Measures of centrality

Last updated: 2019/01/14, 22:50:59

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS Measures of centrality

Background Centrality

Nutshell

References

ჟ q (~ 1 of 33

Outline

Background

Centrality measures

Degree centrality Closeness centrality Betweenness Eigenvalue centrality **Hubs and Authorities**

Nutshell

References

COcoNuTS

@networksvox

Measures of

Background

Centrality measures

Nutshell

References

centrality

2 9 0 € 4 of 33

These slides are brought to you by:

COcoNuTS @networksvox Measures of centrality

Background Centrality measures Degree centrality Closeness centra Betweenness

Nutshell References

How big is my node?

and edges in a network?

An important node or edge might:

- 1. handle a relatively large amount of the network's traffic (e.g., cars, information);
- 2. bridge two or more distinct groups (e.g., liason, interpreter);

Basic question: how 'important' are specific nodes

- 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility ...

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell References

COcoNuTS

Measures of

Background

Centrality

measures

Nutshell

References

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett the cat

COcoNuTS Measures of

•9 Q (№ 2 of 33

IVM S

Background Centrality measures
Degree central
Closeness cent
Betweenness

Nutshell References

少 q (~ 3 of 33

Centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- & Idea of centrality comes from social networks literature [7].
- Many flavors of centrality ...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few ...
- (Later: see centrality useful in identifying communities in networks.)

•9 q (~ 7 of 33

Centrality

Degree centrality

- Naively estimate importance by node degree. [7]
- Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)
- Doh: doesn't take in any non-local information.

COcoNuTS Measures of centrality

Background Centrality Degree centrality

Nutshell References

少 q (~ 9 of 33

Closeness centrality

- 🚵 Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

 $\sum_{i,j\neq i} (\text{shortest distance from } i \text{ to } j).$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

COcoNuTS Measures of

Background Centrality measures

centrality

Closeness centrality Nutshell

References

少 q (~ 11 of 33

COcoNuTS

Measures of

Background

Centrality

measures Degree centra

References

(a)

Betweenness centrality

- Betweenness centrality is based on coherence of shortest paths in a network.
- A Idea: If the guickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- Some are the second of the sec pass through i.
- In the case of ties, divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i .
- \mathbb{A} Note: Exclude shortest paths between i and other
- Note: works for weighted and unweighted networks.

& Consider a network with N nodes and m edges (possibly weighted).

- & Computational goal: Find $\binom{N}{2}$ shortest paths \checkmark between all pairs of nodes.
- 🙈 Traditionally use Floyd-Warshall 🗹 algorithm.
- $\ensuremath{\mathfrak{S}}$ Computation time grows as $O(N^3)$.
- See also:
 - 1. Dijkstra's algorithm **I** for finding shortest path between two specific nodes,
 - 2. and Johnson's algorithm which outperforms Floyd-Warshall for sparse networks: $O(mN + N^2 \log N)$.
- & Newman (2001) [4, 5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.
- Computation times grow as:

Consider unweighted networks.

being at a distance d = 1.

find all of their neighbors.

5. Increment distance d by 1.

Use breadth-first search:

- 1. O(mN) for unweighted graphs;
- 2. and $O(mN + N^2 \log N)$ for weighted graphs.

1. Start at node i, giving it a distance d = 0 from

2. Create a list of all of i's neighbors and label them

3. Go through list of most recently visited nodes and

6. Label newly reached nodes as being at distance *d*. 7. Repeat steps 3 through 6 until all nodes are

4. Exclude any nodes already assigned a distance.

Shortest path between node i and all others:

COcoNuTS

@networksvox

Measures of

Background

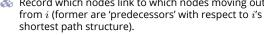
Centrality

Nutshell

References

centrality

•2 Q № 14 of 33


COcoNuTS Measures of

centrality Background

Centrality measures Degree centrality Closeness centrality Betweenness

Nutshell References

visited. Record which nodes link to which nodes moving out

 \Re Runs in O(m) time and gives N-1 shortest paths.

 \Re Find all shortest paths in O(mN) time

leaves

& Much, much better than naive estimate of $O(mN^2)$. Newman's Betweenness algorithm: [4]

(b)

COcoNuTS Measures of

Background Centrality

References

•9 q (~ 13 of 33

Newman's Betweenness algorithm: [4]

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ...(c for count).
- 2. Select one node i and find shortest paths to all other N-1 nodes using breadth-first search.
- 3. Record # equal shortest paths reaching each node.
- 4. Move through nodes according to their distance from i, starting with the furthest.
- 5. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 6. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 7. Exclude starting node j and i from increment.
- 8. Repeat steps 2–8 for every node i and obtain betweenness as $B_j = \sum_{i=1}^N c_{ij}$.

Newman's Betweenness algorithm: [4]

- \Leftrightarrow For a pure tree network, c_{ij} is the number of nodes beyond *j* from *i*'s vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,
 - 2. and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as

O(mN).

Measures of centrality

Background Centrality

Nutshell References

ჟ q (~ 17 of 33

COcoNuTS

Measures of

Background

Centrality measures

Degree centrali

Closeness cent

Betweenness

Nutshell

References

IVM S

少 q (~ 18 of 33

centrality

Important nodes have important friends:

- & So: solve $\mathbf{A}^{\mathsf{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- & We, the people, would like:
 - 1. A unique solution. ✓
 - 2. λ to be real. \checkmark
 - 3. Entries of \vec{x} to be real. \checkmark
 - 4. Entries of \vec{x} to be non-negative. \checkmark
 - 5. λ to actually mean something ... (maybe too much)
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative ...) (maybe too much)
 - λ to equal 1 would be nice ... (maybe too much)
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too
- We rummage around in bag of tricks and pull out the Perron-Frobenius theorem ...

Perron-Frobenius theorem: \square If an $N \times N$ matrix

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i=2,\ldots,N$.

A has non-negative entries then:

- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min\nolimits_i \sum_{j=1}^N a_{ij} \leq \lambda_1 \leq \max\nolimits_i \sum_{j=1}^N a_{ij}$$

- 4. All other eigenvectors have one or more negative entries.
- 5. The matrix A can make toast.
- 6. Note: Proof is relatively short for symmetric matrices that are strictly positive [6] and just non-negative [3].

COcoNuTS @networksvox Measures of

Background Centrality

Nutshell References

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = c\mathbf{A}^{\mathsf{T}}\vec{x}$ or $\mathbf{A}^{\mathsf{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$

Important nodes have important friends:

Recursive: importance is transmitted through a

 $x_i \propto \sum_i a_{ji} x_j$

Simplest possibility is a linear combination:

Define x_i as the 'importance' of node i.

 \mathbb{A} Idea: x_i depends (somehow) on x_i

if j is a neighbor of i.

network.

- Eigenvalue equation based on adjacency matrix ...
- Note: Lots of despair over size of the largest eigenvalue. [7] Lose sight of original assumption's non-physicality.

•21 of 33

COcoNuTS Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Eigenvalue centrality

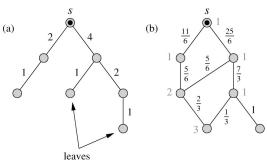
Nutshell References

COcoNuTS @networksvox Measures of

Background

Centrality

Nutshell References



•9 q (~ 23 of 33

Newman's Betweenness algorithm: [4]

COcoNuTS Measures of centrality

Background Centrality measures

Degree centre

References

IVM S

•9 q (~ 19 of 33

Other Perron-Frobenius aspects:

- Assuming our network is irreducible , meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- (Another term: Primitive graphs and matrices.)

COcoNuTS Measures of centrality

Background Centrality

Nutshell

References

Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive.

Above equations combine to give

$$\vec{x} = c_1 A^T c_2 A \vec{x} = \lambda A^T A \vec{x}.$$

where $\lambda = c_1 c_2 > 0$.

We can do this:

 A^TA is symmetric.

non-negative entries.

are all > 0.

& It's all good: we have the heart of singular value decomposition before us ...

 A^TA is semi-positive definite so its eigenvalues

 A^TA 's eigenvalues are the square of A's singular

 $A^T A'$ s eigenvectors form a joyful orthogonal basis.

have independent measures of node 'importance'

and see how importance is actually distributed.

Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have

COcoNuTS @networksvox Measures of

Background

Centrality

Hubs and Authorities Nutshell

References

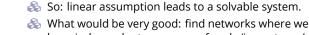
•28 of 33

Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness or Hubtasticness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities.
- Recursive: Hubs authoritatively link to hubs, authorities hubbishly link to other authorities.
- More: look for dense links between sets of 'good' hubs pointing to sets of 'good' authorities.
- Known as the HITS algorithm (Hyperlink-Induced Topics Search).

COcoNuTS Measures of centrality

少 q (~ 24 of 33


IVW | 8

CocoNuTs

Background

Centrality measures Degree centrality Closeness central Betweenness Eigenvalue central Hubs and Authorities

Nutshell References

•> q (~ 26 of 33

COcoNuTS

Measures of centrality

Background

Centrality

measures
Degree centrali
Closeness cent
Betweenness

Nutshell

References

Hubs and Authorities

Nutshell:

- Measuring centrality is well motivated if hard to carry out well.
- We've only looked at a few major ones.
- Methods are often taken to be more sophisticated than they really are.
- Centrality can be used pragmatically to perform diagnostics on networks (see structure detection).
- Focus on nodes rather than groups or modules is a homo narrativus constraint.
- Possible that better approaches will be developed.

COcoNuTS Measures of centrality

Background

Centrality measures Hubs and Authorities

Nutshell References

COcoNuTS

Measures of

Background Centrality

Nutshell References

少 q (~ 30 of 33

Hubs and Authorities

Give each node two scores:

1. x_i = authority score for node i2. y_i = hubtasticness score for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good
- & Means x_i should increase as $\sum_{j=1}^{N} a_{ji} y_j$ increases.
- \aleph Note: indices are ji meaning j has a directed link to i.
- New story II: good hubs point to good authorities.
- \Re Means y_i should increase as $\sum_{i=1}^{N} a_{ij} x_i$ increases.
- Linearity assumption:

 $\vec{x} \propto A^T \vec{y}$ and $\vec{y} \propto A \vec{x}$

IVM S

•9 q (~ 27 of 33

References I

[1] U. Brandes.

A faster algorithm for betweenness centrality. J. Math. Sociol., 25:163–177, 2001. pdf 🗹

[2] J. M. Kleinberg.

Authoritative sources in a hyperlinked environment.

Proc. 9th ACM-SIAM Symposium on Discrete

[3] K. Y. Lin.

An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices. Chinese Journal of Physics, 15:283–285, 1977. pdf 🗹

COcoNuTS @networksvox Measures of centrality

Background

Centrality

Nutshell

References

少 Q (~ 31 of 33

References II

[4] M. E. J. Newman.

Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E, 64(1):016132, 2001. pdf ☑

[5] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, 2004. pdf

[6] F. Ninio.

A simple proof of the Perron-Frobenius theorem for positive symmetric matrices. J. Phys. A.: Math. Gen., 9:1281–1282, 1976. pdf COcoNuTS @networksvox Measures of centrality

Background

Centrality measures Degree centrality Closeness centrality Betweenness Eigenvalue centrality Hubs and Authorities

Nutshell

References

CocoNuTs

◆) < (~ 32 of 33

References III

COcoNuTS Measures of centrality

Background

Centrality measures
Degree centralii
Closeness centr
Betweenness

Nutshell

References

[7] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

∮0 Q (~ 33 of 33