Random walks and diffusion on networks

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

COcoNuTS @networksvox

Diffusion

Random walks on networks

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS @networksvox

Diffusion

Random walks on networks

200 2 of 11

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS @networksvox

Diffusion

Random walks on networks

200 3 of 11

Outline

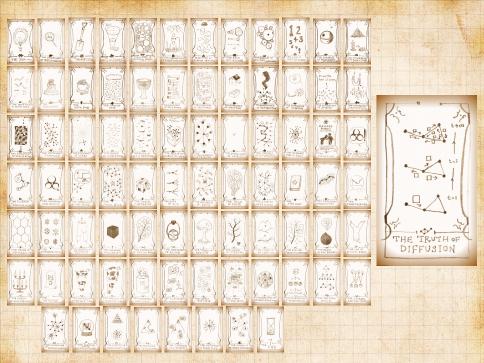
COcoNuTS @networksvox

Diffusion

Random walks on networks

Random walks on networks

UN |0



COcoNuTS @networksvox

Diffusion

Random walks on networks

Imagine a single random walker moving around on a network.

200 6 of 11

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Im We want to characterize the evolution of $\vec{p}(t)$.

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Im We want to characterize the evolution of $\vec{p}(t)$.
- Sirst task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.

COcoNuTS @networksvox

Diffusion

Random walks on networks

200 6 of 11

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Im We want to characterize the evolution of $\vec{p}(t)$.
- Sirst task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- 🚳 Let's call our walker Barry.

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Im We want to characterize the evolution of $\vec{p}(t)$.
- Sirst task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- 🚳 Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Imagine a single random walker moving around on a network.
- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- Solution Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Im We want to characterize the evolution of $\vec{p}(t)$.
- Sirst task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- 🚳 Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- limits a still: Barry is texting.

COcoNuTS @networksvox

Diffusion

Random walks on networks

Consider simple undirected, ergodic (strongly connected) networks.

COcoNuTS @networksvox

Diffusion

Random walks on networks

うへで 7 of 11

Consider simple undirected, ergodic (strongly connected) networks.
 As usual, represent network by adjacency matrix

A where

 $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise. COcoNuTS @networksvox

Diffusion

Random walks on networks

Consider simple undirected, ergodic (strongly connected) networks.

As usual, represent network by adjacency matrix A where

> $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise.

Barry is at node *j* at time *t* with probability $p_i(t)$.

COcoNuTS @networksvox

Diffusion

Random walks on networks

Consider simple undirected, ergodic (strongly connected) networks.

As usual, represent network by adjacency matrix A where

> $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise.

Barry is at node *j* at time *t* with probability *p_j(t)*.
In the next time step, he randomly lurches toward one of *j*'s neighbors.

COcoNuTS @networksvox

Diffusion

Random walks on networks

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

 $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise.

Barry is at node *j* at time *t* with probability *p_j(t)*.
In the next time step, he randomly lurches toward one of *j*'s neighbors.
Barry arrives at node *i* from node *j* with

probability $\frac{1}{k_i}$ if an edge connects j to i.

COcoNuTS @networksvox

Diffusion

Random walks on networks

Dac 7 of 11

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

 $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise. COcoNuTS @networksvox

Diffusion

Random walks on networks

Barry is at node *j* at time *t* with probability *p_j(t)*.
In the next time step, he randomly lurches toward one of *j*'s neighbors.
Barry arrives at node *i* from node *j* with

probability $\frac{1}{k_i}$ if an edge connects j to i.

🚳 Equation-wise:

$$p_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} p_j(t).$$

where k_i is j's degree.

- Consider simple undirected, ergodic (strongly connected) networks.
- As usual, represent network by adjacency matrix A where

 $a_{ij} = 1$ if *i* has an edge leading to *j*, $a_{ij} = 0$ otherwise. COcoNuTS @networksvox

Diffusion

Random walks on networks

Barry is at node *j* at time *t* with probability *p_j(t)*.
In the next time step, he randomly lurches toward one of *j*'s neighbors.
Barry arrives at node *i* from node *j* with

probability $\frac{1}{k_i}$ if an edge connects j to i.

🚳 Equation-wise:

$$p_i(t+1)=\sum_{j=1}^n \frac{1}{k_j}a_{ji}p_j(t).$$

where k_j is j's degree. Note: $k_i = \sum_{i=1}^n a_{ij}$.

290 7 of 11

COcoNuTS @networksvox

Diffusion

Random walks on networks

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node *i* is sent to its neighbors.

COcoNuTS @networksvox

Diffusion

Random walks on networks

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node *i* is sent to its neighbors.

 $x_i(t)$ = amount of stuff at node *i* at time *t*.

R

COcoNuTS @networksvox

Diffusion

Random walks on networks

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node *i* is sent to its neighbors.

 $x_i(t)$ = amount of stuff at node *i* at time *t*.

$$x_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} x_j(t).$$

2

COcoNuTS @networksvox

Diffusion

Random walks on networks

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node *i* is sent to its neighbors.

 $x_i(t)$ = amount of stuff at node *i* at time *t*.

$$x_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} x_j(t).$$

Andom walking is equivalent to diffusion C.

COcoNuTS @networksvox

Diffusion

Solution Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

 $\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

Random walks on networks

COcoNuTS @networksvox

Random walks on

Diffusion

networks

Solution Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

 $\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.

CocoNuTo

COcoNuTS @networksvox

Random walks on

Diffusion

networks

Solution Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

 $\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.

Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).

COcoNuTS @networksvox

Random walks on

Diffusion

networks

Solution Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

 $\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.

Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).

The corresponding eigenvector will be the limiting probability distribution (or invariant measure).

COcoNuTS @networksvox

Random walks on

Diffusion

networks

Solution Linear algebra-based excitement: $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

 $\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.

- Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

CocoNuTs Complex Networks @networksvox

🛞 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

UVR OO

🛞 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}}K^{-1}\vec{p}(\infty)$ with eigenvalue 1. We will find Barry at node *i* with probability proportional to its degree k_i .

🚳 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}}K^{-1}\vec{p}(\infty)$ with eigenvalue 1. We will find Barry at node *i* with probability proportional to its degree k_i .

Beautiful implication: probability of finding Barry travelling along any edge is uniform.

🚳 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

We will find Barry at node i with probability proportional to its degree k_i .

Beautiful implication: probability of finding Barry travelling along any edge is uniform.

Diffusion in real space smooths things out.

200 10 of 11

🚳 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

We will find Barry at node i with probability proportional to its degree k_i .

Beautiful implication: probability of finding Barry travelling along any edge is uniform.

Diffusion in real space smooths things out.
On networks, uniformity occurs on edges.

200 10 of 11

🚳 By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

COcoNuTS @networksvox

Diffusion

Random walks on networks

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1. \bigotimes We will find Barry at node *i* with probability proportional to its degree k_i . Beautiful implication: probability of finding Barry travelling along any edge is uniform. Diffusion in real space smooths things out. 2 On networks, uniformity occurs on edges. lacktrian So in fact, diffusion in real space is about the edges too but we just don't see that.

990 10 of 11

COcoNuTS @networksvox

Random walks on networks

Diffusion

Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

990 11 of 11

COcoNuTS @networksvox

Diffusion

Random walks on networks

Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^{\mathsf{T}} K^{-1} K^{1/2} = K^{-1/2} A^{\mathsf{T}} K^{-1/2}$$

UVN OO

COcoNuTS @networksvox

Diffusion

Random walks on networks

Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^{\mathsf{T}} K^{-1} K^{1/2} = K^{-1/2} A^{\mathsf{T}} K^{-1/2}.$$

Since $A^{\mathsf{T}} = A$, we have

 $(K^{-1/2}AK^{-1/2})^{\mathsf{T}} = K^{-1/2}AK^{-1/2}.$

COcoNuTS @networksvox

Diffusion

Random walks on networks

Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^{\mathsf{T}} K^{-1} K^{1/2} = K^{-1/2} A^{\mathsf{T}} K^{-1/2}.$$

Since $A^{\mathsf{T}} = A$, we have

$$(K^{-1/2}AK^{-1/2})^{\mathsf{T}} = K^{-1/2}AK^{-1/2}.$$

Upshot: $A^{\mathsf{T}}K^{-1} = AK^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.

200 11 of 11

COcoNuTS @networksvox

Diffusion

Random walks on networks

Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.

Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2} A^{\mathsf{T}} K^{-1} K^{1/2} = K^{-1/2} A^{\mathsf{T}} K^{-1/2}.$$

Since $A^{\mathsf{T}} = A$, we have

 $(K^{-1/2}AK^{-1/2})^{\mathsf{T}} = K^{-1/2}AK^{-1/2}.$

Upshot: A^TK⁻¹ = AK⁻¹ has real eigenvalues and a complete set of orthogonal eigenvectors.
 Can also show that maximum eigenvalue magnitude is indeed 1.

200 11 of 11

UVN