Random walks and diffusion on networks

Last updated: 2019/01/14, 23:14:28

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center | Vermont Advanced Computing Core | University of Vermont

These slides are brought to you by:

COcoNuTS @networksvox Diffusion

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat 🗹

COcoNuTS @networksvox Diffusion

Outline

COcoNuTS @networksvox Diffusion

Random walks on networks

Random walks on networks—basics:

COCONUTS @networksvox Diffusion

Imagine a single random walker moving around on a network.

- At t = 0, start walker at node j and take time to be discrete.
- Q: What's the long term probability distribution for where the walker will be?
- \Longrightarrow Define $p_i(t)$ as the probability that at time step t, our walker is at node i.
- \Leftrightarrow We want to characterize the evolution of $\vec{p}(t)$.
- \Longrightarrow First task: connect $\vec{p}(t+1)$ to $\vec{p}(t)$.
- Let's call our walker Barry.
- Unfortunately for Barry, he lives on a high dimensional graph and is far from home.
- Worse still: Barry is texting.

Where is Barry?

As usual, represent network by adjacency matrix

A where

 $egin{aligned} a_{ij} &= 1 & \text{if } i \text{ has an edge leading to } j, \ a_{ij} &= 0 & \text{otherwise.} \end{aligned}$

 \Longrightarrow Barry is at node j at time t with probability $p_j(t)$.

In the next time step, he randomly lurches toward one of j's neighbors.

Barry arrives at node i from node j with probability $\frac{1}{k_i}$ if an edge connects j to i.

& Equation-wise:

$$p_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} p_j(t).$$

where k_j is j's degree. Note: $k_i = \sum_{j=1}^n a_{ij}$.

COcoNuTS @networksvox Diffusion

Inebriation and diffusion:

COCONUTS @networksvox Diffusion

Random walks on networks

Excellent observation: The same equation applies for stuff moving around a network, such that at each time step all material at node i is sent to its neighbors.

 $x_i(t)$ = amount of stuff at node i at time t.

3

$$x_i(t+1) = \sum_{j=1}^n \frac{1}{k_j} a_{ji} x_j(t).$$

Random walking is equivalent to diffusion .

Linear algebra-based excitement: $n_1(t+1) = \sum_{n=1}^{n} a_n \frac{1}{2} n_n(t)$ is more

 $p_i(t+1) = \sum_{j=1}^n a_{ji} \frac{1}{k_j} p_j(t)$ is more usefully viewed as

$$\vec{p}(t+1) = A^{\mathsf{T}} K^{-1} \vec{p}(t)$$

where $[K_{ij}] = [\delta_{ij}k_i]$ has node degrees on the main diagonal and zeros everywhere else.

- So... we need to find the dominant eigenvalue of $A^{\mathsf{T}}K^{-1}$.
- Expect this eigenvalue will be 1 (doesn't make sense for total probability to change).
- The corresponding eigenvector will be the limiting probability distribution (or invariant measure).
- Extra concerns: multiplicity of eigenvalue = 1, and network connectedness.

Where is Barry?

COCONUTS @networksvox Diffusion

By inspection, we see that

$$\vec{p}(\infty) = \frac{1}{\sum_{i=1}^{n} k_i} \vec{k}$$

satisfies $\vec{p}(\infty) = A^{\mathsf{T}} K^{-1} \vec{p}(\infty)$ with eigenvalue 1.

- proportional to its degree k_i .
- Beautiful implication: probability of finding Barry travelling along any edge is uniform.
- Diffusion in real space smooths things out.
- On networks, uniformity occurs on edges.
- So in fact, diffusion in real space is about the edges too but we just don't see that.

- \mathbb{R} Goodness: $A^{\mathsf{T}}K^{-1}$ is similar to a real symmetric matrix if $A = A^{\mathsf{T}}$.
- Solution Consider the transformation $M = K^{-1/2}$:

$$K^{-1/2}A^{\mathsf{T}}K^{-1}K^{1/2} = K^{-1/2}A^{\mathsf{T}}K^{-1/2}.$$

Since $A^{\mathsf{T}} = A$, we have

$$(K^{-1/2}AK^{-1/2})^{\mathsf{T}} = K^{-1/2}AK^{-1/2}.$$

- \mathbb{A} Upshot: $A^{\mathsf{T}}K^{-1} = AK^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors.
- Can also show that maximum eigenvalue magnitude is indeed 1.

