with $0 \leq a \leq 1$ ．

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ O \\ 0\end{array}\right|$
っのく 41 of 60

A few simple random networks to contemplate and play around with:

Generating Functions and Networks

Notation: The Kronecker delta function $\boldsymbol{C}_{i j}=1$ if $i=j$ and 0 otherwise.
(s. $P_{k}=\delta_{k 1}$.
($P_{k}=\delta_{k 2}$.
(8. $P_{k}=\delta_{k 3}$.
($P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$.

- $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
- $P_{k}=a \delta_{k 1}+(1-a) \delta_{k 3}$, with $0 \leq a \leq 1$.
- $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 2$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
のac 41 of 60

A few simple random networks to contemplate and play around with:

\& Notation: The Kronecker delta function [$\delta_{i j}=1$ if $i=j$ and 0 otherwise.

- $P_{k}=\delta_{k 1}$.
($P_{k}=\delta_{k 2}$.
- $P_{k}=\delta_{k 3}$.
- $P_{k}=\delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 0$.
\& $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
- $P_{k}=a \delta_{k 1}+(1-a) \delta_{k 3}$, with $0 \leq a \leq 1$.
- $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 2$.
- $P_{k}=a \delta_{k 1}+(1-a) \delta_{k k^{\prime}}$ for some fixed $k^{\prime} \geq 2$ with

Generating
Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References
 $0 \leq a \leq 1$.

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ O \\ 0\end{array}\right|$
๑a@ 42 of 60

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 42 of 60

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 42 of 60

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

We find (two ways): $R_{k}=\frac{1}{4} \delta_{k 0}+\frac{3}{4} \delta_{k 2}$.
A giant component exists because:
$\langle k\rangle_{R}=0 \times 1 / 4+2 \times 3 / 4=3 / 2>1$.
8
Generating functions for P_{k} and R_{k} :

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

Check for goodness:

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 42 of 60

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 42 of 60

A joyful example $\square:$

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
๑a@ 42 of 60

$$
P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3} .
$$

We find (two ways): $R_{k}=\frac{1}{4} \delta_{k 0}+\frac{3}{4} \delta_{k 2}$.
A giant component exists because: $\langle k\rangle_{R}=0 \times 1 / 4+2 \times 3 / 4=3 / 2>1$.
Generating functions for P_{k} and R_{k} :

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

Check for goodness:

$$
\begin{aligned}
& F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1) \text { and } F_{P}(1)=F_{R}(1)=1 . \\
& F_{P}^{\prime}(1)=\langle k\rangle_{P}=2 \text { and } F_{R}^{\prime}(1)=\langle k\rangle_{R}=\frac{3}{2} .
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condidion
Component sizes
Useful results
Size of the Giant

Component

A few examples
Average Component Size

References

Things to figure out: Component size generating functions for π_{n} and ρ_{n}, and the size of the giant component.

UVM
$|0|$

Find $F_{\rho}(x)$ first:

Generating
Functions and
Networks
We know:

$$
F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right) .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}0 \\ 5 \\ O\end{array}\right|$
のac 43 of 60

Sticking things in things，we have：

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right)
$$

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component

$$
3 x\left[F_{\rho}(x)\right]^{2}-4 F_{\rho}(x)+x=0 .
$$

Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 44 of 60

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

Generating

Functions
Definitions
Basic Properties
Giant Component

$$
3 x\left[F_{\rho}(x)\right]^{2}-4 F_{\rho}(x)+x=0 .
$$

Please and thank you:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}O \\ O \\ 0\end{array}\right|$
のac 44 of 60

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component

$$
3 x\left[F_{\rho}(x)\right]^{2}-4 F_{\rho}(x)+x=0 .
$$

R Please and thank you:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Time for a Taylor series expansion.

Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 44 of 60

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Time for a Taylor series expansion.
The promise: non-negative powers of x with non-negative coefficients.

2+ +15

Sticking things in things, we have:

$$
F_{\rho}(x)=x\left(\frac{1}{4}+\frac{3}{4}\left[F_{\rho}(x)\right]^{2}\right) .
$$

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Time for a Taylor series expansion.
The promise: non-negative powers of x with non-negative coefficients.
First: which sign do we take?

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Because ρ_{n} is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Because ρ_{n} is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.
Thinking about the limit $x \rightarrow 0$ in

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}\mathrm{O} \\ 0 \\ 0\end{array}\right|$
っa^ 45 of 60

Because ρ_{n} is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.
Thinking about the limit $x \rightarrow 0$ in

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.
\& So we must have:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Because ρ_{n} is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.
Thinking about the limit $x \rightarrow 0$ in

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1 \pm \sqrt{1-\frac{3}{4} x^{2}}\right)
$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

- So we must have:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right),
$$

We can now deploy the Taylor expansion:
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

$$
(1+z)^{\theta}=\binom{\theta}{0} z^{0}+\binom{\theta}{1} z^{1}+\binom{\theta}{2} z^{2}+\binom{\theta}{3} z^{3}+\ldots
$$

UVM

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのく 46 of 60

Let's define a binomial for arbitrary θ and $k=0,1,2, \ldots$:

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

For $\theta=\frac{1}{2}$, we have:

$$
(1+z)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0} z^{0}+\binom{\frac{1}{2}}{1} z^{1}+\binom{\frac{1}{2}}{2} z^{2}+\ldots
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ \text { On }\end{array}\right|$
のаく 46 of 60

Let's define a binomial for arbitrary θ and $k=0,1,2, \ldots$:

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

For $\theta=\frac{1}{2}$, we have:

$$
\begin{gathered}
(1+z)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0} z^{0}+\binom{\frac{1}{2}}{1} z^{1}+\binom{\frac{1}{2}}{2} z^{2}+\ldots \\
=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(1) \Gamma\left(\frac{3}{2}\right)} z^{0}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2) \Gamma\left(\frac{1}{2}\right)} z^{1}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{1}{2}\right)} z^{2}+\ldots
\end{gathered}
$$

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ O \\ 0\end{array}\right|$
のаल 46 of 60

Let's define a binomial for arbitrary θ and $k=0,1,2, \ldots$:

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

For $\theta=\frac{1}{2}$, we have:

$$
\begin{gathered}
(1+z)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0} z^{0}+\binom{\frac{1}{2}}{1} z^{1}+\binom{\frac{1}{2}}{2} z^{2}+\ldots \\
=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(1) \Gamma\left(\frac{3}{2}\right)} z^{0}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2) \Gamma\left(\frac{1}{2}\right)} z^{1}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{1}{2}\right)} z^{2}+\ldots \\
=1+\frac{1}{2} z-\frac{1}{8} z^{2}+\frac{1}{16} z^{3}-\ldots
\end{gathered}
$$

where we've used $\Gamma(x+1)=x \Gamma(x)$ and noted that $\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$.

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのल 46 of 60

Let's define a binomial for arbitrary θ and $k=0,1,2, \ldots$:

$$
\binom{\theta}{k}=\frac{\Gamma(\theta+1)}{\Gamma(k+1) \Gamma(\theta-k+1)}
$$

For $\theta=\frac{1}{2}$, we have:

$$
\begin{gathered}
(1+z)^{\frac{1}{2}}=\binom{\frac{1}{2}}{0} z^{0}+\binom{\frac{1}{2}}{1} z^{1}+\binom{\frac{1}{2}}{2} z^{2}+\ldots \\
=\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(1) \Gamma\left(\frac{3}{2}\right)} z^{0}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2) \Gamma\left(\frac{1}{2}\right)} z^{1}+\frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(3) \Gamma\left(-\frac{1}{2}\right)} z^{2}+\ldots \\
=1+\frac{1}{2} z-\frac{1}{8} z^{2}+\frac{1}{16} z^{3}-\ldots
\end{gathered}
$$

where we've used $\Gamma(x+1)=x \Gamma(x)$ and noted that $\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$.
Note: $(1+z)^{\theta} \sim 1+\theta z$ always.

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant

Component

A few examples
Average Component Size
References

UVM $\left|\begin{array}{l|l|}\hline \\ 5 \\ 0\end{array}\right|$
っのल 46 of 60

Totally psyched, we go back to here:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Totally psyched, we go back to here:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right) .
$$

Setting $z=-\frac{3}{4} x^{2}$ and expanding, we have:

$$
\begin{gathered}
F_{\rho}(x)= \\
\frac{2}{3 x}\left(1-\left[1+\frac{1}{2}\left(-\frac{3}{4} x^{2}\right)^{1}-\frac{1}{8}\left(-\frac{3}{4} x^{2}\right)^{2}+\frac{1}{16}\left(-\frac{3}{4} x^{2}\right)^{3}\right]+\ldots\right)
\end{gathered}
$$

Totally psyched, we go back to here:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)
$$

Setting $z=-\frac{3}{4} x^{2}$ and expanding, we have:

$$
\begin{gathered}
F_{\rho}(x)= \\
\frac{2}{3 x}\left(1-\left[1+\frac{1}{2}\left(-\frac{3}{4} x^{2}\right)^{1}-\frac{1}{8}\left(-\frac{3}{4} x^{2}\right)^{2}+\frac{1}{16}\left(-\frac{3}{4} x^{2}\right)^{3}\right]+\ldots\right)
\end{gathered}
$$

Giving:

$$
F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}=
$$

$$
\frac{1}{4} x+\frac{3}{64} x^{3}+\frac{9}{512} x^{5}+\ldots+\frac{2}{3}\left(\frac{3}{4}\right)^{k} \frac{(-1)^{k+1} \Gamma\left(\frac{3}{2}\right)}{\Gamma(k+1) \Gamma\left(\frac{3}{2}-k\right)} x^{2 k-1}+\ldots
$$

Totally psyched, we go back to here:

$$
F_{\rho}(x)=\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right) .
$$

Setting $z=-\frac{3}{4} x^{2}$ and expanding, we have:

$$
\begin{gathered}
F_{\rho}(x)= \\
\frac{2}{3 x}\left(1-\left[1+\frac{1}{2}\left(-\frac{3}{4} x^{2}\right)^{1}-\frac{1}{8}\left(-\frac{3}{4} x^{2}\right)^{2}+\frac{1}{16}\left(-\frac{3}{4} x^{2}\right)^{3}\right]+\ldots\right)
\end{gathered}
$$

Giving:

$$
\begin{gathered}
F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}= \\
\frac{1}{4} x+\frac{3}{64} x^{3}+\frac{9}{512} x^{5}+\ldots+\frac{2}{3}\left(\frac{3}{4}\right)^{k} \frac{(-1)^{k+1} \Gamma\left(\frac{3}{2}\right)}{\Gamma(k+1) \Gamma\left(\frac{3}{2}-k\right)} x^{2 k-1}+\ldots
\end{gathered}
$$

Do odd powers make sense?

We can now find $F_{\pi}(x)$ with：

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)
$$

Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$
っのく 48 of 60

We can now find $F_{\pi}(x)$ with：

$$
\begin{aligned}
& F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \\
= & x \frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)
\end{aligned}
$$

COcoNuTS ＠networksvox

Generating Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$
っのく 48 of 60

We can now find $F_{\pi}(x)$ with:

$$
\begin{gathered}
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \\
=x \frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)
\end{gathered}
$$

Generating
 Functions

Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results

$$
=x \frac{1}{2}\left[\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)+\frac{2^{3}}{(3 x)^{3}}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)^{3}\right]
$$

Size of the Giant
Component
A few examples
Average Component Size
-
References

UVM $=\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a凤 48 of 60

We can now find $F_{\pi}(x)$ with:

$$
\left.=x \frac{1}{2}\left[\frac{F_{\pi}}{3 x}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { (} 1-\frac{F_{\rho}}{2}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)
$$

We can now find $F_{\pi}(x)$ with:

$$
\begin{aligned}
& F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \\
& =x \frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right) \\
& =x \frac{1}{2}\left[\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)+\frac{2^{3}}{(3 x)^{3}}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)^{3}\right] . \\
& \text { Functions } \\
& \text { Definitions } \\
& \text { Basic Properties } \\
& \text { Giant Component } \\
& \text { Condition } \\
& \text { Componentsizes } \\
& \text { Useful results } \\
& \text { Size of the Giant } \\
& \text { Component } \\
& \text { A few examples } \\
& \text { Average Component Size } \\
& \text { - } \\
& \text { References }
\end{aligned}
$$

Delicious.
In principle, we can now extract all the π_{n}.

We can now find $F_{\pi}(x)$ with:

$$
\begin{aligned}
& F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \\
& =x \frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right) \\
& =x \frac{1}{2}\left[\frac{2}{3 x}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)+\frac{2^{3}}{(3 x)^{3}}\left(1-\sqrt{1-\frac{3}{4} x^{2}}\right)^{3}\right] \\
& \text { Functions } \\
& \text { Definitions } \\
& \text { Basic Properties } \\
& \text { Giant Component } \\
& \text { Condition } \\
& \text { Componentsizes } \\
& \text { Useful results } \\
& \text { Size of the Giant } \\
& \text { Component } \\
& \text { A few examples } \\
& \text { Average Component Size } \\
& \text { - } \\
& \text { References }
\end{aligned}
$$

Delicious.
In principle, we can now extract all the π_{n}.
But let's just find the size of the giant component.

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UM $\left\lvert\, \begin{aligned} & O \\ & \boldsymbol{O} \\ & \text { O }\end{aligned}\right.$
っのल 49 of 60

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.

Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 49 of 60

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.

Next:

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)
$$

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つのल 49 of 60

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.

Next:

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)
$$

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つのल 49 of 60

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.

Next:

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}
$$

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 49 of 60

First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.

Next:

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}=\frac{5}{27}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
uvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のaल 49 of 60
\& First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3}
$$

This is the probability that a random edge leads to a
(s) Next:
sub-component of finite size.

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}=\frac{5}{27}
$$

Basic Properties
Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

A few examples
Average Component Size
References

This is the probability that a random chosen node belongs to a finite component.
\& First, we need $F_{\rho}(1)$:

$$
\left.F_{\rho}(x)\right|_{x=1}=\frac{2}{3 \cdot 1}\left(1-\sqrt{1-\frac{3}{4} 1^{2}}\right)=\frac{1}{3} .
$$

This is the probability that a random edge leads to a sub-component of finite size.
Next:

$$
F_{\pi}(1)=1 \cdot F_{P}\left(F_{\rho}(1)\right)=F_{P}\left(\frac{1}{3}\right)=\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{2}\left(\frac{1}{3}\right)^{3}=\frac{5}{27}
$$

This is the probability that a random chosen node belongs to a finite component.
\&inally, we have

COcoNuTS
@networksvox
Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

$$
\begin{equation*}
S_{1}=1-F_{\pi}(1)=1-\frac{5}{27}=\frac{22}{27} \tag{array}
\end{equation*}
$$

Outline

Generating Functions

Average Component Size

S_{1}
4 fractional size
coconuts

$$
1
$$ largest component

average size
(not normalized)

Average component size

Next: find average size of finite components $\langle n\rangle$.

Generating
Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ 0\end{array}\right|$
っのल 52 of 60

Average component size

Next: find average size of finite components $\langle n\rangle$.
Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^52 of 60

Average component size

Next: find average size of finite components $\langle n\rangle$.
Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Try to avoid finding $F_{\pi}(x)$...

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UvM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
๑a^ 52 of 60

Average component size

Next: find average size of finite components $\langle n\rangle$.
Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Try to avoid finding $F_{\pi}(x)$...
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

Average component size

Next: find average size of finite components $\langle n\rangle$.
Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Sry to avoid finding $F_{\pi}(x) \ldots$
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes

Useful results

Size of the Giant
Component
A few examples
Average Component Size

References

Average component size

Next: find average size of finite components $\langle n\rangle$.
Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Sry to avoid finding $F_{\pi}(x) \ldots$
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Now set $x=1$ in both equations.

Generating
Functions and Networks

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant Component
A few examples
Average Component Size

References

Average component size

Next: find average size of finite components $\langle n\rangle$.
\& Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Try to avoid finding $F_{\pi}(x) \ldots$
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Now set $x=1$ in both equations.
We solve the second equation for $F_{\rho}^{\prime}(1)$ (we must already have $F_{\rho}(1)$).

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes

Useful results

Size of the Giant Component
A few examples
Average Component Size
References

Average component size

Next: find average size of finite components $\langle n\rangle$.
\& Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
Sry to avoid finding $F_{\pi}(x) \ldots$
Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

\& While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Now set $x=1$ in both equations.
We solve the second equation for $F_{\rho}^{\prime}(1)$ (we must already have $\left.F_{\rho}(1)\right)$.
Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$.

Average component size

 ＠networksvoxExample：Standard random graphs．

Generating
Functions and
Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM 冬 $\left|\begin{array}{l}0 \\ 8 \\ 0\end{array}\right|$
っのल 53 of 60

Average component size

Example: Standard random graphs.
18 Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.

Generating
Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ 0\end{array}\right|$
っのल 53 of 60

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.
Two differentiated equations reduce to only one:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
๑a^ 53 of 60

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.
Two differentiated equations reduce to only one:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

Rearrange: $\quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
のac 53 of 60

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.
Two differentiated equations reduce to only one:

$$
\begin{aligned}
& F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right) \\
& \text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.

Two differentiated equations reduce to only one:

$$
\begin{aligned}
& F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right) \\
& \text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$.

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.

Two differentiated equations reduce to only one:

$$
\begin{aligned}
& F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right) \\
& \text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
\end{aligned}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$.
Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$.

Average component size

Example: Standard random graphs.
Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$.
Two differentiated equations reduce to only one:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$.
Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$.

$$
\text { End result: }\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Average component size

Our result for standard random networks：

Generating
Functions and
Networks

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのく 54 of 60

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

Average component size

- Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
Look at what happens when we increase $\langle k\rangle$ to 1 from below.

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
Look at what happens when we increase $\langle k\rangle$ to 1 from below.
We have $S_{1}=0$ for all $\langle k\rangle<1$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
Look at what happens when we increase $\langle k\rangle$ to 1 from below.
We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

This blows up as $\langle k\rangle \rightarrow 1$.

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
Look at what happens when we increase $\langle k\rangle$ to 1 from below.
We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

R This blows up as $\langle k\rangle \rightarrow 1$.
Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.

Average component size

Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

8

Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks. Look at what happens when we increase $\langle k\rangle$ to 1 from below.
We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

This blows up as $\langle k\rangle \rightarrow 1$.
Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.
Typical critical point behavior ...

Average component size

 @networksvoxGenerating Functions and Networks
Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^55 of 60

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 55 of 60

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UVM $\left|\begin{array}{l}\text { O } \\ 0 \\ 0\end{array}\right|$
っのल 55 of 60

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$.

Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っのल 55 of 60

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$.
Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

No nodes are outside of the giant component.

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$.
Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

No nodes are outside of the giant component.
Extra on largest component size:
For $\langle k\rangle=1, S_{1} \sim N^{2 / 3} / N$.

Average component size

Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

As $\langle k\rangle \rightarrow 0, S_{1}=0$, and $\langle n\rangle \rightarrow 1$.
All nodes are isolated.
As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$.
Generating
Functions
Definitions
Basic Properties
Giant Component
Coridition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

No nodes are outside of the giant component.
Extra on largest component size:
Ror $\langle k\rangle=1, S_{1} \sim N^{2 / 3} / N$.
R For $\langle k\rangle<1, S_{1} \sim(\log N) / N$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

のac 56 of 60

Let's return to our example: $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{P}^{\prime}\left(F_{\rho}(1)\right)
$$

Generating
 Functions

Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
の ac 56 of 60

Let's return to our example: $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.

We're after:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{P}^{\prime}\left(F_{\rho}(1)\right)
$$

where we first need to compute

$$
F_{\rho}^{\prime}(1)=F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right)
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

M $\left|\begin{array}{l}\mathrm{O} \\ \mathrm{g}\end{array}\right|$
のac 56 of 60

Let's return to our example: $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
\& We're after:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{P}^{\prime}\left(F_{\rho}(1)\right)
$$

where we first need to compute

$$
F_{\rho}^{\prime}(1)=F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right)
$$

8
Place stick between teeth, and recall that we have:

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2}
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^56 of 60

Let's return to our example: $P_{k}=\frac{1}{2} \delta_{k 1}+\frac{1}{2} \delta_{k 3}$.
. We're after:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{P}^{\prime}\left(F_{\rho}(1)\right)
$$

where we first need to compute

$$
F_{\rho}^{\prime}(1)=F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) .
$$Place stick between teeth, and recall that we have:

$$
F_{P}(x)=\frac{1}{2} x+\frac{1}{2} x^{3} \text { and } F_{R}(x)=\frac{1}{4} x^{0}+\frac{3}{4} x^{2} .
$$

Differentiation gives us:

$$
F_{P}^{\prime}(x)=\frac{1}{2}+\frac{3}{2} x^{2} \text { and } F_{R}^{\prime}(x)=\frac{3}{2} x .
$$

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

References

We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
F_{\rho}^{\prime}(1)=F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right)
$$

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UYM $\left|\begin{array}{l}O \\ 5 \\ O\end{array}\right|$
っのल 57 of 60

We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right)
\end{aligned}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Componentsizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}O \\ 5 \\ 0\end{array}\right|$
のac 57 of 60

We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not 2}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not p}{2} \frac{1}{\not \supset}
\end{aligned}
$$

Generating

Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UVM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 57 of 60

We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not \partial}{4} \frac{1}{3^{\not 2}}+F_{\rho}^{\prime}(1) \frac{\not \partial}{2} \frac{1}{\not 2}
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
のac 57 of 60
. We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not 2}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not 2}{2} \frac{1}{\not \supset}
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size

$$
\text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right)
$$

. We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not p}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not \partial 1}{2} \frac{1}{\not \partial} .
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

$$
\begin{aligned}
& \text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right) \\
= & \frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{1}{3^{3}}+\frac{13}{2}\left(\frac{1}{2}+\frac{\not 2}{2} \frac{1}{3^{\not 2}}\right)
\end{aligned}
$$

. We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not p}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not \partial 1}{2} \frac{1}{\not \partial} .
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

$$
\begin{aligned}
& \text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right) \\
= & \frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{1}{3^{3}}+\frac{13}{2}\left(\frac{1}{2}+\frac{\not 3}{2} \frac{1}{3^{\not 2}}\right)=\frac{5}{27}+\frac{13}{3}
\end{aligned}
$$

UVM :气 $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 57 of 60
. We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not p}{4} \frac{1}{3 \not 2}+F_{\rho}^{\prime}(1) \frac{\not \partial 1}{2} \frac{1}{\not \partial} .
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

$$
\begin{aligned}
& \text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right) \\
= & \frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{1}{3^{3}}+\frac{13}{2}\left(\frac{1}{2}+\frac{\not B}{2} \frac{1}{3^{\not 2}}\right)=\frac{5}{27}+\frac{13}{3}=\frac{122}{27} .
\end{aligned}
$$

UVM $\left|\begin{array}{l}0 \\ 5 \\ 0\end{array}\right|$
のac 57 of 60
. We bite harder and use $F_{\rho}(1)=\frac{1}{3}$ to find:

$$
\begin{aligned}
F_{\rho}^{\prime}(1) & =F_{R}\left(F_{\rho}(1)\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(F_{\rho}(1)\right) \\
& =F_{R}\left(\frac{1}{3}\right)+F_{\rho}^{\prime}(1) F_{R}^{\prime}\left(\frac{1}{3}\right) \\
& =\frac{1}{4}+\frac{\not p}{4} \frac{1}{3^{\not 2}}+F_{\rho}^{\prime}(1) \frac{\not \partial 1}{2} \frac{1}{\not \supset}
\end{aligned}
$$

After some reallocation of objects, we have $F_{\rho}^{\prime}(1)=\frac{13}{2}$.

$$
\begin{aligned}
& \text { Finally: }\langle n\rangle=F_{\pi}^{\prime}(1)=F_{P}\left(\frac{1}{3}\right)+\frac{13}{2} F_{P}^{\prime}\left(\frac{1}{3}\right) \\
= & \frac{1}{2} \frac{1}{3}+\frac{1}{2} \frac{1}{3^{3}}+\frac{13}{2}\left(\frac{1}{2}+\frac{\not B}{2} \frac{1}{3^{\not 2}}\right)=\frac{5}{27}+\frac{13}{3}=\frac{122}{27} .
\end{aligned}
$$

So, kinda small.

Nutshell

Generating functions allow us to strangely calculate features of random networks.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 58 of 60

Nutshell

Generating functions allow us to strangely calculate features of random networks.
They're a bit scary and magical.

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 58 of 60

Nutshell

Generating functions allow us to strangely calculate features of random networks.
They're a bit scary and magical.
We'll find generating functions useful for contagion.

Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑a^ 58 of 60

Nutshell

Generating
Functions and

Generating functions allow us to strangely calculate features of random networks.
They're a bit scary and magical.
We'll find generating functions useful for contagion.

Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References
But we'll also see that more direct, physics-bearing calculations are possible.

Neural reboot（NR）：

COcoNuTS

 ＠networksvoxGenerating Functions and Networks

Elevation：

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

https：／／www．youtube．com／watch？v＝bGBoZbT7cR8？rel＝0■
UM $\left|\begin{array}{l}O \\ \theta \\ O\end{array}\right|$
っのく 59 of 60

References I

COcoNuTS @networksvox

Generating Functions and Networks

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition
Component sizes
[1] H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdf[

Useful results
Size of the Giant
Component
A few examples
Average Component Size
References

UvM $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
っa^ 60 of 60

