

000

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie

Productions

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models

Network version All-to-all networks Theory

References

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models

Network vers All-to-all netw Theory

Spreading probabilit Physical explanation

References

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett the cat

Outline

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networks

Theory

Spreading possibility Spreading probability Physical explanation Final size

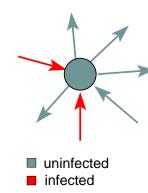
References

Contagion models

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- look at some fundamental kinds of spreading on generalized random networks.

Spreading mechanisms



🚳 General spreading mechanism: State of node *i*

depends on history of i and i's neighbors' states.

Doses of entity may be stochastic and history-dependent.

🚳 May have multiple, interacting entities spreading at once.

IIII |

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading condition

Social Contagion Models Network version All-to-all networks

Theory Spreading possibili Spreading probabil Physical explanatio Final size References

· 8 ୬ < ເ∾ 4 of 88

COcoNuTS networ (SVOX Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version All-to-all networ

Theory Spreading probability Physical explanation

References

(IN) |S

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version All-to-all network Theory

References

Contagion Basic Contagion Models Global spreading

Network version All-to-all networ Theory

Social Contagion Models

References

COcoNuTS

Spreading on Random Networks

- For random networks, we know local structure is pure branching.
- Successful spreading is .. contingent on single edges infecting nodes.

Success

Failure:

ି 🐘

COcoNuTS @networksvox

Basic Contagion Models

Global spreading condition

Contagion

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

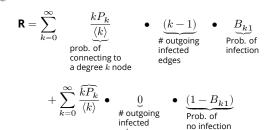
Network version All-to-all networks

Theory

- Focus on binary case with edges and nodes either infected or not.
- First big question: for a given network and contagion process, can global spreading from a single seed occur?

Global spreading condition

- We need to find: ^[5]
- **R** = the average # of infected edges that one random infected edge brings about.
- 🗞 Call **R** the gain ratio.



edges

Global spreading condition

Our global spreading condition is then:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

 \bigotimes Case 1: If $B_{k1} = 1$ then

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) = \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

Good: This is just our giant component condition again.

Global spreading condition

 \bigotimes Case 2: If $B_{k1} = \beta < 1$ then

$$\mathbf{R} = \sum_{k=0}^\infty \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet \beta > 1.$$

- & A fraction (1- β) of edges do not transmit infection.
- Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- 🚳 Aka bond percolation 🗹.
- & Resulting degree distribution \tilde{P}_k :

$$\tilde{P}_k = \beta^k \sum_{i=k}^\infty \binom{i}{k} (1-\beta)^{i-k} P_i$$

Insert question from assignment 9 We can show $F_{\tilde{P}}(x) = F_P(\beta x + 1 - \beta)$.

Global spreading condition

- \bigotimes Cases 3, 4, 5, ...: Now allow B_{k1} to depend on k
- Asymmetry: Transmission along an edge depends on node's degree at other end.
- \bigotimes Possibility: B_{k1} increases with k... unlikely.
- \clubsuit Possibility: B_{k1} is not monotonic in $k\ldots$ unlikely.
- \mathfrak{F} Possibility: B_{k1} decreases with k... hmmm.
- $\bigotimes B_{k1} \searrow$ is a plausible representation of a simple kind of social contagion.

The story: More well connected peop

More well connected people are harder to influence.

Global spreading condition

$$\begin{split} \mathbf{R} &= \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \bullet \frac{1}{k} \\ &= \sum_{k=1}^{\infty} \frac{P_k}{\langle k \rangle} \bullet (k-1) = 1 - \frac{1 - P_0}{\langle k \rangle} \end{split}$$

- Since R is always less than 1, no spreading can occur for this mechanism.
- B Decay of B_{k1} is too fast.
- Result is independent of degree distribution.

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networks Theory Spreading possibility Spreading probability Physical explanation Final size

References

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networks

Theory Spreading possibility Spreading probability Physical explanation Final size References

্র ৩৭ ৫ 17 of 88

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading

condition

Social Contagion Models

References

্য <mark>8</mark> ৩৭ - 18 of 88

Spreading possibi Spreading probab Physical explanati Final size

্রু **8** সৎও 15 of 88

Social Contagion Models Network version All-to-all networks Theory Spreading possibility

Theory Spreading possibility Spreading probability Physical explanation Final size

(IN) |S

COcoNuTS

Contagion

Basic Contagion Models

worksvox

Global spreading condition

- \bigotimes Example: $B_{k1} = H(\frac{1}{k} \phi)$ where $0 < \phi \leq 1$ is a threshold and H is the Heaviside function
- lnfection only occurs for nodes with low degree.
- Call these nodes vulnerables:
 - they flip when only one of their friends flips.

$$\begin{split} \mathbf{R} &= \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet(k-1) \bullet B_{k1} = \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet(k-1) \bullet H\left(\frac{1}{k} - e^{\frac{1}{k}}\right) \\ &= \sum_{k=1}^{\lfloor \frac{1}{k} \rfloor} (k-1) \bullet \frac{k P_k}{\langle k \rangle} \quad \text{where } \lfloor \cdot \rfloor \text{ means floor.} \end{split}$$

Global spreading condition

🗞 The uniform threshold model global spreading condition:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} (k-1) \bullet \frac{kP_k}{\langle k \rangle} > 1$$

- As $\phi \to 1$, all nodes become resilient and $r \to 0$.
- As $\phi \rightarrow 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- \bigotimes Key: If we fix ϕ and then vary $\langle k \rangle$, we may see two phase transitions.
- Added to our standard giant component transition, we will see a cut off in spreading as nodes become more connected.

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading condition

ି 🐘

Basic Contagion Models Global spreading condition

References

COcoNuTS anetworksvox Contagion

Global spreading condition

Social Contagion Models

Theory

References

•⊃ < <> 21 of 88

Social Contagion

Some important models (recap from CSYS 300)

- Tipping models—Schelling (1971)^[11, 12, 13]
 - Simulation on checker boards.
 - Idea of thresholds.

Threshold model on a network

random networks"

Duncan J. Watts,

2002. [15]

- Threshold models—Granovetter (1978)^[8]
- line and the second sec Social learning theory, Informational cascades,...

"A simple model of global cascades on

Proc. Natl. Acad. Sci., 99, 5766-5771,

& Mean field Granovetter model \rightarrow network model

lndividuals now have a limited view of the world

lnfluence on each link is reciprocal and of unit

 \bigotimes Each individual *i* has a fixed threshold ϕ_i lndividuals repeatedly poll contacts on network

🚳 Synchronous, discrete time updating

number of active contacts $a_i \ge \phi_i k_i$

lndividual *i* becomes active when

Activation is permanent (SI)

COcoNuTS

Contagion

@networksvox

Basic Contagior Models

Global spreading condition

Social Contagion Models

Network version All-to-all network

Spreading possib Spreading probab Physical explanat Final size

Theory

COcoNuTS netw Contagion

Basic Contagion

Global spreading condition Social Contagior Models

Network version All-to-all network Theory

Spreading probabi Physical explanation

References

IVM |0 ୬ ବ. ତ 24 of 88

COcoNuTS @networksvox Contagion

Global spreading condition

Social Contagion Models Network version

References

· 8

Threshold model on a network Interactions between individuals now represented

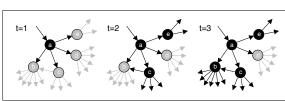
weight

A Network is sparse

 \bigotimes Individual *i* has k_i contacts

Original work:

Threshold model on a network



All nodes have threshold $\phi = 0.2$.

Basic Contagion Models

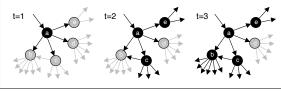
Global spreading condition

Social Contagion Models

Network version

References

Theory



COcoNuTS @networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

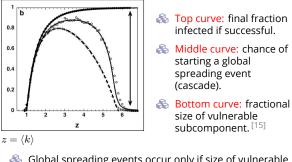
Theory

References

(IN) |S

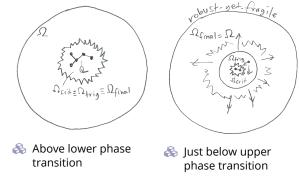
わへで 27 of 88

Contagion



- 🗞 Global spreading events occur only if size of vulnerable subcomponent > 0.
- 🗞 System is robust-yet-fragile just below upper boundary [3, 4, 14]
- lgnorance' facilitates spreading.

Cascades on random networks



Contagion Basic Contagion Models

COcoNuTS

@networksvox

Global spreading condition

Social Contagion Models Network version All-to-all networks

> Theory Spreading possib Spreading probab Physical explanat Final size References

• 𝔍 𝔄 29 of 88

COcoNuTS networksvox Contagion

Basic Contagion Global spreading condition

Social Contagion Models Network version

Theory

References

IVM 00 • ୨ < C → 30 of 88

@networksvox

condition Social Contagion Models

Theory Spreading p Spreading p Physical exp

References

· 8

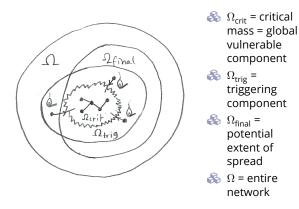
The most gullible

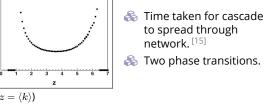
Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- \mathfrak{K} The vulnerability condition for node *i*: $1/k_i \ge \phi_i$.
- & Means # contacts $k_i \leq \lfloor 1/\phi_i \rfloor$.
- 🗞 Key: For global spreading events (cascades) on random networks, must have a global component of vulnerables^[15]
- \clubsuit For a uniform threshold ϕ , our global spreading condition tells us when such a component exists:

$$\mathbf{R} = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{k P_k}{\langle k \rangle} \bullet (k-1) > 1.$$

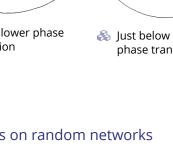
Example random network structure:

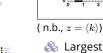




& Largest vulnerable component = critical mass.

Now have endogenous mechanism for spreading from an individual to the critical mass and then beyond.





Cascades on random networks

COcoNuTS worksvox Contagion Basic Contagion Models

State Global spreading 30 **Fime to Steady**

Social Contagion Models Network version All-to-all network

References

10

20

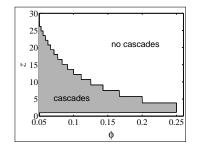
COcoNuTS

Contagion

Global spreading

Network version

Cascade window for random networks



(n.b., $z = \langle k \rangle$) Outline of cascade window for random networks.

Cascade window for random networks

no cascades

0.2

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all network

References

ି 🐘

COcoNuTS @networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version

Theory

Contagion

Theory

Social Sciences—Threshold models

At time t + 1, fraction rioting = fraction with $\phi_* \leq \phi_t$. 8

$$\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) \mathrm{d}\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$$

 $\mathfrak{L} \Rightarrow$ lterative maps of the unit interval [0, 1].

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models All-to-all networks Theory

Spreading possib Spreading probab Physical explanat Final size References

COcoNuTS networ Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models All-to-all network

Theory Spreading probabili Physical explanation

References

わへで 37 of 88

COcoNuTS @networksvox Contagion

Global spreading condition Social Contagior Models

All-to-all networks Theory

References

· 8 かへで 38 of 88

Social Contagion

30

25

20

10

5

0.05

cascades

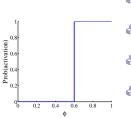
0.1

№ 15

influence

Granovetter's Threshold model—recap

0.15



🚳 Assumes deterministic response functions $\langle \langle \phi \rangle \rangle_{*} = threshold of an$ individual.

0.25

 ϕ = uniform individual threshold

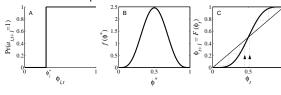
- $\Re f(\phi_*) = \text{distribution of}$ thresholds in a population.
- $\Re F(\phi_*)$ = cumulative distribution = $\int_{\phi'_*=0}^{\phi_*} f(\phi'_*) d\phi'_*$
- $\bigotimes \phi_t$ = fraction of people 'rioting' at time step t.

COcoNuTS anetworksvox Contagion

IVM 8

Social Sciences—Threshold models

Action based on perceived behavior of others.

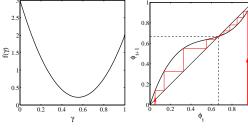


🚳 Two states: S and I

Recover now possible (SIS)

- $\Leftrightarrow \phi$ = fraction of contacts 'on' (e.g., rioting)
- Discrete time, synchronous update (strong) assumption!)
- This is a Critical mass model

Social Sciences—Threshold models



Example of single stable state model

IVM 8

References

わくひ 33 of 88

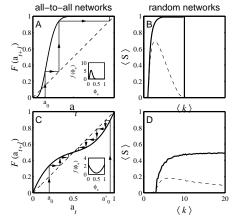
Social Sciences—Threshold models

Implications for collective action theory:

- 1. Collective uniformity \Rightarrow individual uniformity
- 2. Small individual changes \Rightarrow large global changes

Next:

- line connect mean-field model to network model.
- Single seed for network model: $1/N \rightarrow 0$.
- 🗞 Comparison between network and mean-field model sensible for vanishing seed size for the latter.



Threshold contagion on random networks

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln}.
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}.$
- 3. The expected final size of any successful spread, S.
 - \bigcirc n.b., the distribution of S is almost always bimodal.

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

All-to-all networks

Theory

References

ି 🐘

COcoNuTS

Contagion

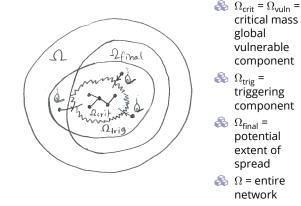
Basic Contagion Models

Global spreading condition

Social Contagion Models

わへで 39 of 88

rksvo



 $\Omega_{\mathsf{crit}} \subset \Omega_{\mathsf{trig}}; \ \Omega_{\mathsf{crit}} \subset \Omega_{\mathsf{final}}; \ \mathsf{and} \ \Omega_{\mathsf{trig}}, \Omega_{\mathsf{final}} \subset \Omega.$

Threshold contagion on random networks

- Sirst goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_P\left(F_{\rho}(x)\right)$$
 and $F_{\rho}(x) = xF_R\left(F_{\rho}(x)\right)$

- A We'll find a similar result for the subset of nodes that are vulnerable.
- line a node-based percolation problem.
- line a general monotonic threshold distribution $f(\phi)$, a degree k node is vulnerable with probability

$$B_{k1} = \int_0^{1/k} f(\phi) \mathsf{d}\phi$$

IVM |0 • へへ ◆ 45 of 88

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading

Social Contagior Models

Network version All-to-all network

Spreading possibility

References

Theory

condition

Thr andom networks

We now have a generating function for the probability that a randomly chosen node is vulnerable and has degree k:

$$F_P^{(\mathrm{vuln})}(x) = \sum_{k=0}^\infty P_k B_{k1} x^k.$$

distribution is similar to before

$$F_{R}^{(\mathsf{vuln})}(x) = \sum_{k=0}^{\infty} \frac{kP_{k}}{\langle k \rangle} B_{k1} x^{k-1}$$
$$\frac{\mathrm{d}}{\mathrm{d}} F_{\mathrm{D}}^{(\mathsf{vuln})}(x) = \frac{\mathrm{d}}{\mathrm{d}} F_{\mathrm{D}}^{(\mathsf{vuln})}(x)$$

- $\frac{\overline{\frac{\mathrm{d}}{\mathrm{d}x}}F_P(x)|_{x=1}}{\frac{\mathrm{d}}{\mathrm{d}x}F_P(x)|_{x=1}} = \frac{\overline{\mathrm{d}x}}{\mathrm{d}x}$ $\frac{F}{F_R(1)}$
- Detail: We still have the underlying degree distribution involved in the denominator.

W 8

Example random network structure:

Contagion critical mass = Basic Contagion Models

Global spreading condition Social Contagion Models

COcoNuTS

Network ver All-to-all net

Theory

@networksvox

triggering component

References

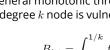
COcoNuTS anetworksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networ Theory

Spreading possibility Spreading probability Physical explanation References



$$B_{k1} = \int^{1/k} f(\phi)$$

$$F_P^{(\mathrm{vuln})}(x) = \sum_{k=0}^\infty P_k B_{k1} x^k.$$

The generating function for friends-of-friends

$$F_R^{({\rm vuln})}(x) = \sum_{k=0}^\infty \frac{k P_k}{\langle k \rangle} B_{k1} x^{k-1}$$

All-to-all networks Theory

References

(IN) |S

@networksvox Contagion

Social Contagion Models

References

COcoNuTS

Threshold contagion on random networks

Functional relations for component size g.f.'s are almost the same ...

$$F_{\pi}^{(\mathrm{vuln})}(x) = \underbrace{1 - F_{P}^{(\mathrm{vuln})}(1)}_{\substack{\mathrm{central node} \\ \mathrm{is not} \\ \mathrm{vulnerable}}} + x F_{P}^{(\mathrm{vuln})} \left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_R^{(\text{vuln})}(1)}_{\substack{\text{first node} \\ \text{is not} \\ \text{vulnerable}}} + x F_R^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

🚳 Can now solve as before to find

$$S_{\rm vuln} = 1 - F_\pi^{(\rm vuln)}(1). \label{eq:scalar}$$

Threshold contagion on random networks

- largest Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.
- Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not: (trig) - (- (yuln) ()

$$F_{\rho}^{(\text{vuln})}(x) = xF_{P}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$
$$F_{\rho}^{(\text{vuln})}(x) = 1 - F_{R}^{(\text{vuln})}(1) + xF_{R}^{(\text{vuln})}\left(F_{\rho}^{(\text{vuln})}(x)\right)$$

 \clubsuit Solve as before to find $P_{\text{trig}} = S_{\text{trig}} = 1 - F_{\pi}^{(\text{trig})}(1)$.

Physical derivation of possibility and probability of global spreading:

- Possibility: binary indicator of phase. Global spreading events are either possible or can never happen.
- 🗞 For random networks, global spreading possibility is understood as meaning a giant component of vulnerable nodes exists.
- Next: what's the probability that a randomly infected node will cause a global spreading event?
- & Call this P_{trig} .
- \lambda As usual, it's all about edges and we need to first determine the probability that an infected edge leads to a global spreading event.
- \bigotimes Call this Q_{trig} .
- 🗞 Later: Generalize to more complex networks involving assortativity of all kinds.

Probability an infected edge leads to a global spreading event:

 $\bigotimes Q_{\text{trig}}$ must satisfying a one-step recursion relation.

- Follow an infected edge and use three pieces: 1. Probability of reaching a degree k node is
 - $Q_k = \frac{kP_k}{\langle k \rangle}.$ 2. The node reached is vulnerable with probability B_{k1} .
 - 3. At least one of the node's outgoing edges leads to a global spreading event = 1 - probability no edges do so = $1 - (1 - \bar{Q}_{\text{trig}})^{k-1}$.

\bigotimes Put everything together and solve for Q_{trig} :

Good things about our equation for Q_{trig} :

 $\bigotimes Q_{\text{trig}} = 0$ is always a solution.

to solve for Q_{trig} , but ...

approach to find the solution: $Q_{\mathrm{trig}}^{(n+1)} = f(Q_{\mathrm{trig}}^{(n)}; P_k, B_{k1}).$

while rubbing hands together.

 $0 < Q_{\text{trig}} \leq 1.$

 $Q_{\mathrm{trig}} = \sum_k \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - (1 - Q_{\mathrm{trig}})^{k-1} \right] = f(Q_{\mathrm{trig}}; P_k, B_{k1})$

Spreading occurs if a second solution exists for which

 $\underset{k}{\bigotimes}$ Given P_k and B_{k1} , we can use any kind of root finder

& The function f increases monotonically with Q_{trig} .

eal Start with a suitably small seed $Q^{(1)}_{
m trig}>0$ and iterate

🗞 We can therefore use an iterative cobwebbing

$$Q_{\mathrm{trig}} = \sum_{k} \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - (1 - Q_{\mathrm{trig}})^{k-1}\right]$$

Basic Contagior Models

COcoNuTS

Contagion

@networksvox

Global spreading

Social Contagion Models Network version All-to-all networks Theory Spreading possibilit Physical explanation

References

COcoNuTS Contagion

Basic Contagion

Global spreading condition Social Contagion Models

Network version All-to-all networ Theory

Physical explanation Final size References

W 8 • へへ 53 of 88

COcoNuTS @networksvox Contagion

- $\underset{
 m Clobal}{
 m \$}$ Global spreading is possible if the fractional size $S_{
 m vuln}$ of the largest component of vulnerables is "giant".
- \clubsuit Interpret S_{vuln} as the probability a randomly chosen node is vulnerable and that infecting it leads to a global spreading event:

$$S_{\mathrm{vuln}} = \sum_k P_k \bullet B_{k1} \bullet \left[1 - (1 - Q_{\mathrm{trig}})^k\right] > 0.$$

- Amounts to having $Q_{\text{trig}} > 0$.
- Probability of global spreading differs only in that we don't care if the initial seed is vulnerable or not:

$$P_{\rm trig} = S_{\rm trig} = \sum_k P_k \bullet \left[1 - (1 - Q_{\rm trig})^k\right]$$

 \clubsuit As for S_{vuln} , P_{trig} is non-zero when $Q_{\text{trig}} > 0$.

Basic Contagion Models Global spreading condition Social Contagion Models Network version All-to-all networks Theory Spreading possil Spreading proba Physical explanation

References

· 8 • n a (~ 54 of 88

Global spreading Social Contagion Models

Network version All-to-all networks Theory Spreading poss Spreading prob Physical explanation

References

COcoNuTS anetworksvox

Contagion

COcoNuTS @networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Spreading possibility Spreading probability Physical explanation Final size

References

ି 🐘

COcoNuTS

Basic Contagion

Global spreading condition

Social Contagion Models

Network version All-to-all network

Spreading probability

References

Theory

Contagion

Models

Theory

Contagion

わくひ 49 of 88

Basic Contagion Models

Connection to generating function results:

 \bigotimes We found that $F_{
ho}^{(\mathsf{vuln})}(1)$ —the probability that a random edge leads to a finite vulnerable component-satisfies

$$F_{\rho}^{(\mathrm{vuln})}(1) = 1 - F_R^{(\mathrm{vuln})}(1) + 1 \cdot F_R^{(\mathrm{vuln})}\left(F_{\rho}^{(\mathrm{vuln})}(1)\right).$$

$$\begin{split} & \& \quad \text{We set } F_{\rho}^{(\text{vuln})}(1) = 1 - Q_{\text{trig}} \text{ and deploy} \\ & F_{R}^{(\text{vuln})}(x) = \sum_{k=0}^{\infty} \frac{kP_{k}}{\langle k \rangle} B_{k1} x^{k-1} \text{ to find} \end{split}$$

$$1-Q_{\mathrm{trig}} = 1-\sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} B_{k1} + \sum_{k=0}^{\infty} \frac{kP_k}{\langle k \rangle} B_{k1} \left(1-Q_{\mathrm{trig}}\right)^{k-1}.$$

Some breathless algebra it all matches:

$$Q_{\mathrm{trig}} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - \left(1 - Q_{\mathrm{trig}} \right)^{k-1} \right].$$

Fractional size of the largest vulnerable component:

The generating function approach gave $S_{\text{vuln}} = 1 - F_{\pi}^{(\text{vuln})}(1)$ where

$$F_{\pi}^{(\mathrm{vuln})}(1) = 1 - F_{P}^{(\mathrm{vuln})}(1) + 1 \cdot F_{P}^{(\mathrm{vuln})}\left(F_{\rho}^{(\mathrm{vuln})}(1)\right).$$

 $\begin{aligned} & \hbox{Again using } F_{\rho}^{(\mathrm{vuln})}(1) = 1 - Q_{\mathrm{trig}} \text{ along with} \\ & F_{P}^{(\mathrm{vuln})}(x) = \sum_{k=0}^{\infty} P_k B_{k1} x^k \text{, we have:} \end{aligned}$

$$1-S_{\mathrm{vuln}} = 1-\sum_{k=0}^{\infty} P_k B_{k1} + \sum_{k=0}^{\infty} P_k B_{k1} \left(1-Q_{\mathrm{trig}}\right)^k .$$

Excited scrabbling about gives us, as before:

$$S_{\mathsf{vuln}} = \sum_{k=0}^{\infty} P_k B_{k1} \left[1 - \left(1 - Q_{\mathsf{trig}} \right)^k \right]$$

Triggering probability for single-seed global spreading events:

- Slight adjustment to the vulnerable component calculation.
- $\bigotimes S_{\mathsf{trig}} = 1 F_{\pi}^{(\mathsf{trig})}(1)$ where

$$F^{(\mathrm{trig})}_{\pi}(1) = 1 \cdot F_P\left(F^{(\mathrm{vuln})}_{\rho}(1)\right).$$

 \clubsuit We play these cards: $F_\rho^{({\rm vuln})}(1)=1-Q_{\rm trig}$ and $F_P(x)=\sum_{k=0}^\infty P_k x^k$ to arrive at

$$1-S_{\mathrm{trig}} = 1 + \sum_{k=0}^{\infty} P_k \left(1-Q_{\mathrm{trig}}\right)^k$$

More scruffing around brings happiness:

$$S_{\rm trig} = \sum_{k=0}^{\infty} P_k \left[1 - \left(1 - Q_{\rm trig} \right)^k \right]. \label{eq:strig}$$

Connection to simple gain ratio argument:

line and the global spreading condition follows from the gain ratio $\mathbf{R} > 1$:

$$\mathbf{R} = \sum_{k=0}^{\infty} \frac{k P_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

- \clubsuit We would very much like to see that **R** > 1 matches up with $Q_{\text{trig}} > 0$.
- lt really would be just so totally awesome.
- equation:

$$Q_{\rm trig} = \sum_k \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - (1-Q_{\rm trig})^{k-1}\right].$$

• n q (~ 58 of 88

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networ Theory

Physical explanation References

• 𝔍 𝔄 59 of 88

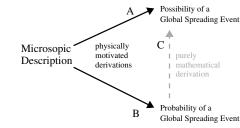
COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading

condition Social Contagion Models Network version All-to-all networks Theory Spreading possil Physical explanation

References

· 8



🗞 Must come from our basic edge triggering probability

$$Q_{\mathrm{trig}} = \sum_k \frac{k P_k}{\langle k \rangle} \bullet B_{k1} \bullet \left[1 - (1-Q_{\mathrm{trig}})^{k-1}\right].$$

 \clubsuit When does this equation have a solution $0 < Q_{\text{trig}} \leq 1$?

 \circledast We need to find out what happens as $Q_{
m trig}
ightarrow 0.$ [9]

COcoNuTS

@networksvox Contagion

Global spreading condition Social Contagion Models Network version All-to-all networks Theory

Physical explanation References

$$\begin{split} Q_{\mathrm{trig}} &= \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet B_{k1} \bullet \left[\mathbf{1} + \left(\mathbf{1} + (k-1)Q_{\mathrm{trig}} + \ldots \right) \right. \\ \\ &\Rightarrow Q_{\mathrm{trig}} = \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet B_{k1} \bullet (k-1)Q_{\mathrm{trig}} \\ \\ &\Rightarrow 1 = \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} \end{split}$$

& Only defines the phase transition points (i.e., $\mathbf{R} = 1$). Inequality?

Network version All-to-all networks Theory Spreading poss Spreading prob Physical explanation

References

わへで 56 of 88

IVM 8

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Physical explanation

References

ି 🕷

COcoNuTS

Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networ

Spreading possib

References

Physical explanation

Theory

• 𝔍 𝔄 55 of 88

rksvo

Theory

Basic Contag Models Global sprea

Social Contagion Models

 \clubsuit Again take $Q_{\rm trig} \rightarrow 0^+,$ but keep next higher order term:

$$\begin{split} &Q_{\mathrm{trig}} = \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet B_{k1} \bullet \left[\cancel{1} + \left(\cancel{1} + (k-1)Q_{\mathrm{trig}} - \binom{k-1}{2} \right) Q_{\mathrm{trig}}^{2} \right) \\ &\Rightarrow Q_{\mathrm{trig}} = \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet B_{k1} \bullet \left[(k-1)Q_{\mathrm{trig}} - \binom{k-1}{2} \right) Q_{\mathrm{trig}}^{2} \right] \\ &\Rightarrow \sum_{k} \frac{kP_{k}}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} = 1 + \sum_{k} \frac{kP_{k}}{\langle k \rangle} B_{k1} \binom{k-1}{2} Q_{\mathrm{trig}} \end{split}$$

 $\textup{\& We have } Q_{\mathrm{trig}} > 0 \text{ if } \sum_k \frac{kP_k}{\langle k \rangle} \bullet (k-1) \bullet B_{k1} > 1.$

- Repeat: Above is a mathematical connection between two physically derived equations.
- From this connection, we don't know anything about a gain ratio R or how to arrange the pieces.

Threshold contagion on random networks

COcoNuTS @networksvox Contagion

Basic Contagion

Global spreading condition

Social Contagion Models

Network vers All-to-all netw

Spreading possibility Spreading probabili

Theory

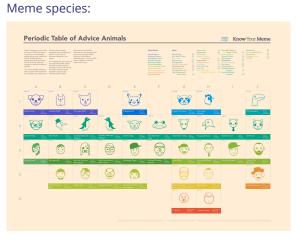
Final size

References

Models

- line and the second sec
- 🗞 Not obvious even for uniform threshold problem.
- Solution Difficulty is in figuring out if and when nodes that need ≥ 2 hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane: "Seed size strongly affects cascades on random
- networks," Phys. Rev. E, 2007.^[7] Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008.^[6]

্জ্য **[8]** সএক 63 of 88



🗞 More here 🗹 at http://knowyourmeme.com 🗹

COcoNuTS @networksvox Contagion

References

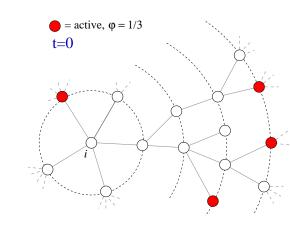
্য 👸 সএকে 64 of 88

Expected size of spread

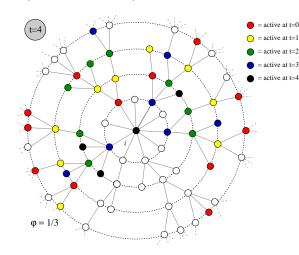
Idea:

- \circledast Randomly turn on a fraction ϕ_0 of nodes at time t=0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node i to become active at time t:
- t = 0: *i* is one of the seeds (prob = ϕ_0)
- t = 1: *i* was not a seed but enough of *i*'s friends switched on at time t = 0 so that *i*'s threshold is now exceeded.
- t = 2: enough of *i*'s friends and friends-of-friends switched on at time t = 0 so that *i*'s threshold is now exceeded.
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Expected size of spread



Expected size of spread



COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version Alt-to-all networks Theory Spreading probability Physical explanation Final size References

্য় **8** ৩০.৫ 65 of 88

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version Al-to-all networks Theory

Spreading probabi Physical explanatio Final size References

় 🖁 ৯৭৫ 66 of 88

COcoNuTS @networksvox Contagion

Final size

References

শি **8** গুৰ্ব 67 of 88

Expected size of spread

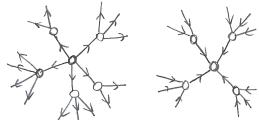
Notes:

- Calculations presume nodes do not become inactive (strong restriction, liftable)
- 🗞 Not just for threshold model—works for a wide range of contagion processes.
- 🗞 We can analytically determine the entire time evolution, not just the final size.
- 🚳 We can in fact determine **Pr**(node of degree k switches on at time t).
- 🗞 Even more, we can compute: **Pr**(specific node *i* switches on at time t).
- line and the synchronous updating can be handled too.

Expected size of spread

Pleasantness:

- Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.



Expected size of spread

- A Notation:
 - $\phi_{k,t} = \mathbf{Pr}(a \text{ degree } k \text{ node is active at time } t).$
- Notation: $B_{ki} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- \bigotimes Our starting point: $\phi_{k,0} = \phi_0$.
- $\bigotimes_{i} {k \choose i} \phi_0^j (1 \phi_0)^{k-j} = \mathbf{Pr} (j \text{ of a degree } k \text{ node's})$ neighbors were seeded at time t = 0).
- Representation of the second ϕ_0 (as above).
- Representation of the set of the is $(1 - \phi_0)$.
- Combining everything, we have:

$$\phi_{k,1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^k \binom{k}{j} \phi_0^j (1 - \phi_0)^{k-j} B_{kj}.$$

Expected size of spread

- For general t, we need to know the probability an edge coming into a degree k node at time t is active.
- \mathbb{R} Notation: call this probability θ_{t} .
- \bigotimes We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case. For specific node *i*:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} \binom{k_i}{j} \theta_t^j (1 - \theta_t)^{k_i - j} B_{k_i j}.$$

 \clubsuit Average over all nodes with degree k to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^k \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j} B_{kj}.$$

So we need to compute θ_t ... massive excitement...

Expected size of spread

First connect θ_0 to θ_1 :

$${\color{black} \bigotimes \hspace{0.15cm} \theta_1 = \phi_0 + }$$

9

$$(1-\phi_0)\sum_{k=1}^{\infty}\frac{\underline{kP_k}}{\langle k\rangle}\sum_{j=0}^{k-1}\binom{k-1}{j}\theta_0^{\ j}(1-\theta_0)^{k-1-j}B_{kj}$$

 $\bigotimes \frac{k P_k}{(k)} = Q_k$ = **Pr** (edge connects to a degree k node).

- $\bigotimes \sum_{i=0}^{k-1}$ piece gives **Pr** (degree node k activates if j of its k-1 incoming neighbors are active).
- $\displaystyle{\diamondsuit}~ \phi_0 \ {\rm and} \ (1-\phi_0)$ terms account for state of node at time t = 0.
- \mathfrak{F} See this all generalizes to give θ_{t+1} in terms of θ_t ...

(IN) |S わへで 72 of 88

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading

Social Contagior Models

Network version All-to-all network

Theory

Final size

condition

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Spreading possibi Spreading probab Physical evolution

Theory

Final size

References

· · ·

COcoNuTS

Contagion

Basic Contagion

Global spreading condition

Social Contagion Models

Spreading possibility Spreading probability

Network version All-to-all networ

Theory

Final size

References

netwo

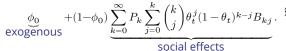
pected size of spread

o pieces: edges first, and then nodes

$$\begin{split} \theta_{t+1} &= \underbrace{\phi_0}_{\text{exogenous}} \\ &+ (1 - \phi_0) \underbrace{\sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} \binom{k-1}{j} \theta_t^{\ j} (1 - \theta_t)^{k-1-j} B_{kj}}_{\text{social effects}} \end{split}$$
with $\theta_{-} = \phi$

$$\psi_{0} = \phi_{0}$$

2. $\phi_{t+1} =$



· 8

with
$$\theta_0 = \phi_0$$
.

social eff with
$$\theta_0 = \phi_0$$
.

$$\underbrace{\phi_0}_{\text{kogenous}} + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^k \binom{k}{j} \theta_t^j (1 - \theta_t)^{k-j}$$

COcoNuTS Contagion Basic Cont Models

Global spreading

Social Contagion Models

Network version All-to-all network

Theory

Final size

References

わへへ 70 of 88

IVM 8

わくひ 69 of 88

Network vers All-to-all netv Theory Spreading p

COcoNuTS

Contagion

@networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Spreading possibi

Theory

Final size

References

ି 🐘

COcoNuTS

Contagion

Basic Contagion Models

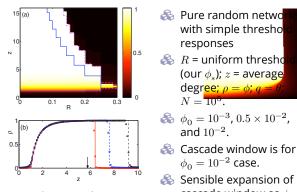
Global spreading condition

Social Contagion Models

rksvo

Final size

Comparison between theory and simulations



From Gleeson and Cahalane^[7]

Notes:

- Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.
- \bigotimes Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- 🚳 First: if self-starters are present, som assured:

$$G(0;\phi_0) = \sum_{k=1}^\infty \frac{k P_k}{\langle k \rangle} \bullet B_{k0}$$

meaning $B_{k0} > 0$ for at least one value of $k \ge 1$.

 If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs for a small seed if

$$G'(0;\phi_0) = \sum_{k=0}^\infty \frac{kP_k}{\langle k\rangle} \bullet (k-1) \bullet B_{k1} > 1.$$

Insert question from assignment 10 🗹

Notes:

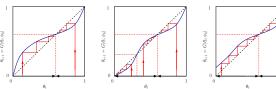
In words:

- \mathfrak{F}_{0} If $G(0; \phi_{0}) > 0$, spreading must occur because some nodes turn on for free.
- \Im If *G* has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- & Cascade condition is more complicated for $\phi_0 > 0$.
- \Im If *G* has a stable fixed point at $\theta = 0$, and an unstable fixed point for some $0 < \theta_* < 1$, then for $\theta_0 > \theta_*$, spreading takes off.
- \clubsuit Tricky point: G depends on ϕ_0 , so as we change ϕ_0 , we also change G.

General fixed point story:



- point, either above or below.
- A n.b., adjacent fixed points must have opposite stability types.
- \bigotimes Important: Actual form of G depends on ϕ_0 .
- \bigotimes Important: ϕ_t can only increase monotonically so ϕ_0 must shape G so that ϕ_0 is at or above an unstable fixed point.

Now allow thresholds

Gaussian with mean R.

have thresholds ≤ 0 so

transition for low $\langle k \rangle$.

Plots of stability points

for $\theta_{t+1} = G(\theta_t; \phi_0)$.

🗞 n.b.: 0 is not a fixed

point here: $\theta_0 = 0$

always takes off.

R =

🚳 Saddle node

0.35, 0.371, and 0.375.

bifurcations appear

and merge (b and c).

effectively $\phi_0 > 0$.

🗞 Now see a (nasty) discontinuous phase

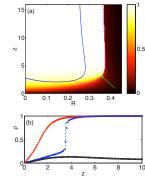
to be distributed

according to a

0.38; $\sigma = 0.2$. $\mathbf{s} \phi_0 = 0$ but some nodes

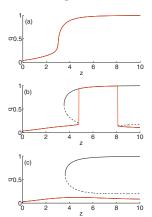
- \mathfrak{F} First reason: $\phi_1 \geq \phi_0$.
- Second: $G'(\theta; \phi_0) \ge 0, 0 \le \theta \le 1$.

Interesting behavior:



From Gleeson and Cahalane^[7]

Interesting behavior:



From Gleeson and Cahalane^[7]

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading

Social Contagion Models

Network versio All-to-all netwo Theory Spreading possibi Spreading probab Final size

References

· · ·

COcoNuTS netw Contagion

Basic Contagion Models Global spreading condition

Social Contagion Models Network version All-to-all networ Theory

Final size References

(IN) |S わへで 78 of 88

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading condition Social Contagion Models Network version All-to-all network Theory Spreading possib Spreading probab Final size

References

COcoNuTS vorksvox

COcoNuTS

Contagion

with simple thresho

(our ϕ_*); z = average

responses

degr<mark>ee; ρ</mark>

 $N = 10^5$.

and 10^{-2} .

increases.

 $\phi_0 = 10^{-2}$ case.

cascade window as ϕ_0

@networksvox

Basic Contagion Models

Global spreading condition

Social Contagion Models

Network version All-to-all networks

Spreading possibili Spreading probabi

Theory

Final size

References

ି 🕷

COcoNuTS

Contagion

Final size

References

• n q (२ 74 of 88

orksvo

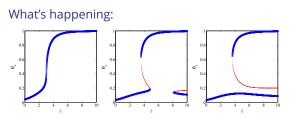
ntagion

reading

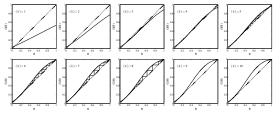
ntagion

Contagion

Basic Contagion Models



So Fixed points slip above and below the $\theta_{t+1} = \theta_t$ line:



Time-dependent solutions

Synchronous update

 \circledast Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- \circledast Update nodes with probability α .
- $\$ As $\alpha \to 0$, updates become effectively independent.
- \aleph Now can talk about $\phi(t)$ and $\theta(t)$.

Nutshell:

- Solid dive into understanding contagion on generalized random networks.
- Threshold model leads to idea of vulnerables and a critical mass. ^[16, 8]
- Generating function approaches provided first breakthroughs and gave possibility and probability of spreading. ^[10, 16]
- Later: A probabilistic, physical method solved the whole story for a fractional seed—final size, dynamics, ...^[7, 6]
- Much can be generalized for more realistic kinds of networks: degree-correlated, modular, bipartite, ...
- The single seed contagion condition and triggering probability can be fully developed using a physical story.^[5, 9]
- Many connections to other kinds of models: Voter models, Ising models, ...

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version All-to-all networks

Theory Spreading possibilit Spreading probabili Physical explanation Final size

References

COcoNuTS @networksvo> Contagion

> Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networks Theory Spreading possibility Spreading probability

Final size References

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading

Social Contagion Models Network version All-to-all networks

Theory Spreading possibility Spreading probability Physical explanation

Final size References

References I

References II

[6] J. P. Gleeson.

networks.

References III

networks.

M. Granovetter.

[8]

[9]

I. M. Carlson and J. Doyle.

design in complex systems.

generalized random networks.

Phys. Rev. E, 83:056122, 2011. pdf 🖸

Phys. Rev. E, 77:046117, 2008. pdf

Phys. Rev. E, 75:056103, 2007. pdf

Threshold models of collective behavior.

K. D. Harris, J. L. Payne, and P. S. Dodds.

acting on correlated random networks.

http://arxiv.org/abs/1108.5398, 2014.

Direct, physically-motivated derivation of

triggering probabilities for contagion processes

Am. J. Sociol., 83(6):1420–1443, 1978. pdf 🗹

[7] J. P. Gleeson and D. J. Cahalane.

[4]

[5]

- S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ., 100:992–1026, 1992.
- [2] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades. J. Econ. Perspect., 12(3):151–170, 1998. pdf
- J. M. Carlson and J. Doyle.
 Highly optimized tolerance: A mechanism for power laws in designed systems.
 Phys. Rev. E, 60(2):1412–1427, 1999. pdf

Highly optimized tolerance: Robustness and

P. S. Dodds, K. D. Harris, and J. L. Payne.

Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf

Direct, phyiscally motivated derivation of the

Cascades on correlated and modular random

Seed size strongly affects cascades on random

contagion condition for spreading processes on

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition

Social Contagion Models Network version All-to-all networks Theory

> Spreading possibility Spreading probability Physical explanation Final size References

COcoNuTS @networksvo Contagion

Basic Contagion Models

Global spreading condition Social Contagion

Models Network version All-to-all networks Theory Spreading probability Spreading probability Physical explanation

References

্য়া 👸 গুৰু ৪5 of 88

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version All-to-all networks

Theory Spreading possibility Spreading probability Physical explanation Final size

References

ာရင္ 86 of 88

References IV

- [10] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118, 2001. pdf 🖸
- [11] T. C. Schelling. Dynamic models of segregation. J. Math. Sociol., 1:143–186, 1971. pdf 🗹
- [12] T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf 🖸
- [13] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

ି 🕷

References V

- [14] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 1st edition, 2003.
- [15] D. J. Watts. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf 🖸
- [16] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf 🖸

Spreading possibility Spreading probability Physical explanation

References

IVM 8

COcoNuTS @networksvox Contagion

Basic Contagion Models Global spreading condition

Social Contagion Models

Network version All-to-all networks Theory Spreading possibility Spreading probabili Physical explanation Final size

References

うへへ 87 of 88

COcoNuTS @networksvox Contagion

Basic Contagion Models

Global spreading condition Social Contagion Models Network version All-to-all networks Theory

