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 Generatingfunctionology "

ldea: Given a sequence a, a4, a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

E(x) = i @\
n=0

Roughly: transforms a vector in R*° into a
function defined on R1.

Related to Fourier, Laplace, Mellin, ...
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p,. = Pr{throwing a k) = 1/6 where k.= 1,2, ... ;6.

Generating
Functions
B3]

6
FO (g Zpk@)ﬂck :E—i—x + 23+t 4+ 2% +26).

pSe" — Pr(head) = 1/2, p™™ = Pr(tail) = 1/2.
References

F(coin)(x) o pgoin)xo —|—p(1c°in)a:1 p s %(1 1L x)

A generating function for a probability distribution -+,
is called a Probability Generating Function (p.g.f.). B!
We'll come back to these simple examples as we [
derive various delicious properties of generating

functions.
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Generating

Take a degree distribution with exponential decay:  Functionsand

Networks

P =Xk

=k

e GCE
Generating
Functions

where geometricsumfully, we have ¢ = 1 — e oo
The generating function for this distribution is

) [e) 2 ( [ ol
.’L') = g Pk;.’lfk = E Ceikkl’k = m “‘,;u‘u-‘”‘\““
k=0 k=0 i

References

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have
F(1) = 1 since

ZPklk ZPk_l =

Check die and coin p.g.f.’s.
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PrOpertieS: @networksvex

st
Average degree: ;ng‘f\e’ti%Eggand
oo o0
<k> B Z kPk = Z kjpkxk71 Generating
k=0 k=0 Ty Functions
)| =P
= — T =
dz i
In general, many calculations become simple, if a little Nioveanges
abStraCt. Refer‘emce’s’ ‘ :
For our exponential example:
F'(z) = A=eMe e
(1—ze )2’ I
i)
? e—k | N =
So: (k) =F'(1) = ————.
(k) (1) T

[e]STe)

Check for die and coin p.g.f.'s.
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&= Normalization:
e
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References
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<& kth element of sequence (general):
I L
Pe=maet@
=0

“2a ¢ 13 0f 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS
@networksvex
Generating
Functions and
Networks

The generating function for the sum of two
random variables Generating

Functions

Definitions

W=U+V

Fy (z) = Fy(z)Fy (o). Ayl [

Convolve yourself with Convolutions: References
Insert question from assignment 5 (&',

Try with die and coin p.g.f.'s. (S
1. Add two coins (tail=0, head=1). |58
2. Add two dice. ( ‘
3. Add a coin flip to one die roll.  CEREEE

[e]STe)
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Edge-degree distribution
Recall our condition for a giant component:

(k2) — (k)
7 i
< >R <k> 32
Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fr(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

(Ryp = Fh(1) > 1,

Now find how FF, is related to Fp ...
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Edge-degree distribution

COcoNuTS
@networksvex
- - k+1 P
= Z R Z e g k Generating
R0 k=0 i
Shift index to j = k + 1 and pull out (T{»:
1 & ‘ 1 = d
Frlz)=-—) jPxit=—) P.—2J
o=y S 4 S
References
1 d & 1::4d
e S et p
=11
Finally, since (k) = Fp5(1),
Fp(x)
Fr(z)=-£
2 e
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Recall giant component condition is

) =Fp1) >,

Since we have Fg(z) = Fp(z)/Fp(1),
_ Fpl@)

ADRS

Setting « = 1, our condition becomes

FA)

Sl
FL(1)
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To figure out the size of the largest component (S,),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .

Pk7Rk < Ty Pn

neighbors < components
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< Markov property of random networks connects
T By BN Pps
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.k oufgring
Ri % edgge;

Markov property of random networks connects p,,
and R,.
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Zﬂ'l‘ andF Z

Subtle key: F_(1) is the probability that a node
belongs to a finite component.

Therefore: S; =1—F,_(1).

Determine and connect the four generating
functions

Fo, Byt andat

T
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Generating

Consider two random variables U and V whose Al
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.

SR1: If a third random variable is defined as

References
d

U
W = Z V() with each V® £ v
pe=it

then ‘
| Fw(2) = Fy (Fy(x))] |

D 250f60
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Proof of SR1:

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

=0

o

<
Il
o

Uy Y VY
{1,090 51
i1tigt..ti;=k

~Fyy ()

k=0 5=0 {182,515}
i1tigt..ti,;=k

:ZUj

7=0

I

V. 211V, a2 nV, ab
iy iq ;
{1 5625105)]
dyrbigt..ti =k

SRS ST S
k=0
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Proof of SR1:

With some concentration, observe:

oo =)
2k A5 ; 7
Fy (z) = E t E E V, x4V, xt2 V%I J
7=0 k=0 ({iy,ig, i}
i1tigt..+i;=k

=0

" pleceaf( > Vi/xi')j

Alternate, groovier proof in the accompanying
assignment.
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Useful results we'll need for g.f.'s Grcnitkis
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Start with a random variable U with distribution
U, (k=0,1,2,...) Peetonat
SR2: If a second random variable is defined as

Basil

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: Vk: i ka_1 for k >1 and VO = 0. References

o oo r n
Fv(a?) = Zkak == Zkal‘r a*
=0 R=il
::I;ZijJ = zFy(x) TLTANE
=0
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. Generalization of SR2: Bisi
| & (1) If V = U + Z then Functions

Definitions
Basic Properties
5 Giant Component
F <x> Gl 2 x’LF <$) Condition
Vv R (&, o Component sizes
Useful results

Size of the Giant
e y Component
@ (2)IfV =U —ithen

Average Component Size

FV('I‘) = .Z'iiFU(ZIﬁ References
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 Connecting generating functions:
Goal: figure out forms of the component
Fand B

P

generating functions,

N nodes

Relate 7,, to P, and p,, through one step of
recursion.
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 Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

it i p wpr( SYM of sizes of subcomponents
G at end of k¥ random links = n — 1

Therefore: | F-(z) = ¢ Fp(Fi(z))

Extra factor of 2 accounts for random node itself.
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TS Ouf'g;mg
edgeg

!

Relate p,, to R, and p,, through one step of
recursion.
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Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i n spr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefards L e (e — o HR (IR iGe))

Again, extra factor of z accounts for random node
itself.
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Functions and
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We now have two functional equations connecting Generating
unctions

our generating functions: Deiors
F. (x) =aFp (Fyle)) and  F,(r) = aFg(F,(x))

Taking stock: We know F(x) and

Fg(x) = Fp(z)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F, and F'g.

The first equation then immediately gives us F_ in
terms of I, and Fg,.
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1 — F,(1).
Set x = 1 in our two equations:

Fe(l)= Fp (F,(1)) and "Fi(1) = Fg (E,())

Solve second equation numerically for F,(1).
Plug F,(1) into first equation to obtain F, (1).
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F(1=2)

= Fr(z) = Fp(2)/Fp(1)

e <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1
—rerhintl R () ...ahal

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

Consistent with how our dirty (but wrong) trick
worked earlier ...

T =g Justas Py = R, .
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- Component sizes
We are down to
F _(z) =zFg(F,.(x)) and Fg(z) = e—(k)(1-z)

e

F(z) = pem{R1-Fa(@)

T

We're first after S; =1— F, (1) sosetz =1 and
replace F,_(1) by 1 — S;:

M

1 — Sl == 67<k>sl 1

1 1 08
Or: k) = STlnl =y 3

Just as we found with our dirty trick ...

Again, we (usually) have to resort to numerics ...
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&

R R R R R R

A few simple random networks to contemplate
and play around with:

if i = j and 0 otherwise.

Fprioge

By = Opg.

Py, = O3.

P, = 6, for some fixed &’ > 0.

Py = 5041 + 3043

P, =adp; + (1 —a)dgs, With0 <a < 1.

Py, = 26,1 + 30, for some fixed &’ > 2.

P, = ad,; + (1 — a)d,,, for some fixed £k’ > 2 with

0<a<l.

G TN Yy
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1 1
Pk) — 5574:1 + 551{33

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(kYp=0x%x1/44+2x%x3/4=3/2>1.
Generating functions for P, and R;:
bl o Sal (o

Fp(z) = 2x—|— 5% and Fg(z) = 12 + 12
Check for goodness:

B (2= L)/ EL (1) and Fo (1) = B (0= 1

ROGD ) o and BL D S o
Things to figure out: Component size generating

functions for 7,, and p,,, and the size of the giant
component.
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i ' Generating

Find F_(z) first: Functionsand
Bk Networks
&> We know:

F (1’) = :L‘FR ( g Generating

Functions

Definitions

Basic Properties

Giant Component
Condition

Component sizes
Useful results
Size of the Giant
Component

Average Component Size.

References
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Sticking things in things, we have:

F(z)=x (i +z [Fp(x)]2) L

Rearranging:
S [Fp(m)]2 o5 7 9 e B i

Please and thank you:

@)= 2 (1041- 32

Time for a Taylor series expansion.

The promise: non-negative powers of x with
non-negative coefficients.

First: which sign do we take?
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Because p,, is a probability distribution, we know
(e diand Fi{z) i<l for0-<t 2«1

Thinking about the limit z — 0in

Fp(m):% (11\/1—zm2> x

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

Fp(:v):% (1\/13:62) ;

We can now deploy the Taylor expansion:

se9r= Qs (4 (s (oo

COcoNuTS
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

0\ r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(xz + 1) = zI'(z) and noted that
L) =%

2 2413

Note: (1 + 2)? ~ 1 + 6z always.
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Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:

Giving:
o0
Fy(z) =) pna" =
n=0
B Siiga O 2 (3>k (—1)**11(3)
TEEaryid T iy GENEH VI B e iy

Do odd powers make sense?

<ol B
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Functions and

We can now find F, (z) with: Networks

Fﬂ_($> = acFP (Fp(x)) Generating

Functions
Defir

Delicious.

In principle, we can now extract all the ,,.

But let's just find the size of the giant component.

[e]STe)

D Q> 48 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

First, we need F',(1):

2 / 3 1
P S Mat 526 ST g - | e ST
Fp(x)|:n:1 31 (1 1 il ) 3

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (F,(1) = F (5) =35+

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have

COcoNuTS
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- Average component size eneworksvex

Generating

Next: find average size of finite components (n). PRI
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_ () ... Genrtlip

Starting from F, () = 2Fp (F,(z)), we e
differentiate: ik

File) = Fp (F,(x)) + 2F (z)F 5 (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(z) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have F,(1)).

Plug F/(1) and F,(1) into first equation to find

7
FTF( )‘ va > 52 o0f 60
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- Average component size eneworksvex

Example: Standard random graphs. Futdiighe £rd
Networks
Use fact that Fp = Fp and F. = F,.
Two differentiated equations reduce to only one: Generating

Functions

Fr(z) = Fp (Fyr(2)) + oF 7 (2)Fp (Fr(2))

Fp (Fr(x))
1 —2Fp (Fr(2))

s

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F, (z) = 2Fp(F, (z)).
Set z = 1 and replace F.(1) with 1 — 5.

(1-5,)

End result: (n) = F7 (1) = TE By =S, )

£ 53 of 60
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 Average component size

Our result for standard random networks:

i 45 (1_Sl>
R BT e

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...

COcoNuTS
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- Average component size @reniarkay
Fefine v
Networks

Limits of (k) = 0 and oo make sense for

Generating
(1 — Sl) Functions -

n) = F7/T )= Definitions
el Ve o

As (k) - 0,5; =0, and (n) — 1.

All nodes are isolated.

As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

For () =115~ N2/3 /N
For (k) <1, S; ~ (logN)/N.
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Let's return to our example: P, = 26,, + 15,5.

We're after:
(n}) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

FA1) = Fg (F, (1)) + E.(L)FF (F (1))

Place stick between teeth, and recall that we have:
1 1 1 3
F = — Zx3and F ey oo 0] Z 2.
b(x) 233—|-2ZE and Fr(x) iy —|—4:1c

Differentiation gives us:

113 3
() = - h 51:2 and ko) — 5T
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@networksvex
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We bite harder and use F,(1) = 1 to find:

F/(1)= Fg (F,(1)) + F,(1)Fg (F,(1))

After some reallocation of objects, we have F (1) = 42

=24

1 NG 2 1
Finally: (n) = F/(1) = F (7) 15 & (7>
inally: (n) L) Pl3 5 R iE

napet Pl e s L1 192

G2 3 inins. Lok N D g e il oY

So, kinda small.
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Generating
Functions
Definitions

Generating functions allow us to strangely sascProper
calculate features of random networks. ‘

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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