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Contagion
Some large questions concerning network
contagion: Rrodals 2"
1. For a given spreading mechanism on a given Global spreading
network, what's the probability that there will be Social Contagion
. dels
global spreading? S
2. If spreading does take off, how far will it go?
Theory
3. How do the details of the network affect the O
outcome?
4. How do the details of the spreading mechanism References

affect the outcome?
5. What if the seed is one or many nodes?

©

<> Next up: We'll look at some fundamental kinds of
spreading on generalized random networks.
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Contagion

Basic Contagion

& General spreading Wodes
mechanism: Global spreading
: condition

State Of nOde ’L Social Contagion
depends on history of Vo

. Network version
—> i and i's neighbors’

states Theary

Spreading possibility

Spreading probability

& Doses of entity may be o
stochastic and
history-dependent.

i & May have multiple,
E uninfected interacting entities

B infected spreading at once.

References
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

—> —
Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and

contagion process, can global spreading from a
single seed occur?

Global spreading condition

We need to find: °)

R = the average # of infected edges that one
random infected edge brings about.

Call R the gain ratio.

Define B,,; as the probability that a node of
degree k is infected by a single infected edge.

oo kP,
R=Y “k o (k—1) e By
ST —
= XL # outgoing Prob. of
prob. of infected infection
connecting to edges
a degree k node
0o —
kP,
+ Z k o 0 o (1 - Bkl)
(k) o Prob ot
k=0 # outgoing Prob. of
infected no infection
edges

Global spreading condition

Our global spreading condition is then:

& kP,
R:k:Z:O W e(k—1)e By, > 1.

Case1: If B,; =1 then

_N R ey 2 D)
Rsz:(:)(k) (k—1) w > 1.

Good: This is just our giant component condition
again.
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Global spreading condition

Case2: If By =<1 then

O FP 0
Rfl;)m (k—1)e s> 1.

A fraction (1-8) of edges do not transmit infection.
Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (',

Resulting degree distribution P,

ST
i=k

Insert question from assignment 9 &'

We can show Fiy(z) = Fp(Bz +1—f).

Global spreading condition

Cases 3, 4,5, ... Now allow B, to depend on k&

Asymmetry: Transmission along an edge depends
on node's degree at other end.

Possibility: B, increases with k... unlikely.
Possibility: By, is not monotonic in ... unlikely.
Possibility: B,,, decreases with k... hmmm.

By,1 \/is a plausible representation of a simple
kind of social contagion.

The story:

More well connected people are harder to
influence.

Global spreading condition

Example: By, = 1/k.

Since R is always less than 1, no spreading can
occur for this mechanism.

Decay of By, is too fast.
Result is independent of degree distribution.
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Global spreading condition

Example: By = H(% — ¢)
where 0 < ¢ < 1is athreshold and H is the
Heaviside function.

Infection only occurs for nodes with low degree.

Call these nodes vulnerables:
they flip when only one of their friends flips.

where |-| means floor.

Global spreading condition

The uniform threshold model global spreading
condition:

1)
B kP
= k;(k 1) w 1.

As ¢ — 1, all nodes become resilient and » — 0.
As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

Key: If we fix ¢ and then vary (k), we may see two

phase transitions.

Added to our standard giant component
transition, we will see a cut off in spreading as
nodes become more connected.

Virtual contagion: Corrupted Blood (4, a 2005 virtual

S
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Social Contagion

Some important models (recap from CSYS 300)

Tipping models—Schelling (1971) 1. 12,121
Simulation on checker boards.
Idea of thresholds.

Threshold models—Granovetter (1978) (€

Herding models—Bikhchandani et al. (1992) - 2]
Social learning theory, Informational cascades,...

Threshold model on a network

Original work:

“A simple model of global cascades on

Duncan J. Watts,
Proc. Natl. Acad. Sci., 99, 5766-5771,
2002.0151

Mean field Granovetter model — network model
Individuals now have a limited view of the world

Threshold model on a network

Interactions between individuals now represented
by a network

Network is sparse
Individual i has k,; contacts

Influence on each link is reciprocal and of unit
weight

Each individual i has a fixed threshold ¢,
Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
number of active contacts a; > ¢,k;

Activation is permanent (SI)
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Threshold model on a network @nemworksvox Global spreading events on random Gnemworkevor
Contagion netWO I’kS [15] Contagion
1
asic Contagion b 3 . asic Contagion
Rasic Contag Top curve: final fraction o
0.8 . .
Global spreading ~\ InfECtEd If SUCCeSSfUl. Global spreading
condition \‘ . . condition
t=1 t=2 t=3 Social Contagion e 8 'V"dO!'e curve: chance of Social Contagion
Models \ starting a global Models
o Y spreading event
x o
\b . 0s \‘ ) (cascade). T‘iz‘e‘:;{
/4 /4 i L N Bottom curve: fractional s
1 2 3 & 5 7% size of vulnerable Finasze
z Subcomponent_ [15] References
All nodes have threshold ¢ = 0.2. z = (k)

Global spreading events occur only if size of vulnerable
subcomponent > 0.

System is robust-yet-fragile just below upper
boundary 3 4 141

‘Ignorance’ facilitates spreading.

Q> 260f88 a > 290f88
The most gullible @networkevox Cascades on random networks Gnetworkovox
Contagion Contagion
Vulnerables:
Recall definition: individuals who can be activated ~ wocer Modets 2"
by just one contact being active are vulnerables. Global spreading Global spreading
condition condition
The vulnerability condition for node i: 1/k; > ¢,. Social Contagion Social Contagion
Models Models
Means # contacts k;, < [1/¢,].
Key: For global spreading events (cascades) on Theory
random netwo1r5ks, must have a global component Oz, Lol
of vulnerables [ e J
For a uniform threshold ¢, our global spreading References
condition tells us when such a component exists:
12 Abovg 'Iower phase Just below upper
Ro S Kl (k—1)>1 transition phase transition
k) ’
=
va@ 27of 88 Q> 300f88
Example random network structure: Gnetworksvox Cascades on random networks Greworkevox
Contagion Contagion
Qe = critical
50
mass = g|oba| Basic Contagion a | Basic Contagion
Models ° 4 . N Models
VU|nerab|e Global spreading z,,g . Global spreading
component S”“:” e . Time taken for cascade :“”d“‘:“
ocial Contagion 2 < Social Contagion
Qyyig = Models P B to spread through Models
. . Network version - “, 3 Network version
e -, o (13] e
triggering sl ek E B — network. s
component Two phase transitions. "7
innal = . " 2 3 4 5 6
. z
potential
extent of References (n.b., z= <k>)
spread Largest vulnerable component = critical mass.
Q1 = entire Now have endogenous mechanism for spreading
network from an individual to the critical mass and then

beyond.
Qerie C Qtrig? Qerie € Qinai; and Q'crig’innaI c Q.

Q- 280f88 va 310f88


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds

Cascade window for random networks

25
20 no cascades

N 15

5  cascades

f5 01 o o0z 0%
¢

(nb., z = (k)

Outline of cascade window for random networks.

Cascade window for random networks

NN
oS U»

no cascades .-

=
[6)]

influence Z —»
N
o

cascades

[6)]

0.1 0.15 0.2 0.25
@ = uniform individual threshold

So
o
a

Social Contagion

Granovetter's Threshold model—recap

Assumes deterministic
response functions

0_: ¢* f'ghreshold of an
5 individual.
% ° f(¢,) = distribution of
?""‘ thresholds in a population.
* F(¢,) = cumulative
0 o0z 04 06 08 1 distribution = fqé*:() f((bi)dgéi

¢, = fraction of people
‘rioting’ at time step ¢.
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Social Sciences—Threshold models

At time ¢t + 1, fraction rioting = fraction with

by < ¢y

by
Gea1 = /0 F(6.)86, = F(6,)|* = F(,)

= Iterative maps of the unit interval [0, 1].

Social Sciences—Threshold models

Action based on perceived behavior of others.
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Y A 2 B K c Models
_ 08 2 ~ 08 _
= Ca Global spreading
I g condition
E 0.6/ m’\s_ 15 Iill' 0.6
& 04 =1 — 04 Social Contagion
E + Models
02 05 & 02 " Networkversio
Allto-all networks
0’ o) o)
0 @ 1 0 05 1 (] 05
@ 5] [ Theory
it [ ( -

Two states: S and |
Recover now possible (SIS)
¢ = fraction of contacts ‘on’ (e.g., rioting)

Discrete time, synchronous update (strong
assumption!)

This is a Critical mass model

Social Sciences—Threshold models

25|
0
4 S N I
0§ !
= ¥ 1
15 & |
04 i
4 :
0.5 0.2] |
0 02 04 06 08 1 0 02 04 06 08 1
y %

Example of single stable state model

Q> 370f88

COcoNuTS
@networksvox

Contagion

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models

a > 380f88


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS
@networksvox

Contagion

Social Sciences—Threshold models

Basic Contagion
Implications for collective action theory: Modets
Global spreading
condition

1. Collective uniformity + individual uniformity
Social Contagion

2. Small individual changes = large global changes Models

Next:
Connect mean-field model to network model.
Single seed for network model: 1/N — 0.

Comparison between network and mean-field
model sensible for vanishing seed size for the
latter.

a 390f88
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Contagion
all-to—all networks random networks
g 1 Basic Contagion
B, Models
0.8]
Global spreading
O 06 /’ \\ condition
8 \ Social Contagion
04 ' Models
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Threshold contagion on random networks

Basic Contagion
Models

Global spreading
condition

Three key pieces to describe analytically:

Social Contagion

1. The fractional size of the largest subcomponent of = socic
vulnerable nodes, S, ..

2. The chance of starting a global spreading event, Theory
Ptrig = Strig-

3. The expected final size of any successful spread,
S. References

n.b., the distribution of S is almost always
bimodal.

Q> 420f88

Example random network structure:

Qerie = Quyin =
critical mass =
global
vulnerable
component
Qt'rig = .
triggering
component
innal =
potential
extent of
spread

Q = entire
network

Qerie C Q'crig§ Qeric € Qfinai; and Qtrig7 Qfinal C 2.

Threshold contagion on random networks

First goal: Find the largest component of
vulnerable nodes.

Recall that for finding the giant component's size,
we had to solve:

Fo(z) =xFp (F,(z)) and F,(z) = zFy (F,(z))

We'll find a similar result for the subset of nodes
that are vulnerable.

This is a node-based percolation problem.

For a general monotonic threshold distribution
f(¢), a degree k node is vulnerable with probability

1/k
B, = f(#)do.

0

Threshold contagion on random networks

We now have a generating function for the probability
that a randomly chosen node is vulnerable and has
degree k:

R o0
F'" (z) = " Py By z*.
k=0

The generating function for friends-of-friends
distribution is similar to before:

wul = kP _
PRt @) =Y S Bt
k=0
In) |
A @) AR (@)

- %FP(INI:l - Fr(1)

Detail: We still have the underlying degree distribution
involved in the denominator.
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Threshold contagion on random networks — &eie . , Greworkevox
Contagion Probability an infected edge leads to a global Contagion
Functional relations for component size g.f's are spreading event:
almost the same ... Mgel g Quig Must satisfying a one-step recursion relation. [
FYUY () = 1— Fl(;’“'”>(1) +xF1(DV“'”> (F‘(,V“'m(g;)) Global spreading Follow an infected edge and use three pieces: Global spreading
central node Social Contagion 1. Probability of reaching a degree k node is Social Contagion
is not !\jccfie\s“: ) Qk _ %. ’\{‘:O,ije‘s ‘
vulnerable . 2. The node reached is vulnerable with probability ‘
Theory B The()ry

k1*
3. At least one of the node’s outgoing edges leads to
first node : a global spreading event = 1 - probability no edges
is not References doso=1-—(1- ng)kfl- References
vulnerable

F/(Jvuln) (.CL‘) —1_ Fguln)(l) +xF}(%/uln) (F/(?vuln)(x)>

o r Put everything together and solve for Q! 0

Can now solve as before to find kP,
k _
Quig :Z ") ® By, e [1_(1_Qtrig)k 1] .
Spuin =1— F7(rvuln)(1)4 k
Dac 470f 88 Do 52088
Threshold contagion on random networks et Good things about our equation for Qg Gnemworkevox
Contagion Contagion
=S e o1 (1 Qu)t Y] = iw; P, B
Basic Contagion Qtrlg - Z <I€> ° kl.[ ( Qtrlg) ] - f(Qtngx k> kl) Basic Contagion
. . . . Models k Models
Second goal: Find probablllty of triggering Iargest Global spreading Global spreading
Vu'nerab'e component. condition 0i | i condition
. e . ocial Contagion .- = 0 IS always a solution. ocial Contagion
Assumption is first node is randomly chosen. odels Quig y wocels 8

Spreading occurs if a second solution exists for which

Same set up as for vulnerable component except .
0< Qtrig <1. Theory

now we don't care if the initial node is vulnerable
or not: Given P, and B, we can use any kind of root finder

to solve for Qyg, but ...

F®(z) = o F)p (F,()Vum)(x))

References

Fﬁ(,vuln)(x) —1_ Fguln)(l) I xF}(%/uln) (F,()vuln)(x)) The function f increases monotonically with Q;g.

© ATtk

We can therefore use an iterative cobwebbing
approach to find the solution:

1) (n)
Qiﬁg = f(Qt;g%kaBk1)~

Start with a suitably small seed Q&é > 0 and iterate
while rubbing hands together.

Solve as before to find Py = Syig = 1 — Fx (1)

vac 49 of 88 Q> 530f88
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Physical derivation of possibility and probability @networkevox @networkevox
of global spreading: Contagion Global spreading is possible if the fractional size Sy, Contagion

of the largest component of vulnerables is “giant”.

Possibility: binary indicator of phase. Global spreading Basic Contagion & P & Basic Contagion
events are either possible or can never happen. Viodels Interpret S, as the probability a randomly chosen Models
. d tworks. zlobal di ibility i Global spreading node is vulnerable and that infecting it leads to a global Global spreacing

or random networks, global spreading possibility is condition spreading event: condition
understood as meaning a giant component of social Contagion P 8 Sodial Contagion
vulnerable nodes exists. ez Swin =Y P o Byy o [1— (1= Quig)*] > 0.
Next: what's the probability that a randomly infected Theory k Theory
node will cause a global spreading event? reedneposhly )
callth & P g Amounts to having Qg > 0.

all this Pyg.

Probability of global spreading differs only in that we
don't care if the initial seed is vulnerable or not:

Ptrig = Strig = Z Py e [1 - (1 - Qtrig)k]
k

As usual, it's all about edges and we need to first
determine the probability that an infected edge leads
to a global spreading event.

Call this Qg

Later: Generalize to more complex networks involving As for Sy, Pirig is non-zero when Qg > 0.

assortativity of all kinds.

e 510f88 a 540f88
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Connection to generating function results:

We found that £"" (1)—the probability that a random
edge leads to a finite vulnerable component—satisfies
F,(Jvuln)(l) —1_ Fguln)ﬂ) +1- F;%/uln) (F‘()vuln)(l)) .

We set F' (1) = 1 — Quig and deploy

FRi™ (@) = Yo7 ) 52 By a1 to find
= kP L kP, k-1
1_Qtrig Z kBkl Z <T>I€Bk1 (1 - Qtrig)
k=0 k=0

Some breathless algebra it all matches:

> LP, k-1
Qtrig:ZW;.Bkl.[17(17ng) :|

k=0

Fractional size of the largest vulnerable
component:

The generating function approach gave
Syun = 1 — FY" (1) where

FS\-VUIn)(l) —1_ F;;/uln)<1> +1- Fguln) (F};vuln)(l)) .

Again using FYM™ (1) = 1 — Qurig along with
FY™ (z) = 327° P, By %, we have:

1-Sun=1- ZPkBk1+ZPkBk1 (1*Qtrig)k

Excited scrabbling about gives us, as before:

Suuin = Z Py By [1 —(1- Qtrig)k} .

Triggering probability for single-seed global
spreading events:

Slight adjustment to the vulnerable component
calculation.

Suig = 1 — F5"®(1) where
FY'®(1) = 1. Fp (FY™(1).

We play these cards: Fy"" (1) =
Fp(z) =37, P.a" to arrive at

1-— Qtrig and

1_Strig: 1+Zpk (1_Qtrig)k
k=0

More scruffing around brings happiness:

Strig = i By [1 - (1 - Qtrig) k] -
k=0
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Connection to simple gain ratio argument:

Earlier, we showed the global spreading condition

follows from the gain ratio R > 1:

e B, > 1.

= kP,
R= koo(k—1
2w Y
We would very much like to see that R > 1 matches up
With Qg > 0.

It really would be just so totally awesome.

Must come from our basic edge triggering probability
equation:

Qtrig Z

By e [1—(1— Qtrig)kil} .

When does this equation have a solution 0 < Qg < 1?7

We need to find out what happens as Qy;,; — 0.

What we're doing:

A Possibility of a
Global Spreading Event
Microsopic physically C
D .. motivated
escription derivations
B Probability of a

Global Spreading Event

For Qg — 0%, equation tends towards

Qtrig = Z ké;:)k oDy e [1+ (I+< 1)Qtrig + )}

= Qtrig =

lek;.Bkl.( _I)Qtrig
k

=>1=;k<f:>k°(k—1)°3m

Only defines the phase transition points (i.e., R = 1).

Inequality?
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& Again take Qg — 07, but keep next higher order term:

Quig = ; %.BM. [;r+ (;r+(k ~1)Quig— (k B ' ) Qﬁig)]

= Qtrig = ; % By, e [(k - 1)Qtrig - (k g 1)@?@}

=2 k(f;k e(k—1)eBy,; = 1+zk: %Bm (kg 1)Qtrig

k

& We have Quig > 0if 30, 5k e (k—1) e Byy > 1.

&> Repeat: Above is a mathematical connection between
two physically derived equations.

& From this connection, we don't know anything about a
gain ratio R or how to arrange the pieces.
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Threshold contagion on random networks

Basic Contagion
Models

&% Third goal: Find expected fractional size of spread.
&% Not obvious even for uniform threshold problem.
Social Contagion

<% Difficulty is in figuring out if and when nodes that Models
need > 2 hits switch on. N

& Problem solved for infinite seed case by Gleeson
and Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007."

<> Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. [

Global spreading
condition

References
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Meme species:

Periodic Table of Advice Animals Know Your Meme

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models

& More here( at http://knowyourmeme.com (2"

Y 640f88

Expected size of spread
Idea:

& Randomly turn on a fraction ¢, of nodes at time t = 0

<% Capitalize on local branching network structure of
random networks (again)

<> Now think about what must happen for a specific node
i to become active at time ¢:

e ¢t = 0: ¢ is one of the seeds (prob = ¢,)

e ¢ = 1: 4 was not a seed but enough of 4's friends
switched on at time ¢ = 0 so that 4's threshold is now
exceeded.

e t = 2: enough of i's friends and friends-of-friends
switched on at time ¢ = 0 so that 4's threshold is now
exceeded.

e ¢ = n: enough nodes within n hops of i switched on at
t = 0 and their effects have propagated to reach 1.

Expected size of spread

@ - active, ¢ = 1/3
t=0

@ =activeat t=0
QO =activeat t=1
@ -ativeatt=2
@ =activeatt=3
@ =ctiveat t=4
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Expected size of spread

Notes:

<% Calculations presume nodes do not become
inactive (strong restriction, liftable)

Not just for threshold model—works for a wide
range of contagion processes.

We can analytically determine the entire time
evolution, not just the final size.

We can in fact determine
Pr(node of degree k switches on at time ¢).

Even more, we can compute: Pr(specific node i
switches on at time t).

Asynchronous updating can be handled too.

& & » » B

Expected size of spread

Pleasantness:

<& Taking off from a single seed story is about
expansion away from a node.

<& Extent of spreading story is about contraction at a

node.
A

=7

Expected size of spread

<% Notation:
¢y, = Pr(a degree k node is active at time ).

& Notation: By,; = Pr (a degree k node becomes
active if j neighbors are active).
& Our starting point: ¢, o = ¢.
& (%)0(1—¢9)F~7 = Pr (j of a degree k node's
neighbors were seeded at time ¢ = 0).
&% Probability a degree k node was a seed at ¢ = 0 is
¢, (as above).
&> Probability a degree k node was not a seed att = 0
is (1 —dp).
&% Combining everything, we have:
k. /k ; .
P, =90+ (1—0q) Z (J)Oé(l — o) I By
7=0
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Expected size of spread

&> For general t, we need to know the probability an
edge coming into a degree k node at time ¢ is ot Conagion
active. Models

<% Notation: call this probability 6,. Cloba spreading
& We already know 6, = ¢. Socil ontagion
& Story analogous to ¢ = 1 case. For specific node i: et ern
k; " Theory
Gier1 =00+ (1—¢g) Z ( ;)ef(l — et)kerklj,

=0

&% Average over all nodes with degree k to obtain
expression for ¢, ;:

b1 = dot(1—0p) Z Z (J)b‘](l -0 )kijBkj'

&> So we need to compute 4,...

massive excitement...
“a 710f88
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Contagion

First connect 6, to 6;:
& 01 = dot

oo LP k—1
1603 “;z(

k=1

Basic Contagion
Models

Global spreading
condition

Social Contagion
Jel

)9’ (1—060)* 1By,

& ik = Q, = Pr(edge connects to a degree k node).

& Z o piece gives Pr (degree node k activates if j
of |ts k — 1 incoming neighbors are active).

&> ¢ and (1 — ¢,) terms account for state of node at
timet = 0.

&> See this all generalizes to give 6, , in terms of 6,...
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Two pieces: edges first, and then nodes

Basic Contagion
o ¢

1. 9t+1 = 0 Models
exogenous

Global spreading
condition
Social Contagion

+(1—¢o) Z%Z( )03 1—g,)k- 1B, U0

2 e

Theory

social effects

with 8y = ¢q.
2. ¢t+1 =
= kY, i .
(29 +(1—¢9) Z Z<j)9g(170t)k7]Bkj'
exogenous k=0 =

social effects
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Comparison between theory and
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H H Contagion

simulations ‘

15 1 Basic Contagion
Pure random networks  wodeis
with Slmple threshold G\obﬂ\sore:dmg

conaition

10|

~ 05 responses Social Contagion
R = uniform threshold "%

° (our ¢,); = = average !

Theory
= degree; p=¢; ¢ =0; reacing os

% o1 02 03 ° N =105,

1 bo =1073,0.5 x 1072,

b;

- |® and 102,
e Do Cascade window is for

o [N o = 1072 case.

0 2 4 6 8 10 X X

z Sensible expansion of

From Gleeson and cascade window as ¢,
Cahalane !’ increases.

Notes:

Q> 740f 88
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Retrieve cascade condition for spreading from a
single seed in limit ¢4 — 0.

Depends on map 0, ; = G(6,; ¢o).

First: if self-starters are present, some activation is
assured:

Basic Contagion
Models

Global spreading
condition

Social Contagion
Models

e

¢0:Z

oBk0>0

meaning B, > 0 for at least one value of &k > 1.

If 8 = 0is a fixed point of G (i.e., G(0; ¢,) = 0) then
spreading occurs for a small seed if
N kP,
G (0; ¢p) = Z k —1)e By, >1.

Insert question from assignment 10 &'

“va@ 750f 88

Notes: Gnetworkevor
Contagion
In words:
Basic Contagion
If G(0; ¢o) > 0, spreading must occur because Models

Non-vanishing seed case:

Global spreading
condition

some nodes turn on for free.
Social Contagion

If G has an unstable fixed point at § = 0, then sockal €
cascades are also always possible.

Theory

Cascade condition is more complicated for ¢, > 0.
If G has a stable fixed pointat § = 0, and an
unstable fixed point for some 0 < 6, < 1, then for
0o > 0,, spreading takes off.

Tricky point: G depends on ¢, so as we change
¢, We also change G.

v 76 of 88

General fixed point story:

1 pi 1 P 1

Gl 00

01 = G

O

0 o o,

Given 6, (= ¢g), 0, Will be the nearest stable fixed
point, either above or below.

n.b., adjacent fixed points must have opposite stability
types.

Important: Actual form of G depends on ¢,,.

Important: ¢, can only increase monotonically so ¢,
must shape G so that ¢, is at or above an unstable
fixed point.

First reason: ¢, > ¢,.
Second: G’(0; ¢y) >0,0< 6 < 1.

Interesting behavior:

Now allow thresholds
o to be distributed
' according to a
Gaussian with mean R.
. R=0.2,0.362, and
0.38; 0 =0.2.

i v ¢o = 0 but some nodes
= ; have thresholds < 0 so
0.5] 3 .

: effectivel > 0.
. Y o
0 Now see a (nasty)
0 2 4 6 8 10 R A
z discontinuous phase
From Gleeson and transition for low (k).
Cahalane!”!
Interesting behavior:
1
@
0.5
B T T Plots of stability points

for6,,.1 = G(04; ¢0).
n.b.: 0 is not a fixed
point here: 6, =0
always takes off.

Top to bottom: R =
0.35, 0.371, and 0.375.
Saddle node
bifurcations appear
and merge (b and c).

From Gleeson and
Cahalane!’!
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What's happening:

Fixed points slip above and below the 0, , =6,
line:

)
0. .
0

=)
o6
D)

Time-dependent solutions

Synchronous update

Done: Evolution of ¢, and 6, given exactly by the
maps we have derived.

Asynchronous updates
Update nodes with probability «.
As o — 0, updates become effectively
independent.
Now can talk about ¢(¢) and 6(t).

Nutshell:

Solid dive into understanding contagion on generalized
random networks.

Threshold model leads to idea of vulnerables and a
critical mass. [16 €

Generating function approaches provided first
breakthroughs and gave possibility and probability of
spreading. [0 16]

Later: A probabilistic, physical method solved the

whole story for a fractional seed—final size, dynamics,
[7, 6]

Much can be generalized for more realistic kinds of
networks: degree-correlated, modular, bipartite, ...

The single seed contagion condition and triggering
probability can be fully developed using a physical
story. [ ]

Many connections to other kinds of models: Voter
models, Ising models, ...
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