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Generatingfunctionology "

Idea: Given a sequence ag, a,,a,, ..., associate
each element with a distinct function or other
mathematical object.
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The generating function (g.f.) for a sequence {a,,} e
is
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F(z) = Z @ r al
n=0
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ldea: Given a sequence a, a4, a,, ..., associate Negre
each element with a distinct function or other
mathematical object. St

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

xamples

erage Component Size

The generating function (g.f.) for a sequence {a,,} e

is
F(z) = Z @\ r \

T —0) | :*_‘

Roughly: transforms a vector in R*° into a
function defined on R*. |
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 Generatingfunctionology "

ldea: Given a sequence a, a4, a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

E(x) = i @\
n=0

Roughly: transforms a vector in R*° into a
function defined on R1.

Related to Fourier, Laplace, Mellin, ...
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References
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p,. = Pr{throwing a k) = 1/6 where k.= 1,2, ... ;6.
@

FO) (g Zpk Jpk = ZL’+£E + 23+ 2t 425 +25).

pSe" — Pr(head) = 1/2, p™™ = Pr(tail) = 1/2.

F(coin)(x) o p(ocoin)xo +p(1coin)m1 p s %(1 1L x)

A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).
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p,. = Pr{throwing a k) = 1/6 where k.= 1,2, ... ;6.
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6
FO (g Zpk@)ﬂck :E—i—x + 23+t 4+ 2% +26).

pSe" — Pr(head) = 1/2, p™™ = Pr(tail) = 1/2.
References

F(coin)(x) o pgoin)xo —|—p(1c°in)a:1 p s %(1 1L x)

A generating function for a probability distribution -+,
is called a Probability Generating Function (p.g.f.). B!
We'll come back to these simple examples as we [
derive various delicious properties of generating

functions.
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Example

Take a degree distribution with exponential decay:

=L =Nk
e —ce

where geometricsumfully, we have ¢ = 1 — e
The generating function for this distribution is

E(rh= N B ¥
k=0
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Example

Take a degree distribution with exponential decay:

=L =Nk
e —ce

where geometricsumfully, we have ¢ = 1 — e
The generating function for this distribution is

(o] oo
Elrfi= Z Bk — Z ceiat pk
k=0 k=0
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Example

Take a degree distribution with exponential decay:

=L =Nk
e —ce

where geometricsumfully, we have ¢ = 1 — e
The generating function for this distribution is

(o] oo
= c
Elrfi= Zkak == Zce R i ey
k=0 k=0 s
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Example

Take a degree distribution with exponential decay:

=L =Nk
e —ce

where geometricsumfully, we have ¢ = 1 — e
The generating function for this distribution is

(o] oo
= c
Elrfi= Zkak == Zce R i ey
k=0 k=0 s

Notice that F(1) = ¢/(1 —e ) = 1.
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g B EXE Lk
F(a:)—Zka —Zce T i mone
k=0 k=0 s tonfo
Reference

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have '
F(1) = 1since

RO = ST Bk )
k=0
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il BEE Xk k _
x)—Zka —Zce T i
k=0 k=0 srege Compl
Reference

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have '
F(1) = 1since

ZPklk ZPk =

“a > 10 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

Exa m ple @networksvex

Generating

Take a degree distribution with exponential decay:  Functionsand

Networks

P =Xk

=k

e GCE
Generating
Functions

where geometricsumfully, we have ¢ = 1 — e oo
The generating function for this distribution is

) [e) 2 ( [ ol
.’L') = g Pk;.’lfk = E Ceikkl’k = m “‘,;u‘u-‘”‘\““
k=0 k=0 i

References

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have
F(1) = 1 since

ZPklk ZPk_l =

Check die and coin p.g.f.’s.
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Average degree:
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4 Useful pieces for probability distributions:

& Normalization:

- & First moment:
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The generating function for the sum of two

random variables

W=U+V

Fy (x) = Fy(z)Fy ().
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The generating function for the sum of two
random variables

W=U+V

Fy (z) = Fy(z)Fy (2).
Convolve yourself with Convolutions:
Insert question from assignment 5 (&',
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The generating function for the sum of two
random variables

W=U+V

Fy (z) = Fy(z)Fy (2).
Convolve yourself with Convolutions:
Insert question from assignment 5 (&',

Try with die and coin p.g.f.'s.
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The generating function for the sum of two
random variables

W=U+V

Fy (x) = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (&',

Try with die and coin p.g.f.'s.
1. Add two coins (tail=0, head=1).
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W=U+V

Fy (z) = Fy(z)Fy (o).

Convolve yourself with Convolutions: References
Insert question from assignment 5 (&',

Try with die and coin p.g.f.'s. (S
1. Add two coins (tail=0, head=1). It B
2. Add two dice. Wil
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The generating function for the sum of two
random variables Generating

Functions

Definitions

W=U+V

Fy (z) = Fy(z)Fy (o). Ayl [

Convolve yourself with Convolutions: References
Insert question from assignment 5 (&',

Try with die and coin p.g.f.'s. (S
1. Add two coins (tail=0, head=1). |58
2. Add two dice. ( ‘
3. Add a coin flip to one die roll.  CEREEE
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| Edge-de‘greesdistribution

Recall our condition for a giant component:
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Edge-degree distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.
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Edge-degree distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for ;..
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 Edge-degree distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..
We'll now use this notation:
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Edge-degree distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.
We first need the g.f. for R,..
We'll now use this notation:
Fp(z)is the g.f. for P,.
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Edge-degree distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.
We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fr(x)is the g.f. for R,.
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Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fr(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

(Ryp = Fh(1) > 1,
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Edge-degree distribution
Recall our condition for a giant component:

(k2) — (k)
7 i
< >R <k> 32
Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fr(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

(Ryp = Fh(1) > 1,

Now find how FF, is related to Fp ...
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Edge-degfeé distribution

We have

1>Pk+1xk

o0 o k
FR(x):Zkak:Z( 3
k=0 k=0

(k)

Shift index to j = k + 1 and pull out

(k)"

COcoNuTS
@networksvex

Generating
Functions and
Networks

Generating
Functions

Definitions

“Da 17 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

Edge-degfeé distribution

We have

Nk
k=0

Shift index to j =

k+ 1 and pull out

(e @]
Z P:L‘J 4
=1

(

qit.

7

k

i ]{;—|-1Pk+1 k.
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Edge-degfeé distribution

We have

N o ]{;—|-1Pk+1 k.
= Ryx
Dt T

Shift index to j = k + 1 and pull out

(k)"
= 1 d
o Y
T
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Edge-degree distribution
We have

N o k+1pk+1k
= Ryx

Shift index to j = k + 1 and pull out

(k)"
£ R d
T
Z Pyl </€>ZPJ’£’3]
j=1

M
RCEE
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Edge-degree distribution
We have

N o k+1pk+1k
= Ryx

Shift index to j = k + 1 and pull out

(k)
F (:c):iijPW*:iiP*W
R <>3:1 J <k>3:1 Tdz
Trd o ) 15etd
BCEE D

COcoNuTS
@networksvex

Generating
Functions and
Networks

Generating
Functions

Definitions

References

“Da 17 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

Edge-degree distribution Grcnitkis
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Edge-degree distribution
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Shift index to j = k + 1 and pull out (T{»:
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References
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Finally, since (k) = Fp5(1),
Fp(x)
Fr(z)=-£
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“Da 17 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Edge-degree distribution GrenvatkoR

Generating
Functions and
Networks

Recall giant component condition is i
<k>R = Fl/%(l) > 1 Functions

Definitions

Basic Properties

Giant Component

D 18 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

Edge-degfeé distribution

Recall giant component condition is
) =Fp1) >,
Since we have Fg(z) = Fp(z)/Fp(1),
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Edge-degree distribution GrenvatkoR
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Recall giant component condition is

(k) p = FR(1) > 1. Syl
Since we have Fg(z) = Fp(z)/Fp(1), i
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Recall giant component condition is

) =Fp1) >,

Since we have Fg(z) = Fp(z)/Fp(1),
_ Fpl@)

ADRS

Setting « = 1, our condition becomes

FA)

Sl
FL(1)
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Outline ‘

Generating Functions

Component sizes
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Useful results

Size of the Giant
Component

Afew examples

Average Component Size:
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- Size distributions

To figure out the size of the largest component (S,),
we need more resolution on component sizes.
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Size distributions e

Generating
. 3 Functions and
To figure out the size of the largest component (S,), NemErks
we need more resolution on component sizes.
Generating
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7,, = probability that a random node belongs to a
finite component of size n < oc.
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- Size distributions

To figure out the size of the largest component (S,),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .
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To figure out the size of the largest component (S,),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .

Pk7Rk < Ty Pn

neighbors < components
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- Connecting probabilities: GrenvatkoR
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G.f.s for component size distributions:
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Component sizes
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. G.f's for component size distributions: Oreite
G i }
% cererang

o Networks

‘ wa and F,( Z
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Giant Component
5 Condition
The largest component:

Component sizes

Useful results

&% Subtle key: F,.(1) is the probability that a node R
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Zﬂ'l‘ andF Z

Subtle key: F_(1) is the probability that a node
belongs to a finite component.

Therefore: S; =1—F,_(1).

Determine and connect the four generating
functions

Fo, Byt andat

T
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Useful results we'll need for g.f.'s

‘ : Sheaky Result 1:
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- Useful results we'll need for g.f.'s oneniorkily
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Sneaky Result 1:

Consider two random variables U and VV whose St

values may be 0, 1,2, ...
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Component sizes
Useful results
Size of the Giant
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- Useful results we'll need for g.f's

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.
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~ Useful results we'll need for g.f.'s

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.
SR1: If a third random variable is defined as

d

U
W — Z V(@) with each V() £ v
pe=it
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~ Useful results we'll need for g.f.'s Grcnitkis
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Generating

Consider two random variables U and V whose Al
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.

SR1: If a third random variable is defined as

References
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| Proofof‘SIRT: '

Write probability that variable W has value k as 1W/,..
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Proof of SR1:
Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

=0

2> S WA

j=0 {i1,i2,i51
Gy Figtti =k

k=0
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Proof of SR1:

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)
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Proof of SR1:

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)
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Proof of SR1:

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)
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Proof of SR1:

With some concentration, observe:
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Proof of SR1:

With some concentration, observe:
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Proof of SR1:

With some concentration, observe:
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Proof of SR1:

With some concentration, observe:
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Proof of SR1:

With some concentration, observe:

oo =)
2k A5 ; 7
Fy (z) = E t E E V, x4V, xt2 V%I J
7=0 k=0 ({iy,ig, i}
i1tigt..+i;=k

=0

" pleceaf( > Vi/xi')j

Alternate, groovier proof in the accompanying
assignment.
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Useful results we'll need for g.f.'s
Sneaky Result 2:
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SR2: If a second random variable is defined as
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Useful results we'll need for g.f.'s GrenvatkoR
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Start with a random variable U with distribution
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Definitions

SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)] s
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Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,..)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork>1and V; = 0.
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Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,..)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork>1and V; = 0.

“Fy(z) = Z kak
k=0
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Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,..)

SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork>1and V; = 0.

k=0 k=1
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Useful results we'll need for g.f's

Start with a random variable U with distribution
LRk —i0, 199 1L
SR2: If a second random variable is defined as

Y U L1 then ’FV(

)

)=l (x) ‘

Reason: V,, =U,_; fork>1and V; = 0.

Fy@) =3 Via
k=0
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E klfﬂ
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Useful results we'll need for g.f.'s Grcnitkis

Generating
Functions and
Networks

Start with a random variable U with distribution
U, (k=0,1,2,...) Peetonat
SR2: If a second random variable is defined as

Basil

V=U+1 then | Fy(z) = 2Fy(a)]
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 Connecting generating functions:
Goal: figure out forms of the component
Fand B

P

generating functions,

N nodes

Relate 7,, to P, and p,, through one step of
recursion.
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 Connecting generating functions:

m,, = probability that a random node belongs to a
finite component of size n

:ikaPr<
k=0

sum of sizes of subcomponents
at end of £k random links =n — 1
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Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

it i p wpr( SYM of sizes of subcomponents
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 Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

it i p wpr( SYM of sizes of subcomponents
G at end of k¥ random links = n — 1

Therefore: | F-(z) = ¢ Fp(Fi(z))

Extra factor of 2 accounts for random node itself.
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i n spr( SYM of sizes of subcomponents
=k at end of k random links = n — 1
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i n spr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefare:' | F (z) — Fg (F,(x))
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i n spr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefards L e (e — o HR (IR iGe))
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Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i n spr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefards L e (e — o HR (IR iGe))

Again, extra factor of z accounts for random node
itself.
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Connecting generating functions: GrenvatkoR
Fundighs e
Networks

We now have two functional equations connecting  cenerating
our generating functions:

F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))
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 Connecting generating functions:

We now have two functional equations connecting
our generating functions:

F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))

Taking stock: We know F(x) and
Fg(x) = Fp(z)/Fp(1).
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 Connecting generating functions:

We now have two functional equations connecting
our generating functions:

F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))

Taking stock: We know F(x) and
Fg(z) = Fp(x)/Fp(1).
We first untangle the second equation to find F,
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 Connecting generating functions:

We now have two functional equations connecting
our generating functions:

F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))

Taking stock: We know F(x) and

Fg(x) = Fp(z)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F, and F'g.
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 Connecting generating functions: @nenworksviy

Generating
Functions and
Networks

We now have two functional equations connecting Generating
unctions

our generating functions: Deiors
F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))

Taking stock: We know F(x) and

Fg(x) = Fp(z)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F, and F'g.

The first equation then immediately gives us F_ in
terms of I, and Fg,.
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Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).

COcoNuTS
@networksvex
Generating
Functions and
Networks

Generating
Functions

Definitions

Component size:
Useful results
Size of the Giant
Lo

D 37 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
Set x = 1 in our two equations:

COcoNuTS
@networksvex
Generating

Functions and
Networks

Generating
Functions

Definitions

Component size:
Useful results
Size of the Giant
G

D 37 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
Set x = 1 in our two equations:

Fe(l)= Fp (F,(1)) and "Fi(1) = Fg (E,())
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
Set x = 1 in our two equations:

Fe(l)= Fp (F,(1)) and "Fi(1) = Fg (E,())

Solve second equation numerically for F,(1).
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
Set x = 1 in our two equations:

Fe(l)= Fp (F,(1)) and "Fi(1) = Fg (E,())

Solve second equation numerically for F,(1).
Plug F,(1) into first equation to obtain F, (1).
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~ Component sizes

Example: Standard random graphs.
We can show Fp(z) = e~ (F(1=2)

= Fr(z) = Fp(2)/Fp(1)
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- Component sizes
Example: Standard random graphs.

We can show Fp(z) = e~ (F(1=2)

=1Fele) = Fola) Ea(l)

e <k>e—<k>(1—m)/<k>e—<k>(1—w’>|$,_1
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We can show Fp(z) = e~ (F(1=2)

=1Fele) = Fola) Ea(l)

e <k>e—<k>(1—m)/<k>e—<k>(1—w’>|$,_1
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- Component sizes
Example: Standard random graphs.

We can show Fp(z) = e~ (F(1=2)

=1Fele) = Fola) Ea(l)

e <k>e—<k>(1—m)/<k>e—<k>(1—w’>|$,_1

—exdilintl () ...ahal
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Component sizes GrenvatkoR

Generating
Example: Standard random graphs. .
We can show Fp(z) = e~ (F(1=2)
Generating
= Fp(z) = Fp(z)/Fp(1) g
= <k>6_<k>(1_m)/<k>e_<k>(1_m/> |$,:1 Ol rebuits |

—exdilintl () ...aha!

RHS's of our two equations are the same.
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- Component sizes
Example: Standard random graphs.

We can show Fp(z) = e~ (F(1=2)

= Fr(z) = Fp(2)/Fp(1)

o <k>e—<k>(1—m)/<k>e—<k>(1—w’>| !

=k

—exdilintl () ...aha!

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

P
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- Component sizes
Example: Standard random graphs.

We can show Fp(z) = e~ (F(1=2)

= Fr(z) = Fp(2)/Fp(1)

e <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1
—rerhintl R () ...ahal

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

Consistent with how our dirty (but wrong) trick
worked earlier ...
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F(1=2)

= Fr(z) = Fp(2)/Fp(1)

e <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1
—rerhintl R () ...ahal

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

Consistent with how our dirty (but wrong) trick
worked earlier ...

T =g Justas Py = R, .
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Component sizes
We are down to

F ) = P p(Fl@) and Fo(x) = a2
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Component sizes
We are down to
Fﬂ'(x) =i IIZ'FR(F,”(x)) and FR<x) == e_<k><1_$>.

F (,CC) = x€*<k>(17F7r(m>)

We're first after S; =1— F, (1) sosetz =1 and
replace F_(1) by 1 — S;:
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- Component sizes
We are down to
F _(z) =zFg(F,.(x)) and Fg(z) = e—(k)(1-z)

e

F (.CC) = x€*<k>(17F7r(w>)

T

We're first after S; =1— F, (1) sosetz =1 and
replace F_(1) by 1 — S;:

=

1—51 :ei<k>sl 1

1 1 04
Or k) = STInl —5 o
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- Component sizes
We are down to
F _(z) =zFg(F,.(x)) and Fg(z) = e—(k)(1-z)

e

~F (x) = x€‘<k>(1*Fﬂ—(w>)

T

We're first after S; =1— F, (1) sosetz =1 and
replace F,_(1) by 1 — S;:

ip-s Sar

1 — Sl == 67<k>sl 1

1 1 0.6}
Or: k) = STlnl =y 3

0 1 2 3 4
kO

Just as we found with our dirty trick ...
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- Component sizes
We are down to
F _(z) =zFg(F,.(x)) and Fg(z) = e—(k)(1-z)

e

F(z) = pem{R1-Fa(@)

T

We're first after S; =1— F, (1) sosetz =1 and
replace F,_(1) by 1 — S;:

M

1 — Sl == 67<k>sl 1

1 1 08
Or: k) = STlnl =y 3

Just as we found with our dirty trick ...

Again, we (usually) have to resort to numerics ...
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A few simple random networks to contemplate
and play around with:
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 Afew simple random networks to contemplate

_ and play around with:

if i = j and 0 otherwise.
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A few simple random networks to contemplate
and play around with:

if i = j and 0 otherwise.
| & Py = 0o
" & P = s
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A few simple random networks to contemplate
and play around with:

if i = j and 0 otherwise.

Fprioge

By = Opg.

Py, = O3.

P, = 6, for some fixed &’ > 0.

Py = 5041 + 3043

P, =adp; + (1 —a)dgs, With0 <a < 1.

Py, = 26,1 + 30, for some fixed &’ > 2.

P, = ad,; + (1 — a)d,,, for some fixed £k’ > 2 with

0<a<l.
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We find (two ways): Ry, = 36,0 + 20..

1 1
P, = §5k1 a 55143'

A giant component exists because:
ks — e 1AM 231 4= 819 1
Generating functions for P, and R;:

Fp(z)

=—zx

2

1
+ §x3 and Fr(x)

1 3
=-2%+ -z

4

4
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Generating
We find (two ways): Ry, = 36,0 + 20.. Bl s

A giant component exists because:
ks — e 1AM 231 4= 819 1
Generating functions for P, and R;:

1 1 1 3
Fp(z) = % + 5353 and Fg(z) = Zxo + 1382

Check for goodness:
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1 1
P, = 551@1 a §5k3'

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(kg = 1A IR Z/A=3/2 1.
Generating functions for P, and R,

1 1 1 3
Fp(z) = % + 5353 and Fg(z) = Zxo + 1382

Check for goodness:

Fp(e) = Fp(e)/Fp(1) and Fp(1) = Fp(1) = 1.
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1 1
P, = §5k1 a §5k3'

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(kg = 1A IR Z/A=3/2 1.
Generating functions for P, and R,

1 1 1 3
Fp(z) = % + 51’3 and Fg(z) = Zxo + 1382

Check for goodness:

Fp(e) = Fp(a)/Fp(1) and Fp(1) = Fg(1) = 1.

F(1) = (k) p = 2and Fa(1) = (k)5 = 3.
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1 1
Pk) — 5574:1 + 551{33

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(kYp=0x%x1/44+2x%x3/4=3/2>1.
Generating functions for P, and R;:
bl o Sal (o

Fp(z) = 2x—|— 5% and Fg(z) = 12 + 12
Check for goodness:

B (2= L)/ EL (1) and Fo (1) = B (0= 1

ROGD ) o and BL D S o
Things to figure out: Component size generating

functions for 7,, and p,,, and the size of the giant
component.
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Sticking things in things, we have:

F(z)=x (i +% [Fp(x)]2> L

Rearranging:

3¢ [F,(z)]" — 4F,(z) + 2 = 0.
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Sticking things in things, we have:
15 =13

F(z)=x (Z -+ 7 [Fp(x)]2> L

Rearranging:

3¢ [F,(z)]" — 4F,(z) + 2 = 0.

Please and thank you:

D) 3
R R AT VAR R
»(7) 3z > 1%
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Sticking things in things, we have:
15 =13

F(z)=x (Z + 7 [Fp(:c)]2> L

Rearranging:

3x [Fp(a:)]Q o5 7 9 e B i

Please and thank you:

D) 3
F (o a1 L 22
p(m) 3z > 43j

Time for a Taylor series expansion.
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Sticking things in things, we have:
15 =13

F(z)=x (Z + 7 [Fp(x)]2> L

Rearranging:

3x [Fp(ac)]2 o5 7 9 e B i

Please and thank you:

@)= 2 (1041- 32

Time for a Taylor series expansion.

The promise: non-negative powers of x with

non-negative coefficients.
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Sticking things in things, we have:

F(z)=x (i +z [Fp(x)]2) L

Rearranging:
S [Fp(m)]2 o5 7 9 e B i

Please and thank you:

@)= 2 (1041- 32

Time for a Taylor series expansion.

The promise: non-negative powers of x with
non-negative coefficients.

First: which sign do we take?
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Because p,, is a probability distribution, we know
(e diand Fi{z) i<l for0-<t 2«1

Thinking about the limit z — 0in

2 / 3
Fp<l'):£ ].:|: 1—1.172 y

we see that the positive sign solution blows to
smithereens, and the negative one is okay.
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Because p,, is a probability distribution, we know
(e diand Fi{z) i<l for0-<t 2«1

Thinking about the limit z — 0in

Fp(m):% (11\/1—zm2> x

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:
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Because p,, is a probability distribution, we know
(e diand Fi{z) i<l for0-<t 2«1

Thinking about the limit z — 0in

Fp(m):% (11\/1—zm2> x

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

Fp(:v):% (1\/13:62) ;

We can now deploy the Taylor expansion:

se9r= Qs (4 (s (oo
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

0\ r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(xz + 1) = zI'(z) and noted that
L) =%

2 2413
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

0\ r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(xz + 1) = zI'(z) and noted that
L) =%

2 2413

Note: (1 + 2)? ~ 1 + 6z always.
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Totally psyched, we go back to here:



Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:



Totally psyched, we go back to here:

Setting z =

3
4 64

Fp(m):% (1—\/12:02).

S 2 R .
—5x* and expanding, we have:

512

1 ok 2 (3>k (—1)**11(3)
I B a:+...+3 7 F(

PR Py

<ol B



Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:

Giving:
o0
Fy(z) =) pna" =
n=0
B Siiga O 2 (3>k (—1)**11(3)
TEEaryid T iy GENEH VI B e iy

Do odd powers make sense?

<ol B
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We can now find F, (z) with: Networks
Fﬂ.($> = acFP (Fp(ac)) Generating

. x% ((Fp@)' + (F,(=)*)

Delicious.
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Definitions

Delicious.

In principle, we can now extract all the ,,.
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We can now find F, (z) with: Networks

Fﬂ_($> = acFP (Fp(x)) Generating

Functions
Defir

Delicious.

In principle, we can now extract all the ,,.

But let's just find the size of the giant component.

[e]STe)
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Generating
Functions

Definitions

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

HAQILE, (B (1)
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Generating
Functions

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

F(1) = LFp (Fy(0) = Py (3)
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This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (F,(1) = F (5) =35+
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This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (F,(1) = F (5) =35+
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First, we need F',(1):

2 / 3 1
P S Mat 526 ST g - | e ST
Fp(x)|:n:1 31 (1 1 il ) 3

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (F,(1) = F (5) =35+

This is the probability that a random chosen node
belongs to a finite component.
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First, we need F',(1):

2 / 3 1
P S Mat 526 ST g - | e ST
Fp(x)|:n:1 31 (1 1 il ) 3

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (F,(1) = F (5) =35+

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
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Average component size

Next: find average size of finite components (n).

Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ...
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 Average component size

Next: find average size of finite components (n).

Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ...

Starting from F, (z) = 2Fp (F,(z)), we
differentiate:

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ...
Starting from F, () = 2Fp (F,(z)), we
differentiate:

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]
While F,(z) = zFg (F,(z)) gives

Fl(z) = Fg (F,(z)) + £F)(z)Fg (F,(z))
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ...
Starting from F, () = 2Fp (F,(z)), we
differentiate:

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(z) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.
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Next: find average size of finite components (n). PRI

Using standard G.F. result: (n) = F/(1).

Try to avoid finding F_ () ... Genrtlip
unctions

Starting from F, () = 2Fp (F,(z)), we et
differentiate: ik

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]

While F,(z) = zFg (F,(z)) gives
Fl(z) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

N
We solve the second equation for F/ (1) (we must ﬁ]&
already have F,(1)).

Q> 52 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

- Average component size eneworksvex

Generating

Next: find average size of finite components (n). PRI
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ... Genrtlip

Starting from F, () = 2Fp (F,(z)), we e
differentiate: ik

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(z) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have F,(1)).

Plug F/(1) and F,(1) into first equation to find

7
FTF( )‘ va > 52 o0f 60
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Example: Standard random graphs. Functions and
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Use fact that Fp = Fp and F. = F,.
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Example: Standard random graphs.
Use fact that Fp = Fp and F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))
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- Average component size
Example: Standard random graphs.
Use fact that Fp = Fp and F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=
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- Average component size
Example: Standard random graphs.
Use fact that Fp = Fp and F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)
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- Average component size
Example: Standard random graphs.
Use fact that Fp = Fp and F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F, (z) = 2Fp(F, (z)).
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- Average component size
Example: Standard random graphs.
Use fact that Fp = Fp and F. = F,.

Two differentiated equations reduce to only one:

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F, (z) = 2Fp(F, (z)).
Set z = 1 and replace F.(1) with 1 — 5.
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Example: Standard random graphs. Futdiighe £rd
Networks
Use fact that Fp = Fp and F. = F,.
Two differentiated equations reduce to only one: Generating

Functions

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F, (z) = 2Fp(F, (z)).
Set z = 1 and replace F.(1) with 1 — 5.

(1-5,)

End result: (n) = F7 (1) = TE By =S, )
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Our result for standard random networks:

o “ (1_Sl>
T TR
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Our result for standard random networks:

i 45 (1_Sl>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.
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Our result for standard random networks:

i 45 (1_S1>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.
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| Average component Size
Our result for standard random networks:

i 45 (1_S1>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1
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 Average component size

Our result for standard random networks:

i 45 (1_S1>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.
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 Average component size

Our result for standard random networks:

i 45 (1_S1>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.
Reason: we have a power law distribution of
component sizes at (k) = 1.
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 Average component size

Our result for standard random networks:

i 45 (1_Sl>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...
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 Average component size

Limits of (k) = 0 and oo make sense for

2 S ] (1_‘9)
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 Average component size

Limits of (k) = 0 and oo make sense for

Ui iy 7/ 5 (1_‘9)
= Bl = i

As (k) -+ 0,5, =0,and (n) — 1.
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Limits of (k) = 0 and oo make sense for

/ ] (1_‘9)

As (k) - 0,5; =0, and (n) — 1.
All nodes are isolated.
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Limits of (k) = 0 and oo make sense for

() = B (1) = =5

IR @5,

As (k) - 0,5; =0, and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.
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Limits of (k) = 0 and oo make sense for

k=50
Thy A (1) ( L
b s T )
As (k) - 0,5; =0, and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.
No nodes are outside of the giant component.
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Limits of (k) = 0 and oo make sense for

k=50
Thy A (1) ( L
b s T )
As (k) - 0,5; =0, and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.
No nodes are outside of the giant component.

For () =115~ N2/3 /N
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- Average component size @reniarkay
Fefine v
Networks

Limits of (k) = 0 and oo make sense for

Generating
(1 — Sl) Functions -

n) = F7/T )= Definitions
el Ve o

As (k) - 0,5; =0, and (n) — 1.

All nodes are isolated.

As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

For () =115~ N2/3 /N
For (k) <1, S; ~ (logN)/N.
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Let's return to our example: P, = 26,, + 15,5.

We're after:
(n}) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

FA1) = Fg (F, (1)) + E.(L)FF (F (1))
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Let's return to our example: P, = 26,, + 15,5.

We're after:
(n}) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

FA1) = Fg (F, (1)) + E.(L)FF (F (1))

Place stick between teeth, and recall that we have:

1 1 1 3
Fp(x) = 5% + §:E3 and Fp(z) = 1:1:0 + ZZEQ.
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Let's return to our example: P, = 26,, + 15,5.

We're after:
(n}) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

FA1) = Fg (F, (1)) + E.(L)FF (F (1))

Place stick between teeth, and recall that we have:
1 1 1 3
F = — Zx3and F ey oo 0] Z 2.
b(x) 233—|-2ZE and Fr(x) iy —|—4:1c

Differentiation gives us:

113 3
() = - h 51:2 and ko) — 5T
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We bite harder and use F,(1) = 1 to find:

F (e (I () - P R (1))
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We bite harder and use F,(1) = 1 to find:

F (e (I () - P R (1))

After some reallocation of objects, we have F (1) = 42

=24
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T FR (5) = Fé<1)F]/:{ <§) Defir S
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4 G 4 37 el )2 3

Average Component Size

After some reallocation of objects, we have F; (1) = 13 References

Finally: (n) = F.(1) = Fp (é) ?FI/D (%)
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We bite harder and use F,(1) = 1 to find:

F/(1)= Fg (F,(1)) + F,(1)Fg (F,(1))

After some reallocation of objects, we have F (1) = 42

=24

Finally: (n) = F.(1) = Fp (é) ?FI/D (%)

SR P
2138 Lo \ 3 1D

W

Nl
D

COcoNuTS
@networksvex

Generating
Functions and
Networks

Generating
Functions
Defir

Average Component Size

Q> 57 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

We bite harder and use F,(1) = 1 to find:

F/(1)= Fg (F,(1)) + F,(1)Fg (F,(1))

After some reallocation of objects, we have F (1) = 42

=24

1 13 1
Finally: (n) = F/(1) = F (7) 15 & (7>
inally: (n) L) Pl3 5 R iE

T Ll (L BTN g5 13

52310088 Liot N2 kgiad RO g
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We bite harder and use F,(1) = 1 to find:

F/(1)= Fg (F,(1)) + F,(1)Fg (F,(1))

After some reallocation of objects, we have F (1) = 42

=24

1 NG 2 1
Finally: (n) = F/(1) = F (7) 15 & (7>
inally: (n) L) Pl3 5 R iE

napet Pl e s L1 192

G2 3 inins. Lok N D g e il oY

COcoNuTS
@networksvex

Generating
Functions and
Networks

Generating
Functions
Defir

Q> 57 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

We bite harder and use F,(1) = 1 to find:

F/(1)= Fg (F,(1)) + F,(1)Fg (F,(1))

After some reallocation of objects, we have F (1) = 42

=24

1 NG 2 1
Finally: (n) = F/(1) = F (7) 15 & (7>
inally: (n) L) Pl3 5 R iE

napet Pl e s L1 192

G2 3 inins. Lok N D g e il oY

So, kinda small.
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- Nutshell

Generating functions allow us to strangely
calculate features of random networks.
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Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

Component size:

Useful results
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- Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.
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Generating
Functions
Definitions

Generating functions allow us to strangely sascProper
calculate features of random networks. ‘

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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