Generalized Contagion

Last updated: 2019/01/14, 22:50:59

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Outline

Introduction

Independent Interaction models

Interdependent interaction models

of Contagion" Dodds and Watts,

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

COcoNuTS

Generalized Contagion

Independent Interaction

models

interaction models

Generalized Model

Nutshell

Appendix

References

@networksvox

2 9 0 4 of 65

COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell Appendix

References

少<a>♠ 5 of 65

Generalized contagion model

"Universal Behavior in a Generalized Model

Phys. Rev. Lett., **92**, 218701, 2004. [5]

"A generalized model of social and

J. Theor. Biol., **232**, 587–604, 2005. ^[6]

biological contagion"

Dodds and Watts,

Basic questions about contagion

Focus: mean field models.

contagion?

How many types of contagion are there?

How can we categorize real-world contagions?

& Can we connect models of disease-like and social

COcoNuTS Generalized

Introduction

Independent Interaction models

interaction models

Generalized Model

Nutshell Appendix

References

少 Q ← 6 of 65

These slides are brought to you by:

COcoNuTS @networksvox Generalized Contagion

少 Q (~ 1 of 65

COcoNuTS

Generalized Contagion

Independent

models

interaction models

Generalized Model

Nutshell

Appendix

References

IVM S

CocoNuTs

Introduction

Interdependent interaction models

Generalized Model

Nutshell Appendix References

•9 Q (№ 2 of 65

COcoNuTS Generalized Contagion

Introduction Independent

Interdependent interaction models

Generalized Model

Nutshell Appendix

References CocoNuTs

IVM S

少 q (~ 3 of 65

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

Mathematical Epidemiology (recap)

The standard SIR model [11]

= basic model of disease contagion

Three states:

1. S = Susceptible

2. I = Infective/Infectious

3. R = Recovered or Removed or Refractory

 $\Re S(t) + I(t) + R(t) = 1$

Presumes random interactions (mass-action) principle)

Interactions are independent (no memory)

Discrete and continuous time versions

Independent Interaction models

Differential equations for continuous model

$$\frac{\mathrm{d}}{\mathrm{d}t}S = -\beta \underline{IS} + \rho R$$

$$\frac{\mathsf{d}}{\mathsf{d}t}I = \beta \underline{IS} - rI$$

$$\frac{\mathsf{d}}{\mathsf{d}t}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

 $\Re R_0$ = expected number of infected individuals resulting from a single initial infective

 \clubsuit Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Independent Interaction Models

Discrete time automata example:

Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

Reproduction Number R_0

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- \clubsuit At time t = 0, single infective randomly bumps into
- $\begin{cases} \begin{cases} \begin{cases}$
- \clubsuit At time t = 1, single Infective remains infected with probability 1 - r
- \clubsuit At time t = k, single Infective remains infected with probability $(1-r)^k$

- a Susceptible

ჟად 10 of 65 COcoNuTS

1VM | 8

COcoNuTS @networksvox

Generalized Contagion

Introduction

Independent Interaction

interaction models

Generalized Model

Nutshell

Appendix

References

models

Generalized Contagion Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Nutshell

Appendix

References

少∢ペ 11 of 65

COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

interaction models

Generalized Model

Nutshell Appendix

References

∙9 q (~ 12 of 65

Original models attributed to

Independent Interaction Models

1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick [8, 10, 9]

Coupled differential equations with a mass-action principle

COcoNuTS

少 Q ← 8 of 65

COcoNuTS @networksvox

Generalized Contagion

Independent Interaction

interaction models

Generalized

Nutshell

Appendix

References

IVM S

少 Q ← 7 of 65

COcoNuTS

Generalized Contagion Introduction

Independent Interaction models

Interdene

models

Nutshell

Appendix

References

IVM S

Generalized Model

models

Generalized Contagion

Introduction

Independent Interaction models

models

Generalized Model

Nutshell Appendix

References

少 Q ← 9 of 65

Reproduction Number R_0

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta \left(1+(1-r)+(1-r)^2+(1-r)^3+\ldots \right)$$

$$=\beta \frac{1}{1-(1-r)} = \frac{\beta/r}{r}$$

Similar story for continuous model.

Independent Interaction models

Example of epidemic threshold:

- Continuous phase transition.
- Fine idea from a simple model.

Simple disease spreading models

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)
- Spread of rumors (Daley & Kendall, 1964, 1965) [3, 4]
- Diffusion of innovations (Bass, 1969)^[1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003) [2]

COcoNuTS @networksvo: Generalized Contagion

Introduction

Independent Interaction models

Interdependen interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

References

少 Q (~ 13 of 65

Some (of many) issues

- Disease models assume independence of infectious events.
- $3/10 \equiv 30/100$. Threshold models only involve proportions:
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell Appendix

References

CocoNuTs

•9 q № 16 of 65

COcoNuTS @networksvo: Generalized

Introduction

Independent Interaction models

Interdependen interaction models

Generalized Model

Model Homogeneous version

Nutshell

Appendix References

少 Q (~ 14 of 65

Generalized model

Basic ingredients:

- & Incorporate memory of a contagious element [5, 6]
- \clubsuit Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- \Leftrightarrow ϕ_t = fraction infected at time t = probability of <u>contact</u> with infected individual
- & If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Appendix

Appenaix

References

少 Q № 17 of 65

Granovetter's model (recap of recap)

& Action based on perceived behavior of others.

- Two states: S and I.
- Recovery now possible (SIS).
- ϕ = fraction of contacts 'on' (e.g., rioting).
- Discrete time, synchronous update.
- This is a Critical mass model.
- Interdependent interaction model.

COcoNuTS @networksvox Generalized Contagion

Introduction
Independent
Interaction
models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell Appendix References

ჟqॡ 15 of 65

Generalized model—ingredients

 $\mathsf{S}\Rightarrow\mathsf{I}$

\$ Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \ge d_i^*$$

 $\begin{cases} \&$ Threshold d_i^* drawn from arbitrary distribution ${\it g}$ at t=0.

COcoNuTS @networksvo Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Nutshell

Appendix References

少∢~ 18 of 65

Generalized model—ingredients

 $\mathsf{I} \Rightarrow \mathsf{R}$

When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

 $R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

A visual explanation

Generalized mean-field model

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

$$\rho = 1$$
.

- & Look for steady-state behavior as a function of exposure probability p.
- & Denote fixed points by ϕ^* .

Homogeneous version:

- \clubsuit All individuals have threshold d^*
- \clubsuit All dose sizes are equal: d=1

COcoNuTS @networksvo Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix References

CocoNuTs

ჟა(ი 19 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent

Interdependent interaction

Generalized Model

Homogeneous version Heterogeneous version

Appendix References

少 Q C→ 20 of 65

COcoNuTS @networksvo Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version Nutshell

Appendix

References

夕 Q № 21 of 65

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

- r < 1 means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\text{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\text{b}} \underbrace{(1-r)}_{\text{C}}.$$

- a: Fraction infected between t and t+1, independent of past state or recovery.
- Probability of being infected and not being reinfected.
- c: Probability of not recovering

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T = 1:

 \clubsuit Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = \frac{1 - r/p}{1 - r} \quad \text{and} \quad \phi^* = 0.$$

- $\red{solution}$ Critical point at $p=p_c=r$.
- \clubsuit Spreading takes off if p/r > 1
- Find continuous phase transition as for SIR model.
- & Goodness: Matches $R_o = \beta/\gamma > 1$ condition.

Simple homogeneous examples

Fixed points for r = 1, $d^* = 1$, and T > 1

- r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past T interactions will infect individual.
- & Effect of individual interactions is independent from effect of others.
- \Leftrightarrow Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^*=1-(1-p\phi^*)^T.$$

COcoNuTS @networksvox Generalized Contagion

.

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

References

少 q (~ 23 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix References

CocoNuTs
Complex Networks
Sincoverisyex

•9 q (→ 24 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version Nutshell

Appendix References

少 Q № 25 of 65

Homogeneous, one hit models:

Fixed points for r = 1, $d^* = 1$, and T > 1

& Closed form expression for ϕ^* :

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- & Look for critical infection probability p_c .
- $As \phi^* \rightarrow 0$, we see

$$\phi^* \simeq pT\phi^* \ \Rightarrow {\color{red}p_c} = 1/T.$$

- Again find continuous phase transition ...
- \aleph Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

\$ Start with r=1, $d^*=1$, and $T\geq 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

- \clubsuit For r < 1, add to right hand side fraction who:
 - 1. Did not receive any infections in last T time steps.
 - 2. And did not recover from a previous infection.
- Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ O's}}\},$$

 \mathfrak{R} With history H_1 , probability of being infected (not recovering in one time step) is 1 - r.

Homogeneous, one hit models:

Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$

In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's}}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\}.$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1 - p\phi^*)^T(1 - r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1-p\phi^*)^{T+m}}_{b} \underbrace{(1-r)^{m+1}}_{c}.$$

- a: Pr(infection T + m + 1 time steps ago)
- b: Pr(no doses received in T + m time steps since)
- c: $Pr(no\ recovery\ in\ m\ chances)$

Generalized Contagion

Introduction

Independent models

models

Generalized

Homogeneous version

Nutshell Appendix

References

少 Q (~ 26 of 65

COcoNuTS @networksvox Generalized

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

References

少 Q (~ 27 of 65

COcoNuTS Generalized

Introduction

Independent models

Interdependent interaction models

Generalized Model

Homogeneous version Nutshell

Appendix References

∮0 q (~ 28 of 65

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and $T \ge 1$

 \Re Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= \frac{\mathbf{r}}{r} \sum_{m=0}^{\infty} P(H_{T+m}) = \frac{\mathbf{r}}{r} \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p \phi^* (1 - p \phi^*)^T}{1 - (1 - p \phi^*)(1 - r)}.$$

Using the probability of not recovering, we end up with a fixed point equation:

$$\phi^* = 1 - \frac{r(1-p\phi^*)^T}{1-(1-p\phi^*)(1-r)}.$$

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshell

Appendix

References

•29 of 65

Homogeneous, one hit models:

Fixed points for r < 1, $d^* = 1$, and T > 1

Fixed point equation (again):

Epidemic threshold:

bifurcation. [12]

 $p_c = 1/(T + \tau)$

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Find critical exposure probability by examining above as $\phi^* \to 0$.

$$\Rightarrow \quad \boldsymbol{p_c} = \frac{1}{T+1/r-1} = \frac{1}{T+\tau}.$$

where τ = mean recovery time for simple relaxation process.

Fixed points for $d^* = 1$, $r \le 1$, and $T \ge 1$

 \clubsuit Example details: $T=2 \& r=1/2 \Rightarrow p_c=1/3$.

 $\approx \tau = 1/r - 1$ = characteristic recovery time = 1.

Phase transition can be seen as a transcritical

Blue = stable, red = unstable, fixed points.

 $Rrightarrow T + \tau \simeq \text{average memory in system} = 3.$

 Decreasing r keeps individuals infected for longer and decreases p_c .

COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction

Generalized Model

Homogeneous version

Nutshell

Appendix

References

CocoNuTs

•> < ℃ 30 of 65

COcoNuTS Generalized

Introduction Independent

Interaction models Interdependent

interaction models Generalized Model

Homogeneous version Nutshell

Appendix References

少 Q (~ 31 of 65

Homogeneous, multi-hit models:

- $All right: d^* = 1 models correspond to simple$ disease spreading models.
- \clubsuit What if we allow $d^* \geq 2$?
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d^* exposures in last T time steps.
- Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

 \clubsuit As always, $\phi^* = 0$ works too.

COcoNuTS Generalized Contagion

Independent models

models

Generalized Homogeneous version

Nutshell

Appendix References

•9 q (~ 32 of 65

COcoNuTS @networksvox

Generalized

Introduction

Interdepende

Generalized Model

models

Nutshell

Appendix

References

IVM S

少 Q (~ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

 $d^* = 1 \rightarrow d^* > 1$: jump between continuous phase transition and pure critical mass model.

Unstable curve for $d^* = 2$ does $\operatorname{not}\operatorname{hit}\phi^*=0.$

References

@networksvox

Generalized Contagion

Independent Interaction

Interdependent

interaction models

Generalized Model

Nutshell

Appendix

Homogeneous version

models

1VM | 8

COcoNuTS

Generalized Contagion

Introduction

Independent

Interdependen interaction models

Generalized Model

Nutshell

Homogeneous version

Homogeneous, multi-hit models:

Fixed points for r=1, $d^*>1$, and $T\geq 1$

- & Exactly solvable for small T.
- & e.g., for $d^* = 2$, T = 3:

Fixed point equation:

 $3p^2\phi^{*2}(1-p\phi^*)+p^3\phi^{*3}$

🙈 See new structure: a saddle node bifurcation [12] appears as p increases.

 $(p_h, \phi^*) = (8/9, 27/32).$

🙈 Behavior akin to output of Granovetter's threshold

Fixed points for r = 1, $d^* > 1$, and T > 1

bifurcation, nothing in between.

 \mathbb{A} Bifurcation points for example fixed T, varying d^* :

See either simple phase transition or saddle-node

Rrightarrow T = 96 ().

Rrightarrow T = 24 (>),

A = 12 (<),

 $Arr T = 6 (\square),$

Appendix References Rrightarrow T = 3 (0),

IVM S

Homogeneous, multi-hit models:

Another example:

model.

 $r = 1, d^* = 3, T = 12$

Saddle-node bifurcation.

COcoNuTS Generalized Contagion

Introduction models

models

Generalized Model Homogeneous version

Nutshell Appendix References

1VM | 6

少 q (~ 34 of 65

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- \Re For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
- Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

 \clubsuit Example for T=24, $d^*=14$: 20 10 20 30 40 50 60 70 COcoNuTS Generalized Contagion

> Introduction Independent Interaction models

interaction models

Generalized Model Homogeneous version

Nutshell

Appendix References

•9 q (~ 37 of 65

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- last equaled, and has since been below, their threshold m time steps ago,
- Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^{\infty} (1-r)^m \gamma_m(p,\phi^*).$$

Fixed point equation:

$$\phi^* = \Gamma(p,\phi^*;r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

Fixed points for r < 1, $d^* > 1$, and T > 1Example: T = 3, $d^* = 2$

Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

- Two subsequences do this: $\{d_{n-2},d_{n-1},d_n,d_{n+1}\}=\{1,1,0,{\color{red}0}\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, {\color{red}0}, {\color{red}0}\}.$
- Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.
- To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}$.

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- & Determine number of sequences of length m that keep dose load below $d^* = 2$.
- \aleph N_a = number of $a = \{0\}$ subsequences.
- \aleph N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0,1,2,\dots,\left\lfloor\frac{m}{3}\right\rfloor.$$

where $|\cdot|$ means floor.

& Corresponding possible values for N_a :

$$m, m-3, m-6, \ldots, m-3 \mid \frac{m}{3} \mid .$$

Generalized Contagion

Independent Interaction models

interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

References

•9 q (~ 38 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Interdepender interaction models

Generalized Model

Homogeneous vers

Nutshell Appendix References

少 Q (~ 39 of 65

COcoNuTS Generalized Contagion

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell Appendix References

少 q (~ 40 of 65

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- \clubsuit How many ways to arrange N_a a's and N_b b's?
- Think of overall sequence in terms of subsequences:

$$\{Z_1, Z_2, \dots, Z_{N_a+N_b}\}$$

- & Choose positions of either a's or b's:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}.$$

Fixed points for r < 1, $d^* > 1$, and T > 1

 \clubsuit Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

- $P(a) = (1 p\phi^*) \text{ and } P(b) = p\phi^*(1 p\phi^*)^2$
- Total probability of allowable sequences of length

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Notation: Write a randomly chosen sequence of a's and b's of length m as $D_m^{a,b}$.

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

interaction models

Generalized Model

Homogeneous version

Nutshell Appendix

References

•9 α (~ 41 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependen interaction

Generalized Model

Homogeneous version

Nutshell

Appendix References

CocoNuTs

COcoNuTS

Generalized Contagion

Introduction

Independent

Interaction models

interaction models

Generalized

◆) q (~ 42 of 65

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

- Nearly there ...must account for details of sequence endings.
- \$ Three endings \Rightarrow Six possible sequences:

$$\begin{array}{ll} D_1 = \{1,1,0,0,D_{m-1}^{a,b}\} & \text{interaction} \\ D_2 = \{1,1,0,0,D_{m-2}^{a,b},1\} & \text{Generalized} \\ D_3 = \{1,1,0,0,D_{m-3}^{a,b},1,0\} & P_2 = (p\phi)^3(1-p\phi)^2\chi_{m-2}(p,\phi) & \text{Honogeneous version} \\ D_3 = \{0,1,0,0,D_{m-3}^{a,b},1,0\} & P_3 = (p\phi)^3(1-p\phi)^3\chi_{m-3}(p,\phi) & \text{Appendix} \\ \end{array}$$

$$D_4 = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ P_4 = (p\phi)^2(1-p\phi)^3\chi_{m-2}(p,\phi) \\ P_5 = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ P_6 = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ P_7 = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ P_8 = \{1,0,1,0,0,D_{m-2}^{a,b}\} \\ P_9 = \{1,0,0,0,D_{m-2}^{a,b}\} \\ P_9 =$$

$$D_5 = \{1,0,1,0,0,D_{m-3}^{a,b},1\} \\ P_5 = (p\phi)^3(1-p\phi)^3\chi_{m-3}(p,\phi) \\ \\ P_5 = (p\phi)$$

$$\begin{split} P_5 &= (p\phi)^3 (1-p\phi)^3 \chi_{m-3}(p,\phi) \\ D_6 &= \{1,0,1,0,0,D_{m-4}^{a,b},1,0\} \\ P_6 &= (p\phi)^3 (1-p\phi)^4 \chi_{m-4}(p,\phi) \end{split}$$

∙9 q (~ 43 of 65

Fixed points for r < 1, $d^* = 2$, and T = 3

$$\text{F.P. Eq: } \phi^* = \Gamma(p,\phi^*;r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

where $\Gamma(p, \phi^*; r) =$

$$\frac{(1-r)(p\phi)^2(1-p\phi)^2}{(1-p\phi)^2} + \sum_{m=1}^{\infty} (1-r)^m (p\phi)^2 (1-p\phi)^2 \times$$

 $\left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1,0,1,0\}$ sequence.

Fixed points for r < 1, $d^* > 1$, and T > 1

T=3, $d^*=2$

 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

Fixed points for r < 1, $d^* > 1$, and $T \ge 1$

T=2, $d^*=2$

 $r = 0.01, 0.05, 0.10, \dots, 0.3820 \pm 0.0001.$

 $\red{\$}$ No spreading for $r \gtrsim 0.382$.

Generalized Contagion

Independent models

interaction models Generalized Model

Homogeneous version

Nutshell

Appendix

References

IVM S

夕 Q ← 44 of 65

COcoNuTS @networksvox Generalized

Introduction

Interdepende interaction models

Generalized Model

Nutshell

Appendix References

少 Q (~ 45 of 65

COcoNuTS Generalized Contagion

Introduction

Independent models

models

Generalized Model Homogeneous version

Nutshell Appendix References

少 q (~ 46 of 65

What we have now:

Two kinds of contagion processes:

- 1. Continuous phase transition: SIR-like.
- 2. Saddle-node bifurcation: threshold model-like.
- $d^* = 1$: spreading from small seeds possible.
- $d^* > 1$: critical mass model.
- Are other behaviors possible?

COcoNuTS @networksvox Generalized Contagion

Independent Interaction models

interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

References

•2 a ○ 47 of 65

Generalized model

 \aleph Now allow for general dose distributions (f) and threshold distributions (a).

& Key quantities:

$$P_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*\right) \text{ where } 1 \leq k \leq T.$$

 $\Re P_k$ = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

 P_1 = Probability that <u>one dose</u> will exceed the threshold of a random individual = Fraction of most vulnerable individuals. COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

Interdependen interaction

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

◆) q (~ 49 of 65

Generalized model—heterogeneity, r = 1

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

 \clubsuit Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \ge 1$$

$$\Rightarrow p_c = 1/(TP_1)$$

Wery good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- 2. pP_1T is : the expected number of successful infections (equivalent to R_0).
- from a small seed.

COcoNuTS Generalized

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

Nutshell

Appendix References

少 Q (~ 50 of 65

Heterogeneous case

- & Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- $\ \, \mbox{$\stackrel{<}{\sim}$} \,$ Find slope depends on $(P_1-P_2/2)^{\, [6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $\vec{P}_1 < \vec{P}_2/2$ (discontinuous phase transition)
- Now find three basic universal classes of contagion models ...

Heterogeneous case

Now allow r < 1:

- $\ \, \& \ \,$ II-III transition generalizes: $p_c=1/[P_1(T+\tau)]$ where $\tau=1/r-1=$ expected recovery time
- & I-II transition less pleasant analytically.

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdepender interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

少 q (> 54 of 65

Heterogeneous case

Example configuration:

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- \Re Memory span: T=10.
- Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

COcoNuTS @networksvox Generalized Contagion

少 Q (~ 51 of 65

COcoNuTS @networksvox

Generalized Contagion

Independent Interaction

models

interaction models

Generalized Model

Nutshell

Appendix

References

IVM S

Heterogeneous version

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix References

少 Q ← 52 of 65

COcoNuTS

Generalized Contagion

Introduction

Independent

models

interaction models

Generalized Model

Nutshell

Heterogeneous version

models

 ϕ_*

0.5

0,

More complicated models

- Due to heterogeneity in individual thresholds.
- Three classes based on behavior for small seeds.
- & Same model classification holds: I, II, and III.

Hysteresis in vanishing critical mass

0.5

p

COcoNuTS @networksvo Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous versio

Heterogeneous version

Nutshell Appendix

References

References

COcoNuTS @networksvox Generalized

Introduction

Independent Interaction models

Interdependent interaction models

models

Generalized

Model

Model Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

Three universal classes

Epidemic threshold:

Pure critical mass:

- $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$
- $\ref{Normalize}$ Vanishing critical mass: $p_c = 1/(TP_1) < 1$
 - $P_1 < P_2/2$, $p_c = 1/(TP_1) > 1$
- $P_1 < P_2/2$, Appendix References

少 Q (~ 53 of 65

Nutshell (one half)

- Memory is a natural ingredient.
- Three universal classes of contagion processes:
 - 1. I. Epidemic Threshold
 - 2. II. Vanishing Critical Mass
 - 3. III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ , P_1 , and/or P_2).
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0).

Generalized Contagion

Independent models

models Generalized

Nutshell

Appendix References

•9 q (~ 57 of 65

Appendix: Details for Class I-II transition:

$$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$$

since

$$\begin{split} \binom{T}{k}\binom{T-k}{m-k} &=& \frac{T!}{k!(T-k)!}\frac{(T-k)!}{(m-k)!(T-m)!} \\ &=& \frac{T!}{m!(T-m)!}\frac{m!}{k!(m-k)!} \\ &=& \binom{T}{m}\binom{m}{k}. \end{split}$$

COcoNuTS @networksvox Generalized Contagion

Independent Interaction models

interaction models

Generalized Model

Nutshell

Appendix

References

少 Q № 60 of 65

Nutshell (other half)

- \Re Single seed infects others if $pP_1(T+\tau) \geq 1$.
- \Re Key quantity: $p_c = 1/[P_1(T+\tau)]$
- \clubsuit If $p_c < 1 \Rightarrow$ contagion can spread from single seed.
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant: Many threshold and dose distributions give same P_k .
- Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

COcoNuTS Generalized

Introduction

Interdepender interaction models

Generalized Model

Nutshell

Appendix References

少 Q (~ 58 of 65

Appendix: Details for Class I-II transition:

Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where
$$C_1=TP_1(=1/p_c)$$
 and $C_2={T\choose 2}(-2P_1+P_2).$

Arr Using $p_c = 1/(TP_1)$:

$$\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p-p_c) = \frac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$$

 \Re Sign of derivative governed by $P_1 - P_2/2$.

COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

Interdependen interaction

Generalized Model

Nutshell

Appendix References

少 q (~ 61 of 65

Appendix: Details for Class I-II transition:

$$\begin{split} \phi^* &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k (1-p\phi^*)^{T-k}, \\ &= \sum_{k=1}^T \binom{T}{k} P_k (p\phi^*)^k \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^*)^j, \\ &= \sum_{k=1}^T \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_k (-1)^j (p\phi^*)^{k+j}, \\ &= \sum_{m=1}^T \sum_{k=1}^m \binom{T}{k} \binom{T-k}{m-k} P_k (-1)^{m-k} (p\phi^*)^m, \\ &= \sum_{m=1}^T C_m (p\phi^*)^m \end{split}$$

COcoNuTS Generalized Contagion

Introduction models

models

Generalized Model

Nutshell Appendix References

少 q (~ 59 of 65

References I

[1] F. Bass.

A new product growth model for consumer durables.

Manage. Sci., 15:215-227, 1969. pdf

- C. Castillo-Chavez and B. Song. Models for the Transmission Dynamics of Fanatic Behaviors, volume 28, pages 155-172. SIAM, 2003.
- [3] D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204:1118, 1964. pdf
- D. J. Daley and D. G. Kendall. Stochastic rumours. J. Inst. Math. Appl., 1:42-55, 1965.

COcoNuTS Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Nutshell Appendix

References

少 q (~ 62 of 65

References II

[5] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion. Phys. Rev. Lett., 92:218701, 2004. pdf

[6] P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion.

J. Theor. Biol., 232:587-604, 2005. pdf

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

NOGEI

Homogeneous version

Nutshell

Appendix

References

少 q (~ 63 of 65

References III

[8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.

Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf ☑

[9] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf

[10] W. O. Kermack and A. G. McKendrick.
Contributions to the mathematical theory of epidemics. II. The problem of endemicity.
Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshell Appendix

References

少 Q C → 64 of 65

COcoNuTS @networksvox Generalized Contagion

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell Appendix

References

少 q (~ 65 of 65

References IV

[11] J. D. Murray.

Mathematical Biology.

Springer, New York, Third edition, 2002.

[12] S. H. Strogatz.

Nonlinear Dynamics and Chaos.

Addison Wesley, Reading, Massachusetts, 1994.