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Generatingfunctionology

<& ldea: Given a sequence ag,ay,a,, ..., associate
each element with a distinct function or other
mathematical object.

<> Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:

& The generating function (g.f.) for a sequence {a,, }
is

F(z) = i a,z".
n=0

<& Roughly: transforms a vector in R into a
function defined on R1.

<& Related to Fourier, Laplace, Mellin, ...

Simple examples:
Rolling dice and flipping coins:
& p¥) = Pr(throwing a k) = 1/6 where k = 1,2, ... 6.

6
. 1
FE () =3 pPak = g+ +a% +at 405 +2).
k=1

& pso™ = Pr(head) = 1/2, p{°" = Pr(tail) = 1/2.
F(com)(l,) _ p(ocom)xo +p(1<10|n)x1 _ 5(1 + m)

< A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).

< We'll come back to these simple examples as we
derive various delicious properties of generating
functions.
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Example

&> Take a degree distribution with exponential decay:

Py, = ce Mk

where geometricsumfully, we havec =1 — ¢
<& The generating function for this distribution is

= c

— Ak gk

= E P aF E ce [
k=0

<o Notice that F(1) =¢/(1—e ) =1.
&% For probability distributions, we must always have
F(1) = 1since

ZPkl’“

&> Check die and coin p.g.f.'s.

ZP,F1

Properties:
&> Average degree:

o0 oo
ky=Y kP, => kPu*!
k=0 k=0

d
- dwF( 2

x=1

&% In general, many calculations become simple, if a little
abstract.

&% For our exponential example:

, 1—e e

Fle)= ﬁ

& SN
So: (k) = F'(1) = GET*)

& Check for die and coin p.g.f.'s.

Useful pieces for probability distributions:

& Normalization:
F(1)=1

& First moment:
(k) =F'(1)

&> Higher moments:

o= (o4 Fia)

r=1
& kth element of sequence (general):
1 d"
P = grger @)
x=0
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A beautiful, fundamental thing:

<& The generating function for the sum of two
random variables

Generating

W=U+V

Fy (z) = Fyy (o) Fy (o).

<> Convolve yourself with Convolutions:
Insert question from assignment 5 (.

< Try with die and coin p.g.f's. )
1. Add two coins (tail=0, head=1). Ok
2. Add two dice. Il
3. Add a coin flip to one die roll. [VESE)

“a 14 0f 60
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Edge-degree distribution

Generating

Functions and
< Recall our condition for a giant component: Networks
kz — I{? Generating
<k>R - % > 1 ﬂmmongq

o Let's re-express our condition in terms of
generating functions.

> We first need the g.f. for R,.

<= We'll now use this notation:
Fp(x)is the g.f. for P,.
Fpr(xz)isthe g.f. for R,

<> Giant component condition in terms of g.f. is:

(k) g = Fp(1) > 1.

& Now find how Fry, is related to Fp ...

v 16 of 60

Edge-degree distribution Greworkevox
Genel_'ating
& We have Ei:ﬁé?'z:and
o = (k+1)Pp g
= Ryzk = L gk, Senerating
/;) k ];) <k> Eumrct[c')’;scy

Shiftindex to j = k£ + 1 and pull out

<k>
1 & . 1
=) jPail=_—
w2 =

v
S

References
1 d & ; 1 d
~ a5 = g P - = g5

Finally, since (k) = Fl’g(l),
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Edge-degree distribution

<% Recall giant component condition is
(k) p = Fp(1) > 1.
&% Since we have F(z) = Fp(z)/Fp(1),

Fp(z)

PR = T,

& Setting = = 1, our condition becomes

Fp(1)

>1
Fp(1)

Size distributions

To figure out the size of the largest component (S,),
we need more resolution on component sizes.

Definitions:

& ,, = probability that a random node belongs to a

finite component of size n < co.
&> p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < co.

Local-global connection:

Pk‘Rk = Ty Py

neighbors < components

Connecting probabilities:

n (\ot}eS

Ty q

‘<, I edgej
P

<% Markov property of random networks connects
T Prs @Nd Py
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Connecting probabilities:

/’Q/kék wfg»}ng

edgey

& Markov property of random networks connects p,,

and R,,.

G.f.'s for component size distributions:

& OO OO
F (z)= Z mpx™and F,(z) = Z Ppx™
n=0 n=0

The largest component:

% Subtle key: F_(1) is the probability that a node
belongs to a finite component.

& Therefore: S; =1— F_(1).

Our mission, which we accept:

<& Determine and connect the four generating
functions
Fp,FR,F,, and F,.

Useful results we'll need for g.f.'s

Sneaky Result 1:
<& Consider two random variables U/ and V whose
values may be 0,1,2, ...
<> Write probability distributions as U,, and V,, and
gf/sas Fy and Fy,.
<& SR1: If a third random variable is defined as
U ‘ d
W= "V with each VIV £ v

=1

then

‘FW(I) = Fy (Fy(x)) ‘
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Proof of SR1:

Write probability that variable W has value k as W,,.

W, = ZUj x Pr(sum of j draws of variable V = k)
7=0

4

<.
Il
[=}

U. Z V. V. V.

J K] T
(i1 1ig,mighl
iy tigtotij=k

Z =>.2.U;
k=0 k=0 j=0

2 ViV

{igig,ighl
iy tig bt =k

Mg

-5

V. 24V, gt V. 2t
77 > i

Il
(=}

J iy ig,igll

iy tig i =k

Proof of SR1:

With some concentration, observe:

V, a1V, at2 ...V, xb
iy iy i

j=0 k=0 {iy,ig,.,iz}l

Gy tigtti;—=k

x* piece of (377 V,a:i')j

Vo) = (Py())

(
= ZU
Jj=0
= Iy (Fy(z))

<& Alternate, groovier proof in the accompanying
assignment.

Useful results we'll need for g.f.'s

Sneaky Result 2:

& Start with a random variable U with distribution
U, (k=0,1,2,...)
&5 SR2: If a second random variable is defined as

V =U+1 then |Fy(z) = 2Fy(x)

&% Reason: V,, =U,_, fork>1and V, =0.

& oo o0
Py(z) = Z Z Up_ya®
k=0 fo—
= xZUj:cJ =xFy(x)
7=0
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Useful results we'll need for g.f.'s

Generalization of SR2:
s MIfFV =U+ithen

Generating
Functions

Fy(z) = 2* Fy ().

& Q) IfV =U—ithen

Fy(z) = 27 Fy () References
=
o0
=z Z Upx® :’
k=0 s
| = =

“a > 300f60

Connecting generating functions: Gnemworkevo
& Goal: figure out forms of the component EE%EEEEEM

generating functions, F, and F,,.

Generating
Functions

References

& Relate 7, to P, and p,, through one step of

recursion. Sa e 32060
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Generating
Functions

& 7, = probability that a random node belongs to a
finite component of size n

i pr( SUm of sizes of subcomponents
P at end of k random links = n — 1

& R;ferences
Therefore: |F,(z)= z Fp(F,(z))

<& Extra factor of 2 accounts for random node itself.

“a 330f60
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Connecting generating functions:

Cn

/’R/ék oufjﬁﬂﬂ

ke edgey

& Relate p,, to R, and p,, through one step of
recursion.

Connecting generating functions:

& p,, = probability that a random link leads to a finite

subcomponent of size n.

&% Invoke one step of recursion:
p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

_ i R, xcpr ( SUm of sizes of subcomponents
Tk at end of k random links =n — 1

Therefore: |F (z) = z Fg(F,(z))
[ sR2 ] Py

<& Again, extra factor of 2 accounts for random node

itself.

Connecting generating functions:

<> We now have two functional equations connecting

our generating functions:

Fo(z)=xFp (F,(z)) and F,(z)=aFg (F,(z))

™

&> Taking stock: We know Fp(z) and
Fp(z) = Fp(z)/Fp(1).
& We first untangle the second equation to find F,

< We can do this because it only involves F, and Fp.
& The first equation then immediately gives us F,_ in

terms of F, and F,.
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Component sizes

<> Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1— F,(1).
& Setx = 1in our two equations:

F_(1)=Fp (Fp(l)) and F,(1)=Fg (Fp(l))

& Solve second equation numerically for F,(1).
<> Plug F,(1) into first equation to obtain F, (1).

Component sizes

Example: Standard random graphs.
& We canshow Fp(z) = ¢ (P12

= Fp(z) = Fp(x)/Fp(1)
= <k>67<k>(17z>/<k>€f<k>(1fz’)‘z,zl

= 02 — P () ...aha!
<> RHS's of our two equations are the same.
& SO F(1) = F,(v) = aFp(F,(v)) = 2Fp(Fr(2))

<& Consistent with how our dirty (but wrong) trick
worked earlier ...

& m, =p, justas P, = Ry,

Component sizes
&> We are down to
F_(z) = 2Fx(F,.(z)) and Fy(z) = e~ FI(=2),

™

F_(z) = ze~M1-Fu(@)

&> We're first after S, =1— F, (1) sosetz = 1and

replace F, (1) by 1 — S;:
N

1— Sl = 67(k>sl

B og
1 1 0.
Or: (k) = —In
=g InT—5 04
02
0 1 2 3 4

< Just as we found with our dirty trick ...
<& Again, we (usually) have to resort to numerics ...
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A few simple random networks to contemplate ffn”féigiind
and play around with: emerks
& Notation: The Kronecker delta function(Z'é,; = 1 Generating

if i = j and 0 otherwise.

P, =6y,

Py =6p0.

Py =0y

P, = &, for some fixed &/ > 0.

Py = 3051 + 30k3-

P, =ad,; + (1 —a)dps, with0 <a<1.

Py, = %6}, + 56, for some fixed &’ > 2.

P, = adg; + (1 — a)d,, for some fixed &/ > 2 with
0<a<l.

LR R R R R R

> 410f60
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A joyful example (X

Generating
1 1 Functions and
Pk == 76k1 + 75193. Networks
2 2
Generating
& We find (two ways): Ry, = 36,0 + 36,,. functons

<& A giant component exists because:
(kYp=0x1/4+2x3/4=3/2>1.
&> Generating functions for P, and R,:
Fp(z) = %a: + %x?’ and Fr(z) = %SEO + gx2
& Check for goodness:
© Fg(x) = Fp(x)/Fp(1) and Fp(1) = Fp(1) = 1.
W Fp(1) = (k)p =2and Fi(1) = (k)g = 3.
& Things to figure out: Component size generating
functions for m,, and p,,, and the size of the giant
component.

“va@ 42of60
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. . Gene(ating
Find F,(x) first: Funcions and
&> We know:

F,(z) = 2Fg (F,(z)). Panctons
%n =)
//é k oufgring
Ry - edgjej

va 430f 60

< Sticking things in things, we have:
Fo(z) =z (7 +2 [Fp(x)]2> .
& Rearranging:
3¢ [F,(2)]” —4F,(2) + 2 = 0.

< Please and thank you:

Fp(x):% (1:|:U1—ix2>

Time for a Taylor series expansion.

The promise: non-negative powers of z with
non-negative coefficients.

<% First: which sign do we take?

< Because p,, is a probability distribution, we know
F,(1)<1land F,(z) <1for0 <z <1.

<& Thinking about the limitz — 0 in

2 3
F (x) = LEZ

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

<& So we must have:

Fp(x):% (1—1/1—?1132),

< We can now deploy the Taylor expansion:

a+22= (D)2 + (D2 + (02 + (0 + -

<% Let's define a binomial for arbitrary § and k=0, 1,2, ...:

0y r(0+1)
(k) T T(k+ 10 —k+1)

& For 6 = 5, we have:

T r(3) r(3)
ST rerd” TTery”
= 1+%zféz2+%237...

where we've used I'(x + 1) = zI'(x) and noted that
rl)y=Lc

2 P

<& Note: (1+2)? ~ 1+ 6z always.
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Totally psyched, we go back to here:

Fp(w):% (1*\/1*%372).

Setting 2 = —2 2 and expanding, we have:
Fy(z) =
2 1/ 3\ 17 3 ,)\° 3,0\
21— l(=2e2) - ”2) 7(”2)
3 ( [ + ( 41) 8( x +16 x +
Giving:
Fyx)=) ppa" =
n=0
1 3 3,9 s 2 (3)k (71)“1“%) 2k—1
16 5" T3 \4) throreon T
Do odd powers make sense?
COcoNuTS
@networksvox
Generating
Functions and
We can now find F(x) with: Networks
Fﬂ,(x) = xFP (Fp (13)) Generating

Functic

Delicious.
In principle, we can now extract all the 7.

But let’s just find the size of the giant component.
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First, we need F,(1):

Generating
Functions and
2 3 1 Networks
— — — 12 —
Fy(z)| _ = 31 (1 y/1 1! ) 3
Generating

Functions
Def

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

F.(1)=1Fp(F,(1)) = Fp (%) = %%4—% (1> -5

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have

5 22
Si=1-F(1)=1-2 =

O
g
O

Da 49 of 60

Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F.(1).
Try to avoid finding F,.(z) ...
Starting from F, (z) = 2Fp (F,(x)), we
differentiate:

Fl(z) = Fp (F,(x)) + zF,(z)Fp (F,(z))
While F,(z) = zFg (F,(z)) gives
F;(ar) =Fg (FP(I)) + :L’F;(ar)F}’a (Fp(r))

Now set z = 1 in both equations.

We solve the second equation for F (1) (we must
already have F,(1)).

Plug F,(1) and F,(1) into first equation to find
FL(1).

Average component size
Example: Standard random graphs.
Use fact that Fp = Fr and F,. = F,.
Two differentiated equations reduce to only one:

Fr(x) = Fp (Fr(x)) + 2Fr (@) Fp (Fr ()

Rearrange: F.(z) = %

™

Simplify denominator using Fp(z) = (k)Fp(z)
Replace Fp(F, . (z)) using F,.(z) = aFp(F,.(x)).
Setz =1 and replace F, (1) with 1 — S;.

(1-251)

End result: (n) = F/(1) = T—M(i-5,)
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Average component size

Our result for standard random networks:
1-97)
ny="F.(1) = 7< 1
A P Ty

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1

from below.
We have S; =0forall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...

Average component size

Limits of (k) = 0 and co make sense for

1-5,)
n)=F.(1) = _U=5)
=

As (k) — 0,5, =0,and (n) — 1.

All nodes are isolated.

As (k) = o0, S; = 1 and (n) — 0.

No nodes are outside of the giant component.

Extra on largest component size:
For (k) =1, S, ~ N?/3/N.
For (k) <1, S, ~ (logN)/N.

Let's return to our example: P, = 16,; + 265.
We're after:

(n) = Fr(1) = Fp (F,(1)) + Fy (1) Fp (F, (1))
where we first need to compute

Place stick between teeth, and recall that we have:

1 1 1 3
Fp(x) = ST+ 5:63 and Fg(z) = Zxo + sz.

Differentiation gives us:

Fp(z) = % + gmz and F(z) = gr
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We bite harder and use Fp(l) = % to find: @networksvox
Generating
’ / " Functions and
Fp(l):FR (Fp(l))"er(l)FR (Fp(l)) Networks
Generating
1 / / 1 Hmct\omsD
=Fg (g) +F,(1)Fg (g) v
1 31 31
= +Z o+ P2
1 15 T3

After some reallocation of objects, we have F/ (1) = 13, references

Finally: (n) = F.(1) = Fp <1> + L;F}/D (1)

3 3
_11 11 131 g1 5 13 122
23 233 2 \2 23f) 27 3 27’
So, kinda small.
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Generating
A

tions
Generating functions allow us to strangely b
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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