Measures of centrality

Measures of centrality

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

COcoNuTS
@networksvox
Measures of centrality

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality Hubs and Authorities

Nutshell

References

These slides are also brought to you by:

Background
Centrality measures
Degree centrality
Closeness centrality Betweenness

Eigenvalue centrality
Hubs and Authorities
Nutshell
References

CocoNuTs
Complex Networks
Onetworkswox
ventrong sompoctas

UVM

๑a@ 3 of 33

Outline

Background
Background
Centrality measures
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality Hubs and Authorities

Nutshell

References

How big is my node?

 @networksvox Measures of centralityBasic question: how 'important' are specific nodes and edges in a network?

How big is my node?

8. Basic question: how 'important' are specific nodes and edges in a network?
\& An important node or edge might:

How big is my node?

8. Basic question: how 'important' are specific nodes and edges in a network?
\& An important node or edge might:
9. handle a relatively large amount of the network's traffic (e.g., cars, information);

How big is my node?

8. Basic question: how 'important' are specific nodes and edges in a network?
\& An important node or edge might:
9. handle a relatively large amount of the network's traffic (e.g., cars, information);
10. bridge two or more distinct groups (e.g., liason, interpreter);

How big is my node?

B Basic question: how 'important' are specific nodes and edges in a network?
83 An important node or edge might:

1. handle a relatively large amount of the network's traffic (e.g., cars, information);
2. bridge two or more distinct groups (e.g., liason, interpreter);
3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

UYM
|

How big is my node?

8. Basic question: how 'important' are specific nodes and edges in a network?
8 An important node or edge might:
9. handle a relatively large amount of the network's traffic (e.g., cars, information);
10. bridge two or more distinct groups (e.g., liason, interpreter);
11. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
So how do we quantify such a slippery concept as importance?

How big is my node?

8. Basic question: how 'important' are specific nodes and edges in a network?
8 An important node or edge might:
9. handle a relatively large amount of the network's traffic (e.g., cars, information);
10. bridge two or more distinct groups (e.g., liason, interpreter);
11. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
So how do we quantify such a slippery concept as importance?
B
We generate ad hoc, reasonable measures, and examine their utility ...

Centrality

One possible reflection of importance is centrality.

Centrality

One possible reflection of importance is centrality. Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.

Background
Centrality measures

Centrality

One possible reflection of importance is centrality. Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
Idea of centrality comes from social networks literature ${ }^{[7]}$.

Centrality

One possible reflection of importance is centrality.
Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
Idea of centrality comes from social networks literature ${ }^{[7]}$.

- Many flavors of centrality ...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

UVM

Centrality

One possible reflection of importance is centrality.
Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function. literature ${ }^{[7]}$.

- Many flavors of centrality ...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few ...

Centrality

One possible reflection of importance is centrality. Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function. literature ${ }^{[7]}$.
Many flavors of centrality ...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

We will define and examine a few ...
8
(Later: see centrality useful in identifying communities in networks.)

Outline

Centrality measures Degree centrality

Centrality

R Naively estimate importance by node degree. ${ }^{[7]}$

Centrality

Degree centrality

R Naively estimate importance by node degree. ${ }^{[7]}$

- Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)

Centrality

Degree centrality

Naively estimate importance by node degree. ${ }^{[7]}$
R Doh: assumes linearity
(If node i has twice as many friends as node j, it's twice as important.)
Doh: doesn't take in any non-local information.

Outline

COcoNuTS @networksvox Measures of centrality

Background

Centrality

Centrality measures

Closeness centrality

Closeness centrality

83 Idea: Nodes are more central if they can reach other nodes 'easily.'

Closeness centrality

83 Idea: Nodes are more central if they can reach other nodes 'easily.'
Measure average shortest path from a node to all other nodes.

Background

Centrality measures
Degree centrality

Closeness centrality

R Idea: Nodes are more central if they can reach other nodes 'easily.'
Measure average shortest path from a node to all other nodes.
Define Closeness Centrality for node i as

$$
N-1
$$

Closeness centrality

8 Idea: Nodes are more central if they can reach other nodes 'easily.'
Measure average shortest path from a node to all other nodes.
Define Closeness Centrality for node i as

$$
\frac{N-1}{\sum_{j, j \neq i}(\text { shortest distance from } i \text { to } j)}
$$

Range is 0 (no friends) to 1 (single hub).

Closeness centrality

8 Idea: Nodes are more central if they can reach other nodes 'easily.'
Measure average shortest path from a node to all other nodes.
\& Define Closeness Centrality for node i as

$$
N-1
$$

$$
\overline{\sum_{j, j \neq i}(\text { shortest distance from } i \text { to } j) .}
$$

R Range is 0 (no friends) to 1 (single hub).
Unclear what the exact values of this measure tells us because of its ad-hocness.

Closeness centrality

8 Idea: Nodes are more central if they can reach other nodes 'easily.'
8
Measure average shortest path from a node to all other nodes.
\& Define Closeness Centrality for node i as

$$
N-1
$$

$$
\overline{\sum_{j, j \neq i}(\text { shortest distance from } i \text { to } j) .}
$$

Range is 0 (no friends) to 1 (single hub).
Unclear what the exact values of this measure tells us because of its ad-hocness.
General problem with simple centrality measures: what do they exactly mean?

Closeness centrality

B Idea: Nodes are more central if they can reach other nodes 'easily.'
8 Measure average shortest path from a node to all other nodes.
R Define Closeness Centrality for node i as

$$
N-1
$$

$$
\left.\sum_{j, j \neq i} \text { (shortest distance from } i \text { to } j\right) .
$$

Range is 0 (no friends) to 1 (single hub).

8Unclear what the exact values of this measure tells us because of its ad-hocness.
General problem with simple centrality measures: what do they exactly mean?

- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Centrality
measures
Degree centrality

Outline

Background

Centrality measures

Centrality measures

Betweenness

Betweenness centrality

 @networksvox Measures ofBetweenness centrality is based on coherence of shortest paths in a network.

Betweenness centrality

B Betweenness centrality is based on coherence of shortest paths in a network.
Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.

Centraty

Betweenness centrality

8. Betweenness centrality is based on coherence of shortest paths in a network.
Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
For each node i, count how many shortest paths pass through i.

Betweenness centrality

8 Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
Ror each node i, count how many shortest paths pass through i.
In the case of ties, divide counts between paths.

Betweenness centrality

8 Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
R For each node i, count how many shortest paths pass through i.
In the case of ties, divide counts between paths.
Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.

UVM

Betweenness centrality

Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
For each node i, count how many shortest paths pass through i.
In the case of ties, divide counts between paths.
Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.
Note: Exclude shortest paths between i and other nodes.

Betweenness centrality

Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
For each node i, count how many shortest paths pass through i.
In the case of ties, divide counts between paths.
Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.
Note: Exclude shortest paths between i and other nodes.
Note: works for weighted and unweighted networks.

Consider a network with N nodes and m edges (possibly weighted).

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths[$\overline{ }$ between all pairs of nodes.

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Consider a network with N nodes and m edges (possibly weighted). between all pairs of nodes.
Traditionally use Floyd-Warshall [J algorithm.

Measures of centrality

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Consider a network with N nodes and m edges (possibly weighted). between all pairs of nodes.

Consider a network with N nodes and m edges (possibly weighted). between all pairs of nodes.
\& Traditionally use Floyd-WarshallC algorithm.
Computation time grows as $O\left(N^{3}\right)$.
\& See also:

1. Dijkstra's algorithm © for finding shortest path between two specific nodes,
(2s) Computational goal: Find $\binom{N}{2}$ shortest paths[$\sqrt{\top}$
Background

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths $\left[\begin{array}{l}\pi \\ \end{array}\right.$ between all pairs of nodes.
d Traditionally use Floyd-Warshall © algorithm.

- Computation time grows as $O\left(N^{3}\right)$.
- See also:

1. Dijkstra's algorithm for for finding shortest path between two specific nodes,
2. and Johnson's algorithm [3] which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths $\mathbb{} \quad \pi$ between all pairs of nodes.
\& Traditionally use Floyd-Warshall [algorithm.
Computation time grows as $O\left(N^{3}\right)$.
See also:

1. Dijkstra's algorithm for for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

8
Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths $\left[\begin{array}{l}\pi \\ \end{array}\right.$ between all pairs of nodes.
\& Traditionally use Floyd-Warshall [algorithm.
Computation time grows as $O\left(N^{3}\right)$.
See also:

1. Dijkstra's algorithm for for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.
Computation times grow as:

Background
Centrality
measures
Degree centrality
Closeness centrality

Betweenness

Eigenvalue centrality

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths $\left[\begin{array}{l}\pi \\ \end{array}\right.$ between all pairs of nodes.

Background
\& Traditionally use Floyd-Warshall [algorithm.

Computation time grows as $O\left(N^{3}\right)$.
See also:

1. Dijkstra's algorithm for for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.
Computation times grow as:

1. $O(m N)$ for unweighted graphs;

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find $\binom{N}{2}$ shortest paths $[\mathcal{Z}$ between all pairs of nodes.
\& Traditionally use Floyd-Warshall [algorithm.
Computation time grows as $O\left(N^{3}\right)$.
See also:

1. Dijkstra's algorithm [J for finding shortest path between two specific nodes,
2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks:

$$
O\left(m N+N^{2} \log N\right)
$$

Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) independently derive equally fast algorithms that also compute betweenness.
Computation times grow as:

1. $O(m N)$ for unweighted graphs;
2. and $O\left(m N+N^{2} \log N\right)$ for weighted graphs.

Centrality
measures
Degree centrality
Closeness centrality

Betweenness

Eigenvalue centrality

Shortest path between node i and all others:

COcoNuTS @networksvox

Measures of centrality

Background

Centrality

 measuresDegree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell

References

Shortest path between node i and all others:
Consider unweighted networks.

COcoNuTS @networksvox
Measures of centrality

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Shortest path between node i and all others:

Consider unweighted networks.

Use breadth-first search:

Shortest path between node i and all others:

. Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.

Measures of centrality

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

CocoNuTs
Complex Networks
© ${ }^{\text {© }}$ networksvox
vun: $\left\lvert\, \begin{aligned} & 0 \\ & 0\end{aligned}\right.$
っac 15 of 33
. Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.

Measures of centrality

Background
Centrality measures
. Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
. Consider unweighted networks.
\& Use breadth-first search:
4. Start at node i, giving it a distance $d=0$ from itself.
5. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
6. Go through list of most recently visited nodes and find all of their neighbors.
7. Exclude any nodes already assigned a distance.
. Consider unweighted networks.
\& Use breadth-first search:
8. Start at node i, giving it a distance $d=0$ from itself.
9. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
10. Go through list of most recently visited nodes and find all of their neighbors.
11. Exclude any nodes already assigned a distance.
12. Increment distance d by 1 .

Shortest path between node i and all others:

. Consider unweighted networks.

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.

Centrality
measures
Degree centrality
Closeness centrality
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.

Shortest path between node i and all others:

. Consider unweighted networks.
\& Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Shortest path between node i and all others:

Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).

Shortest path between node i and all others:

Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).

R Runs in $O(m)$ time and gives $N-1$ shortest paths.

Shortest path between node i and all others:

Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).

Runs in $O(m)$ time and gives $N-1$ shortest paths.

Shortest path between node i and all others:

Consider unweighted networks.
Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1 .
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).

Runs in $O(m)$ time and gives $N-1$ shortest paths.

Newman's Betweenness algorithm: ${ }^{[4]}$

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

-
๑a^ 16 of 33

Newman's Betweenness algorithm:

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).

Newman's Betweenness algorithm:

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.

Newman's Betweenness algorithm:

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.
5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.
5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.
6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.
5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.
6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
7. Exclude starting node j and i from increment.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots$ (c for count).
2. Select one node i and find shortest paths to all other $N-1$ nodes using breadth-first search.
3. Record \# equal shortest paths reaching each node.
4. Move through nodes according to their distance from i, starting with the furthest.
5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.
6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
7. Exclude starting node j and i from increment.
8. Repeat steps 2-8 for every node i and obtain
 betweenness as $B_{j}=\sum_{i=1}^{N} c_{i j}$.

Newman's Betweenness algorithm: ${ }^{[4]}$

For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Newman's Betweenness algorithm: ${ }^{[4]}$

For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
Same algorithm for computing drainage area in river networks (with 1 added across the board).

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Newman's Betweenness algorithm: ${ }^{[4]}$

R For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
Same algorithm for computing drainage area in river networks (with 1 added across the board).
For edge betweenness, use exact same algorithm but now

Newman's Betweenness algorithm: ${ }^{[4]}$

R For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
Same algorithm for computing drainage area in river networks (with 1 added across the board).
For edge betweenness, use exact same algorithm but now

1. j indexes edges,

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness

Newman's Betweenness algorithm: ${ }^{[4]}$

R For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
Same algorithm for computing drainage area in river networks (with 1 added across the board).
For edge betweenness, use exact same algorithm but now

1. j indexes edges,
2. and we add one to each edge as we traverse it.

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness

UVM

Newman's Betweenness algorithm: ${ }^{[4]}$

For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i 's vantage point.
Same algorithm for computing drainage area in river networks (with 1 added across the board).
For edge betweenness, use exact same algorithm but now

1. j indexes edges,
2. and we add one to each edge as we traverse it.
\&or both algorithms, computation time grows as

$$
O(m N) .
$$

Newman's Betweenness algorithm: ${ }^{[4]}$

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

- ${ }^{\circ}$

Outline

 @networksvox Measures of centrality
Background

Centrality measures

Centrality measures

Eigenvalue centrality

Important nodes have important friends:

 @networksvox Measures of centralityBackground

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Important nodes have important friends: Define x_{i} as the 'importance' of node i.

COcoNuTS @networksvox Measures of centrality

Background

Centrality measures

Important nodes have important friends: Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j} if j is a neighbor of i.

Important nodes have important friends:
83 Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
83 Recursive: importance is transmitted through a network.
@networksvox
Measures of centrality

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Important nodes have important friends:
Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
83 Recursive: importance is transmitted through a network.
R Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.

UVM
\mid

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.
\& Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.
Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$ or $\mathbf{A}^{\top} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$.

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
8
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.
B Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$ or $\mathbf{A}^{\top} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$.
Eigenvalue equation based on adjacency matrix ...

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.
Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$ or $\mathbf{A}^{\top} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$. Eigenvalue equation based on adjacency matrix ...
Note: Lots of despair over size of the largest eigenvalue.

Important nodes have important friends:

Define x_{i} as the 'importance' of node i. Idea: x_{i} depends (somehow) on x_{j}
if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

Assume further that constant of proportionality, c, is independent of i.
Above gives $\vec{x}=c \mathbf{A}^{\top} \vec{x}$ or $\mathbf{A}^{\top} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$.
Eigenvalue equation based on adjacency matrix ...
Note: Lots of despair over size of the largest eigenvalue. ${ }^{[7]}$ Lose sight of original assumption's non-physicality.

Important nodes have important friends: So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.

COcoNuTS @networksvox Measures of centrality

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Important nodes have important friends:
So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?

COcoNuTS @networksvox Measures of centrality

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality Hubs and Authorities

Nutshell
References

Important nodes have important friends:
So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

COcoNuTS @networksvox Measures of centrality

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality Hubs and Authorities

Nutshell
References

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.

Important nodes have important friends:
So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.

Important nodes have important friends:
So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.

Important nodes have important friends:
So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ...

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ...
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative ...)

UYM

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ...
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative ...)
7. λ to equal 1 would be nice ...

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.

We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ...
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative ...)
7. λ to equal 1 would be nice ...
8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ... (maybe too much)
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative ...) (maybe too much)
7. λ to equal 1 would be nice ... (maybe too much)
8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.
But which eigenvalue and eigenvector?
We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality modifications of linear assumption (maybe too much)
We rummage around in bag of tricks and pull out

Important nodes have important friends:

So: solve $\mathbf{A}^{\top} \vec{x}=\lambda \vec{x}$.

We, the people, would like:

1. A unique solution.
2. λ to be real.
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something ... (maybe too much)
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative ...) (maybe too much)
7. λ to equal 1 would be nice ... (maybe too much)
8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)
We rummage around in bag of tricks and pull out the Perron-Frobenius theorem ...

Perron-Frobenius theorem: [$\bar{\jmath}$ If an $N \times N$ matrix A has non-negative entries then:

COcoNuTS @networksvox

Measures of centrality

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

CocoNuTs
omplex Networks
©networksvox

のa^ 23 of 33

Perron-Frobenius theorem: [If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.

COcoNuTS @networksvox
Measures of centrality

Background

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Perron-Frobenius theorem: [$\mathbb{\top}$ If an $N \times N$ matrix A hàs non-negative entries then:

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
2. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.

Perron-Frobenius theorem: [$\bar{\beta}$ If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
2. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

Perron-Frobenius theorem: [$\bar{\beta}$ If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
2. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

4. All other eigenvectors have one or more negative entries.
5. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
6. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
7. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

4. All other eigenvectors have one or more negative entries.
5. The matrix A can make toast.
6. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
7. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
8. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

4. All other eigenvectors have one or more negative entries.
5. The matrix A can make toast.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive ${ }^{[6]}$ and just non-negative ${ }^{[3]}$.

Other Perron-Frobenius aspects:

Background

Assuming our network is irreducible [$\mathbb{3}$, meaning there is only one component, is reasonable:

Other Perron-Frobenius aspects:

Assuming our network is irreducible [$\mathbb{3}$, meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

Other Perron-Frobenius aspects:

Assuming our network is irreducible[], meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

Other Perron-Frobenius aspects:

Assuming our network is irreducible[], meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
\& Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
Analogous to notion of ergodicity: every state is reachable.

Other Perron-Frobenius aspects:

Assuming our network is irreducible [], meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
\& Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
Analogous to notion of ergodicity: every state is reachable.
8
(Another term: Primitive graphs and matrices.)

UVM

Outline

 @networksvox Measures of centrality
Centrality measures

Hubs and Authorities

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
R Original work due to the legendary Jon Kleinberg. ${ }^{[2]}$

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. ${ }^{[2]}$
Best hubs point to best authorities.

Hubs and Authorities

Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
Original work due to the legendary Jon Kleinberg. ${ }^{[2]}$
Best hubs point to best authorities.
\& Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.

Hubs and Authorities

8eneralize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities Kleinberg. ${ }^{[2]}$
Best hubs point to best authorities.
8 Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
8 More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.

Hubs and Authorities

8. Generalize eigenvalue centrality to allow nodes to have two attributes:
9. Authority: how much knowledge, information, etc., held by a node on a topic.
10. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
R Original work due to the legendary Jon Kleinberg. ${ }^{[2]}$
Best hubs point to best authorities.
 Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
 More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
Bnown as the HITS algorithm [(Hyperlink-Induced Topics Search).

CocoNuTs
Complex Networks © inetworksvox Enevtrings conmected

Hubs and Authorities

Give each node two scores:

Hubs and Authorities

Give each node two scores:

1. $x_{i}=$ authority score for node i

Background
Centrality measures

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

Hubs and Authorities

Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background

Centrality measures

Hubs and Authorities

\& Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

8 As for eigenvector centrality, we connect the scores of neighboring nodes.

Hubs and Authorities

\& Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

8 As for eigenvector centrality, we connect the scores of neighboring nodes.
\& New story I: a good authority is linked to by good hubs.

Hubs and Authorities

\& Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background
As for eigenvector centrality, we connect the scores of neighboring nodes.
New story I: a good authority is linked to by good hubs.
Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.

Hubs and Authorities

\& Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background
As for eigenvector centrality, we connect the scores of neighboring nodes.
New story I: a good authority is linked to by good hubs.
Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.
Note: indices are $j i$ meaning j has a directed link to i.

Hubs and Authorities

8 Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background
\& As for eigenvector centrality, we connect the scores of neighboring nodes.
\& New story I: a good authority is linked to by good hubs.
8 Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.

- Note: indices are $j i$ meaning j has a directed link to i.
8
New story II: good hubs point to good authorities.

Hubs and Authorities

Bive each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background
As for eigenvector centrality, we connect the scores of neighboring nodes.
New story I: a good authority is linked to by good hubs.
Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.

- Note: indices are $j i$ meaning j has a directed link to i.

8
New story II: good hubs point to good authorities.
Means y_{i} should increase as $\sum_{j=1}^{N} a_{i j} x_{j}$ increases.

UYM

Hubs and Authorities

8 Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

Background

As for eigenvector centrality, we connect the scores of neighboring nodes.
New story I: a good authority is linked to by good hubs.
Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.
Centrality
measures
Degree centrality
Closeness centrality

Betweenness

Eigenvalue centrality

Note: indices are $j i$ meaning j has a directed link to i.
New story II: good hubs point to good authorities. Means y_{i} should increase as $\sum_{j=1}^{N} a_{i j} x_{j}$ increases.
Linearity assumption:

$$
\vec{x} \propto A^{T} \vec{y} \text { and } \vec{y} \propto A \vec{x}
$$

Hubs and Authorities

So let's say we have

$$
\vec{x}=c_{1} A^{T} \vec{y} \text { and } \vec{y}=c_{2} A \vec{x}
$$

where c_{1} and c_{2} must be positive.

Hubs and Authorities

So let's say we have

$$
\vec{x}=c_{1} A^{T} \vec{y} \text { and } \vec{y}=c_{2} A \vec{x}
$$

where c_{1} and c_{2} must be positive.
Above equations combine to give

$$
\vec{x}=c_{1} A^{T} c_{2} A \vec{x}
$$

where $\lambda=c_{1} c_{2}>0$.

Hubs and Authorities

So let's say we have

$$
\vec{x}=c_{1} A^{T} \vec{y} \text { and } \vec{y}=c_{2} A \vec{x}
$$

where c_{1} and c_{2} must be positive.
18 Above equations combine to give

$$
\vec{x}=c_{1} A^{T} c_{2} A \vec{x}=\lambda A^{T} A \vec{x}
$$

where $\lambda=c_{1} c_{2}>0$.
It's all good: we have the heart of singular value decomposition before us ...

We can do this:

Background

Centrality measures
Degree centrality
Closeness centrality Betweenness

Eigenvalue centrality
Hubs and Authorities
Nutshell
References

We can do this:

 @networksvox Measures of centrality$A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.

Background

Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

We can do this:

@networksvox
Measures of centrality
$A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.

- $A^{T} A^{\prime}$ s eigenvalues are the square of $A^{\prime} \mathrm{s}$ singular values.

We can do this:

8 $A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.

- $A^{T} A^{\prime}$ s eigenvalues are the square of $A^{\prime} s$ singular values.
R $A^{T} A^{\prime}$'s eigenvectors form a joyful orthogonal basis.

We can do this:

8. $A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.

- $A^{T} A^{\prime}$ s eigenvalues are the square of $A^{\prime} \mathrm{s}$ singular values.
\& $A^{T} A^{\prime}$ s eigenvectors form a joyful orthogonal basis.
R Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.

We can do this:

$A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues
Background are all ≥ 0.
$A^{T} A^{\prime}$'s eigenvalues are the square of A 's singular values.
R $A^{T} A^{\prime}$ s eigenvectors form a joyful orthogonal basis.
Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
So: linear assumption leads to a solvable system.

We can do this:

$A^{T} A$ is symmetric.
$A^{T} A$ is semi-positive definite so its eigenvalues
Background are all ≥ 0.
$A^{T} A^{\prime}$'s eigenvalues are the square of A 's singular values.
\& $A^{T} A^{\prime}$ s eigenvectors form a joyful orthogonal basis.
Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
So: linear assumption leads to a solvable system.

8What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Nutshell:

Measuring centrality is well motivated if hard to carry out well.

Background

Centrality measures

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

Nutshell

References

CocoNuTs
Complex Networks
©networksvox

Nutshell:

Measuring centrality is well motivated if hard to carry out well.
We've only looked at a few major ones.

Background
Centrality measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
Nutshell
References

CocoNuTs
Complex Networks
(©) networksvox
uvm $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
๑aผ 30 of 33

Nutshell:

Measuring centrality is well motivated if hard to carry out well.
We've only looked at a few major ones.
Methods are often taken to be more sophisticated than they really are.

Nutshell:

Measuring centrality is well motivated if hard to carry out well.

Methods are often taken to be more sophisticated than they really are.
Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
8

Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

Nutshell:

Measuring centrality is well motivated if hard to carry out well.
. We've only looked at a few major ones.
Methods are often taken to be more sophisticated than they really are.
. Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).

- Focus on nodes rather than groups or modules is a homo narrativus constraint.

Nutshell:

Measuring centrality is well motivated if hard to carry out well.
. We've only looked at a few major ones.
Methods are often taken to be more sophisticated than they really are.
8
Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
\&ocus on nodes rather than groups or modules is a homo narrativus constraint.
Possible that better approaches will be developed.

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality

UVM

References I

[1] U. Brandes.
A faster algorithm for betweenness centrality. J. Math. Sociol., 25:163-177, 2001. pdf[天
[2] J. M. Kleinberg.
Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf[
[3] K. Y. Lin.
An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices.
Chinese Journal of Physics, 15:283-285, 1977. pdf[

References II

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
Phys. Rev. E, 64(1):016132, 2001. pdf[
[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in
Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality networks.
Phys. Rev. E, 69(2):026113, 2004. pdf匚̄
[6] F. Ninio.
A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.
J. Phys. A.: Math. Gen., 9:1281-1282, 1976. pdf■®

References III

 @networksvox Measures of centrality[7] S. Wasserman and K. Faust.
Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

