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These slides are also brought to you by:

Special Guest Executive Producer

 On Instagram at pratchett_the_cat
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Generatingfunctionology [1]

 Idea: Given a sequence 𝑎0, 𝑎1, 𝑎2, … , associate
each element with a distinct function or other
mathematical object.

 Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
 The generating function (g.f.) for a sequence {𝑎𝑛}

is 𝐹(𝑥) = ∞∑𝑛=0 𝑎𝑛𝑥𝑛.
 Roughly: transforms a vector in 𝑅∞ into a

function defined on 𝑅1.
 Related to Fourier, Laplace, Mellin, …
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Simple examples:
Rolling dice and flipping coins:

 𝑝( )𝑘 = Pr(throwing a 𝑘) = 1/6 where 𝑘 = 1, 2, … , 6.𝐹 ( )(𝑥) = 6∑𝑘=1 𝑝( )𝑘 𝑥𝑘 = 16(𝑥+𝑥2 +𝑥3 +𝑥4 +𝑥5 +𝑥6).
 𝑝(coin)0 = Pr(head) = 1/2, 𝑝(coin)1 = Pr(tail) = 1/2.𝐹 (coin)(𝑥) = 𝑝(coin)0 𝑥0 + 𝑝(coin)1 𝑥1 = 12(1 + 𝑥).
 A generating function for a probability distribution

is called a Probability Generating Function (p.g.f.).
 We’ll come back to these simple examples as we

derive various delicious properties of generating
functions.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303
http://www.twitter.com/@networksvox
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http://www.twitter.com/@peterdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
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http://www.uvm.edu
http://www.uvm.edu/pdodds
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http://www.uvm.edu/pdodds
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Example
 Take a degree distribution with exponential decay:𝑃𝑘 = 𝑐𝑒−𝜆𝑘

where geometricsumfully, we have 𝑐 = 1 − 𝑒−𝜆
 The generating function for this distribution is𝐹(𝑥) = ∞∑𝑘=0 𝑃𝑘𝑥𝑘 = ∞∑𝑘=0 𝑐𝑒−𝜆𝑘𝑥𝑘 = 𝑐1 − 𝑥𝑒−𝜆 .
 Notice that 𝐹(1) = 𝑐/(1 − 𝑒−𝜆) = 1.
 For probability distributions, we must always have𝐹(1) = 1 since𝐹(1) = ∞∑𝑘=0 𝑃𝑘1𝑘 = ∞∑𝑘=0 𝑃𝑘 = 1.
 Check die and coin p.g.f.’s.
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Properties:
 Average degree:⟨𝑘⟩ = ∞∑𝑘=0 𝑘𝑃𝑘 = ∞∑𝑘=0 𝑘𝑃𝑘𝑥𝑘−1∣𝑥=1= d

d𝑥𝐹(𝑥)∣𝑥=1 = 𝐹 ′(1)
 In general, many calculations become simple, if a little

abstract.

 For our exponential example:𝐹 ′(𝑥) = (1 − 𝑒−𝜆)𝑒−𝜆(1 − 𝑥𝑒−𝜆)2 .


So: ⟨𝑘⟩ = 𝐹 ′(1) = 𝑒−𝜆(1 − 𝑒−𝜆) .
 Check for die and coin p.g.f.’s.
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Useful pieces for probability distributions:

 Normalization: 𝐹(1) = 1
 First moment: ⟨𝑘⟩ = 𝐹 ′(1)
 Higher moments:⟨𝑘𝑛⟩ = (𝑥 d

d𝑥)𝑛 𝐹(𝑥)∣𝑥=1
 𝑘th element of sequence (general):𝑃𝑘 = 1𝑘! d𝑘

d𝑥𝑘 𝐹(𝑥)∣𝑥=0
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A beautiful, fundamental thing:
 The generating function for the sum of two

random variables 𝑊 = 𝑈 + 𝑉
is 𝐹𝑊(𝑥) = 𝐹𝑈(𝑥)𝐹𝑉 (𝑥).

 Convolve yourself with Convolutions:
Insert question from assignment 5 .

 Try with die and coin p.g.f.’s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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Edge-degree distribution

 Recall our condition for a giant component:⟨𝑘⟩𝑅 = ⟨𝑘2⟩ − ⟨𝑘⟩⟨𝑘⟩ > 1.
 Let’s re-express our condition in terms of

generating functions.
 We first need the g.f. for 𝑅𝑘.
 We’ll now use this notation:𝐹𝑃 (𝑥) is the g.f. for 𝑃𝑘.𝐹𝑅(𝑥) is the g.f. for 𝑅𝑘.
 Giant component condition in terms of g.f. is:⟨𝑘⟩𝑅 = 𝐹 ′𝑅(1) > 1.
 Now find how 𝐹𝑅 is related to 𝐹𝑃 …
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Edge-degree distribution
 We have𝐹𝑅(𝑥) = ∞∑𝑘=0 𝑅𝑘𝑥𝑘 = ∞∑𝑘=0 (𝑘 + 1)𝑃𝑘+1⟨𝑘⟩ 𝑥𝑘.

Shift index to 𝑗 = 𝑘 + 1 and pull out 1⟨𝑘⟩ :𝐹𝑅(𝑥) = 1⟨𝑘⟩ ∞∑𝑗=1 𝑗𝑃𝑗𝑥𝑗−1 = 1⟨𝑘⟩ ∞∑𝑗=1 𝑃𝑗 d
d𝑥𝑥𝑗

= 1⟨𝑘⟩ d
d𝑥 ∞∑𝑗=1 𝑃𝑗𝑥𝑗 = 1⟨𝑘⟩ d

d𝑥 (𝐹𝑃 (𝑥) − 𝑃0) = 1⟨𝑘⟩𝐹 ′𝑃 (𝑥).
Finally, since ⟨𝑘⟩ = 𝐹 ′𝑃 (1),𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)𝐹 ′𝑃 (1)

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303/docs/{2019-01UVM-303}assignment5.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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Edge-degree distribution

 Recall giant component condition is⟨𝑘⟩𝑅 = 𝐹 ′𝑅(1) > 1.
 Since we have 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1),𝐹 ′𝑅(𝑥) = 𝐹 ″𝑃 (𝑥)𝐹 ′𝑃 (1).
 Setting 𝑥 = 1, our condition becomes𝐹 ″𝑃 (1)𝐹 ′𝑃 (1) > 1
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Size distributions

To figure out the size of the largest component (𝑆1),
we need more resolution on component sizes.

Definitions:
 𝜋𝑛 = probability that a random node belongs to a

finite component of size 𝑛 < ∞.
 𝜌𝑛 = probability that a random end of a random

link leads to a finite subcomponent of size 𝑛 < ∞.

Local-global connection:𝑃𝑘, 𝑅𝑘 ⇔ 𝜋𝑛, 𝜌𝑛
neighbors ⇔ components
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Connecting probabilities:

 Markov property of random networks connects𝜋𝑛, 𝜌𝑛, and 𝑃𝑘.
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Connecting probabilities:

 Markov property of random networks connects 𝜌𝑛
and 𝑅𝑘.
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G.f.’s for component size distributions:
 𝐹𝜋(𝑥) = ∞∑𝑛=0 𝜋𝑛𝑥𝑛 and 𝐹𝜌(𝑥) = ∞∑𝑛=0 𝜌𝑛𝑥𝑛
The largest component:
 Subtle key: 𝐹𝜋(1) is the probability that a node

belongs to a finite component.
 Therefore: 𝑆1 = 1 − 𝐹𝜋(1).
Our mission, which we accept:
 Determine and connect the four generating

functions 𝐹𝑃 , 𝐹𝑅, 𝐹𝜋, and 𝐹𝜌.
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Useful results we’ll need for g.f.’s

Sneaky Result 1:
 Consider two random variables 𝑈 and 𝑉 whose

values may be 0, 1, 2, …
 Write probability distributions as 𝑈𝑘 and 𝑉𝑘 and

g.f.’s as 𝐹𝑈 and 𝐹𝑉 .
 SR1: If a third random variable is defined as𝑊 = 𝑈∑𝑖=1 𝑉 (𝑖) with each 𝑉 (𝑖) 𝑑= 𝑉

then 𝐹𝑊(𝑥) = 𝐹𝑈 (𝐹𝑉 (𝑥))

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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Proof of SR1:
Write probability that variable 𝑊 has value 𝑘 as 𝑊𝑘.𝑊𝑘 = ∞∑𝑗=0 𝑈𝑗 × Pr(sum of 𝑗 draws of variable 𝑉 = 𝑘)

= ∞∑𝑗=0 𝑈𝑗 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑉𝑖2 ⋯ 𝑉𝑖𝑗

∴𝐹𝑊(𝑥) = ∞∑𝑘=0 𝑊𝑘𝑥𝑘 = ∞∑𝑘=0 ∞∑𝑗=0 𝑈𝑗 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑉𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑘
= ∞∑𝑗=0 𝑈𝑗 ∞∑𝑘=0 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑥𝑖1𝑉𝑖2𝑥𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑖𝑗
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Proof of SR1:
With some concentration, observe:

𝐹𝑊(𝑥) = ∞∑𝑗=0 𝑈𝑗 ∞∑𝑘=0 ∑{𝑖1,𝑖2,…,𝑖𝑗}|𝑖1+𝑖2+…+𝑖𝑗=𝑘 𝑉𝑖1𝑥𝑖1𝑉𝑖2𝑥𝑖2 ⋯ 𝑉𝑖𝑗𝑥𝑖𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑥𝑘 piece of (∑∞𝑖′=0 𝑉𝑖′𝑥𝑖′)𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟(∑∞𝑖′=0 𝑉𝑖′𝑥𝑖′)𝑗 = (𝐹𝑉 (𝑥))𝑗= ∞∑𝑗=0 𝑈𝑗 (𝐹𝑉 (𝑥))𝑗
= 𝐹𝑈 (𝐹𝑉 (𝑥)) 

 Alternate, groovier proof in the accompanying
assignment.
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Useful results we’ll need for g.f.’s
Sneaky Result 2:
 Start with a random variable 𝑈 with distribution𝑈𝑘 (𝑘 = 0, 1, 2, … )
 SR2: If a second random variable is defined as𝑉 = 𝑈 + 1 then 𝐹𝑉 (𝑥) = 𝑥𝐹𝑈(𝑥)
 Reason: 𝑉𝑘 = 𝑈𝑘−1 for 𝑘 ≥ 1 and 𝑉0 = 0.
 ∴𝐹𝑉 (𝑥) = ∞∑𝑘=0 𝑉𝑘𝑥𝑘 = ∞∑𝑘=1 𝑈𝑘−1𝑥𝑘

= 𝑥 ∞∑𝑗=0 𝑈𝑗𝑥𝑗 = 𝑥𝐹𝑈(𝑥).
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Useful results we’ll need for g.f.’s

Generalization of SR2:
 (1) If 𝑉 = 𝑈 + 𝑖 then𝐹𝑉 (𝑥) = 𝑥𝑖𝐹𝑈(𝑥).
 (2) If 𝑉 = 𝑈 − 𝑖 then𝐹𝑉 (𝑥) = 𝑥−𝑖𝐹𝑈(𝑥)

= 𝑥−𝑖 ∞∑𝑘=0 𝑈𝑘𝑥𝑘
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Connecting generating functions:
 Goal: figure out forms of the component

generating functions, 𝐹𝜋 and 𝐹𝜌.

 Relate 𝜋𝑛 to 𝑃𝑘 and 𝜌𝑛 through one step of
recursion.
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Connecting generating functions:

 𝜋𝑛 = probability that a random node belongs to a
finite component of size 𝑛= ∞∑𝑘=0 𝑃𝑘 ×Pr( sum of sizes of subcomponents

at end of 𝑘 random links = 𝑛 − 1 )


Therefore: 𝐹𝜋(𝑥) = 𝑥⏟
SR2

𝐹𝑃 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

 Extra factor of 𝑥 accounts for random node itself.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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Connecting generating functions:

 Relate 𝜌𝑛 to 𝑅𝑘 and 𝜌𝑛 through one step of
recursion.
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Connecting generating functions:
 𝜌𝑛 = probability that a random link leads to a finite

subcomponent of size 𝑛.
 Invoke one step of recursion:𝜌𝑛 = probability that in following a random edge,

the outgoing edges of the node reached lead to
finite subcomponents of combined size 𝑛 − 1,= ∞∑𝑘=0 𝑅𝑘×Pr( sum of sizes of subcomponents

at end of 𝑘 random links = 𝑛 − 1 )


Therefore: 𝐹𝜌(𝑥) = 𝑥⏟
SR2

𝐹𝑅 (𝐹𝜌(𝑥))⏟⏟⏟⏟⏟
SR1

 Again, extra factor of 𝑥 accounts for random node
itself.
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Connecting generating functions:

 We now have two functional equations connecting
our generating functions:𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)) and 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥))

 Taking stock: We know 𝐹𝑃 (𝑥) and𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1).
 We first untangle the second equation to find 𝐹𝜌
 We can do this because it only involves 𝐹𝜌 and 𝐹𝑅.
 The first equation then immediately gives us 𝐹𝜋 in

terms of 𝐹𝜌 and 𝐹𝑅.
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Component sizes

 Remembering vaguely what we are doing:

Finding 𝐹𝜋 to obtain the fractional size of the
largest component 𝑆1 = 1 − 𝐹𝜋(1).

 Set 𝑥 = 1 in our two equations:𝐹𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) and 𝐹𝜌(1) = 𝐹𝑅 (𝐹𝜌(1))
 Solve second equation numerically for 𝐹𝜌(1).
 Plug 𝐹𝜌(1) into first equation to obtain 𝐹𝜋(1).
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Component sizes
Example: Standard random graphs.
 We can show 𝐹𝑃 (𝑥) = 𝑒−⟨𝑘⟩(1−𝑥)⇒ 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1)

= ⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥)/⟨𝑘⟩𝑒−⟨𝑘⟩(1−𝑥′)|𝑥′=1= 𝑒−⟨𝑘⟩(1−𝑥) = 𝐹𝑃 (𝑥) …aha!

 RHS’s of our two equations are the same.
 So 𝐹𝜋(𝑥) = 𝐹𝜌(𝑥) = 𝑥𝐹𝑅(𝐹𝜌(𝑥)) = 𝑥𝐹𝑅(𝐹𝜋(𝑥))
 Consistent with how our dirty (but wrong) trick

worked earlier …
 𝜋𝑛 = 𝜌𝑛 just as 𝑃𝑘 = 𝑅𝑘.

COcoNuTS
@networksvox

Generating
Functions and
Networks

Generating
Functions
Definitions

Basic Properties

Giant Component
Condition

Component sizes

Useful results

Size of the Giant
Component

A few examples

Average Component Size

References

.
.
.
.
.

.
39 of 60

Component sizes
 We are down to𝐹𝜋(𝑥) = 𝑥𝐹𝑅(𝐹𝜋(𝑥)) and 𝐹𝑅(𝑥) = 𝑒−⟨𝑘⟩(1−𝑥).
 ∴𝐹𝜋(𝑥) = 𝑥𝑒−⟨𝑘⟩(1−𝐹𝜋(𝑥))
 We’re first after 𝑆1 = 1 − 𝐹𝜋(1) so set 𝑥 = 1 and

replace 𝐹𝜋(1) by 1 − 𝑆1:
1 − 𝑆1 = 𝑒−⟨𝑘⟩𝑆1

Or: ⟨𝑘⟩ = 1𝑆1 ln 11 − 𝑆1
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

〈 k 〉

S
1

 Just as we found with our dirty trick …
 Again, we (usually) have to resort to numerics …
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A few simple random networks to contemplate
and play around with:
 Notation: The Kronecker delta function 𝛿𝑖𝑗 = 1

if 𝑖 = 𝑗 and 0 otherwise.
 𝑃𝑘 = 𝛿𝑘1.
 𝑃𝑘 = 𝛿𝑘2.
 𝑃𝑘 = 𝛿𝑘3.
 𝑃𝑘 = 𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 0.
 𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘3.
 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘3, with 0 ≤ 𝑎 ≤ 1.
 𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2.
 𝑃𝑘 = 𝑎𝛿𝑘1 + (1 − 𝑎)𝛿𝑘𝑘′ for some fixed 𝑘′ ≥ 2 with0 ≤ 𝑎 ≤ 1.
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A joyful example :𝑃𝑘 = 12𝛿𝑘1 + 12𝛿𝑘3.
 We find (two ways): 𝑅𝑘 = 14𝛿𝑘0 + 34𝛿𝑘2.
 A giant component exists because:⟨𝑘⟩𝑅 = 0 × 1/4 + 2 × 3/4 = 3/2 > 1.
 Generating functions for 𝑃𝑘 and 𝑅𝑘:𝐹𝑃 (𝑥) = 12𝑥 + 12𝑥3 and 𝐹𝑅(𝑥) = 14𝑥0 + 34𝑥2
 Check for goodness:

 𝐹𝑅(𝑥) = 𝐹 ′𝑃 (𝑥)/𝐹 ′𝑃 (1) and 𝐹𝑃 (1) = 𝐹𝑅(1) = 1.
 𝐹 ′𝑃 (1) = ⟨𝑘⟩𝑃 = 2 and 𝐹 ′𝑅(1) = ⟨𝑘⟩𝑅 = 32 .

 Things to figure out: Component size generating
functions for 𝜋𝑛 and 𝜌𝑛, and the size of the giant
component.
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Find 𝐹𝜌(𝑥) first:
 We know: 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) .
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 Sticking things in things, we have:𝐹𝜌(𝑥) = 𝑥 (14 + 34 [𝐹𝜌(𝑥)]2) .
 Rearranging:3𝑥 [𝐹𝜌(𝑥)]2 − 4𝐹𝜌(𝑥) + 𝑥 = 0.
 Please and thank you:𝐹𝜌(𝑥) = 23𝑥 (1 ± √1 − 34𝑥2)
 Time for a Taylor series expansion.
 The promise: non-negative powers of 𝑥 with

non-negative coefficients.
 First: which sign do we take?
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 Because 𝜌𝑛 is a probability distribution, we know𝐹𝜌(1) ≤ 1 and 𝐹𝜌(𝑥) ≤ 1 for 0 ≤ 𝑥 ≤ 1.
 Thinking about the limit 𝑥 → 0 in𝐹𝜌(𝑥) = 23𝑥 (1 ± √1 − 34𝑥2) ,

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

 So we must have:𝐹𝜌(𝑥) = 23𝑥 (1 − √1 − 34𝑥2) ,
 We can now deploy the Taylor expansion:(1 + 𝑧)𝜃 = (𝜃0)𝑧0 + (𝜃1)𝑧1 + (𝜃2)𝑧2 + (𝜃3)𝑧3 + …
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 Let’s define a binomial for arbitrary 𝜃 and 𝑘 = 0, 1, 2, …:(𝜃𝑘) = Γ(𝜃 + 1)Γ(𝑘 + 1)Γ(𝜃 − 𝑘 + 1)
 For 𝜃 = 12 , we have:(1 + 𝑧) 12 = ( 120)𝑧0 + ( 121)𝑧1 + ( 122)𝑧2 + …

= Γ( 32 )Γ(1)Γ( 32 )𝑧0 + Γ( 32 )Γ(2)Γ( 12 )𝑧1 + Γ( 32 )Γ(3)Γ(− 12 )𝑧2 + …= 1 + 12𝑧 − 18𝑧2 + 116𝑧3 − …
where we’ve used Γ(𝑥 + 1) = 𝑥Γ(𝑥) and noted thatΓ( 12 ) = √𝜋2 .

 Note: (1 + 𝑧)𝜃 ∼ 1 + 𝜃𝑧 always.
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 Totally psyched, we go back to here:𝐹𝜌(𝑥) = 23𝑥 (1 − √1 − 34𝑥2) .
 Setting 𝑧 = − 34 𝑥2 and expanding, we have:𝐹𝜌(𝑥) =23𝑥 (1 − [1 + 12 (−34𝑥2)1 − 18 (−34𝑥2)2 + 116 (−34𝑥2)3] + …)
 Giving: 𝐹𝜌(𝑥) = ∞∑𝑛=0 𝜌𝑛𝑥𝑛 =14𝑥+ 364𝑥3+ 9512𝑥5+…+23 (34)𝑘 (−1)𝑘+1Γ( 32 )Γ(𝑘 + 1)Γ( 32 − 𝑘)𝑥2𝑘−1+…
 Do odd powers make sense?
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 We can now find 𝐹𝜋(𝑥) with:𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥))
= 𝑥12 ((𝐹𝜌(𝑥))1 + (𝐹𝜌(𝑥))3)

= 𝑥12 ⎡⎢⎣ 23𝑥 (1 − √1 − 34𝑥2) + 23(3𝑥)3 (1 − √1 − 34𝑥2)3⎤⎥⎦ .
 Delicious.

 In principle, we can now extract all the 𝜋𝑛.
 But let’s just find the size of the giant component.
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 First, we need 𝐹𝜌(1):𝐹𝜌(𝑥)∣𝑥=1 = 23 ⋅ 1 (1 − √1 − 3412) = 13.
 This is the probability that a random edge leads to a

sub-component of finite size.

 Next:𝐹𝜋(1) = 1⋅𝐹𝑃 (𝐹𝜌(1)) = 𝐹𝑃 (13) = 12⋅13+12 (13)3 = 527.
 This is the probability that a random chosen node

belongs to a finite component.

 Finally, we have𝑆1 = 1 − 𝐹𝜋(1) = 1 − 527 = 2227.
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Average component size
 Next: find average size of finite components ⟨𝑛⟩.
 Using standard G.F. result: ⟨𝑛⟩ = 𝐹 ′𝜋(1).
 Try to avoid finding 𝐹𝜋(𝑥) …
 Starting from 𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜌(𝑥)), we

differentiate:𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′𝜌(𝑥)𝐹 ′𝑃 (𝐹𝜌(𝑥))
 While 𝐹𝜌(𝑥) = 𝑥𝐹𝑅 (𝐹𝜌(𝑥)) gives𝐹 ′𝜌(𝑥) = 𝐹𝑅 (𝐹𝜌(𝑥)) + 𝑥𝐹 ′𝜌(𝑥)𝐹 ′𝑅 (𝐹𝜌(𝑥))
 Now set 𝑥 = 1 in both equations.
 We solve the second equation for 𝐹 ′𝜌(1) (we must

already have 𝐹𝜌(1)).
 Plug 𝐹 ′𝜌(1) and 𝐹𝜌(1) into first equation to find𝐹 ′𝜋(1).
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Average component size
Example: Standard random graphs.
 Use fact that 𝐹𝑃 = 𝐹𝑅 and 𝐹𝜋 = 𝐹𝜌.
 Two differentiated equations reduce to only one:𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥)) + 𝑥𝐹 ′𝜋(𝑥)𝐹 ′𝑃 (𝐹𝜋(𝑥))

Rearrange: 𝐹 ′𝜋(𝑥) = 𝐹𝑃 (𝐹𝜋(𝑥))1 − 𝑥𝐹 ′𝑃 (𝐹𝜋(𝑥))
 Simplify denominator using 𝐹 ′𝑃 (𝑥) = ⟨𝑘⟩𝐹𝑃 (𝑥)
 Replace 𝐹𝑃 (𝐹𝜋(𝑥)) using 𝐹𝜋(𝑥) = 𝑥𝐹𝑃 (𝐹𝜋(𝑥)).
 Set 𝑥 = 1 and replace 𝐹𝜋(1) with 1 − 𝑆1.

End result: ⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
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Average component size
 Our result for standard random networks:⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
 Recall that ⟨𝑘⟩ = 1 is the critical value of average

degree for standard random networks.
 Look at what happens when we increase ⟨𝑘⟩ to 1

from below.
 We have 𝑆1 = 0 for all ⟨𝑘⟩ < 1 so⟨𝑛⟩ = 11 − ⟨𝑘⟩
 This blows up as ⟨𝑘⟩ → 1.
 Reason: we have a power law distribution of

component sizes at ⟨𝑘⟩ = 1.
 Typical critical point behavior …
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Average component size

 Limits of ⟨𝑘⟩ = 0 and ∞ make sense for⟨𝑛⟩ = 𝐹 ′𝜋(1) = (1 − 𝑆1)1 − ⟨𝑘⟩(1 − 𝑆1)
 As ⟨𝑘⟩ → 0, 𝑆1 = 0, and ⟨𝑛⟩ → 1.
 All nodes are isolated.
 As ⟨𝑘⟩ → ∞, 𝑆1 → 1 and ⟨𝑛⟩ → 0.
 No nodes are outside of the giant component.

Extra on largest component size:
 For ⟨𝑘⟩ = 1, 𝑆1 ∼ 𝑁2/3/𝑁 .
 For ⟨𝑘⟩ < 1, 𝑆1 ∼ (log𝑁)/𝑁 .
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 Let’s return to our example: 𝑃𝑘 = 12 𝛿𝑘1 + 12 𝛿𝑘3.
 We’re after:⟨𝑛⟩ = 𝐹 ′𝜋(1) = 𝐹𝑃 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑃 (𝐹𝜌(1))

where we first need to compute𝐹 ′𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (𝐹𝜌(1)) .
 Place stick between teeth, and recall that we have:𝐹𝑃 (𝑥) = 12𝑥 + 12𝑥3 and 𝐹𝑅(𝑥) = 14𝑥0 + 34𝑥2.
 Differentiation gives us:𝐹 ′𝑃 (𝑥) = 12 + 32𝑥2 and 𝐹 ′𝑅(𝑥) = 32𝑥.
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 We bite harder and use 𝐹𝜌(1) = 13 to find:𝐹 ′𝜌(1) = 𝐹𝑅 (𝐹𝜌(1)) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (𝐹𝜌(1))
= 𝐹𝑅 (13) + 𝐹 ′𝜌(1)𝐹 ′𝑅 (13)

= 14 + ✁34 13✁2 + 𝐹 ′𝜌(1) ✁32 1
✁3.

 After some reallocation of objects, we have 𝐹 ′𝜌(1) = 132 .


Finally: ⟨𝑛⟩ = 𝐹 ′𝜋(1) = 𝐹𝑃 (13) + 132 𝐹 ′𝑃 (13)= 12 13 + 12 133 + 132 (12 + ✁32 13✁2 ) = 527 + 133 = 12227 .
 So, kinda small.
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Nutshell

 Generating functions allow us to strangely
calculate features of random networks.

 They’re a bit scary and magical.
 We’ll find generating functions useful for

contagion.
 But we’ll also see that more direct, physics-bearing

calculations are possible.
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