Branching Networks II

Last updated: 2019/01/14, 22:05:08

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

.... |8|

nac 20f87

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 3 of 87

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

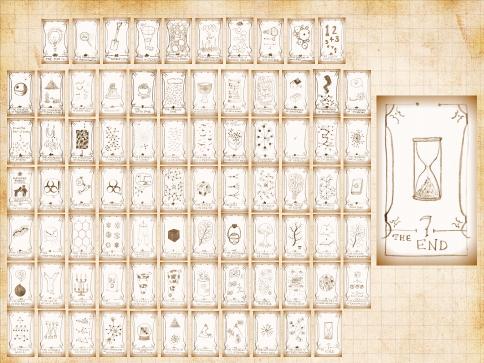
Models

Nutshell

References

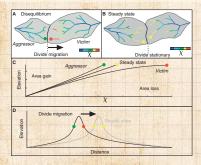
200 4 of 87

UVN OS



Piracy on the high χ 's:

"Dynamic Reorganization of River Basins" 🕜 Willett et al., Science Magazine, **343**, 1248765, 2014. ^[21]



$$\begin{split} \frac{\partial z(x,t)}{\partial t} &= U - K A^m \left| \frac{\partial z(x,t)}{\partial x} \right|' \\ z(x) &= z_{\rm b} + \left(\frac{U}{K A_0^m} \right)^{1/n} \chi \\ \chi &= \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x' \end{split}$$

Piracy on the high χ 's:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

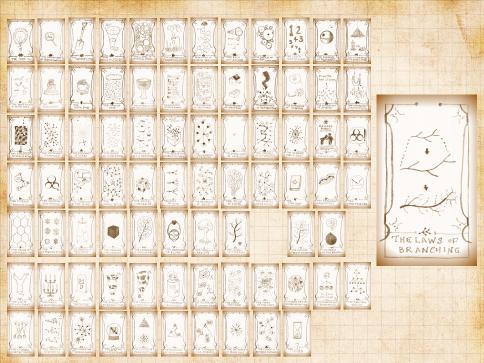
Models

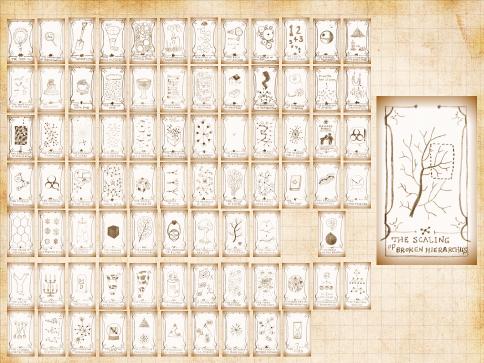
Nutshell

References

http://www.youtube.com/watch?v=FnroL1_-l2c?rel=0

More: How river networks move across a landscape C (Science Daily)





Horton and Tokunaga seem different:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

990 10 of 87

UVR OO

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokinaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Dac 10 of 87

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- $\begin{array}{l} \textcircled{R}_n, R_a, R_\ell, \text{ and } R_s \text{ versus } T_1 \text{ and } R_T. \text{ One simple} \\ \text{redundancy: } R_\ell = R_s. \\ \text{Insert question from assignment 1 } \hline{C} \end{array}$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

్ 8

Horton and Tokunaga seem different:

- ln terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- 🚳 Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- R_n, R_n, R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_{\ell} = R_{s}$. Insert question from assignment 1

la To make a connection, clearest approach is to start with Tokunaga's law ...

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga **Reducing Horton** Scaling relations Fluctuations Models Nutshell

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- $R_n, R_a, R_\ell, \text{ and } R_s \text{ versus } T_1 \text{ and } R_T. \text{ One simple redundancy: } R_\ell = R_s.$ Insert question from assignment 1 🖸
- To make a connection, clearest approach is to start with Tokunaga's law ...
- Sknown result: Tokunaga \rightarrow Horton^[18, 19, 20, 9, 2]

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQQ 11 of 87

WN S

We need one more ingredient: Space-fillingness COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 11 of 87

WN S

We need one more ingredient:

Space-fillingness

A network is space-filling if the average distance between adjacent streams is roughly constant.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

We need one more ingredient:

Space-fillingness

 A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient:

Space-fillingness

 A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks
 For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape. COcoNuTS @networksvox

Branching Networks II

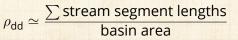
Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

We need one more ingredient:

Space-fillingness

 A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks
 For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

ln terms of basin characteristics:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Dac 11 of 87

We need one more ingredient:

Space-fillingness

 A network is space-filling if the average distance between adjacent streams is roughly constant.
 Reasonable for river and cardiovascular networks
 For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.

In terms of basin characteristics:

$$P_{dd} \simeq \frac{\sum \text{stream segment lengths}}{\text{basin area}} =$$

 $\frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tocunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

الله الم

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 12 of 87

WN OO

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Solution Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokuñaga Reducing Horton Scaling relations Fluctuations

Models

Nutshell

References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Settimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution Observe that each stream of order ω terminates by either:

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

 $\omega = 3$

ω=3

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Solution Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution \otimes Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

UVN SO

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

...

(0) = 3

 $\omega = 4$

 $(\mathbf{n})=4$

 $\omega = 3$

ω=3

 $\omega = 4$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Solution Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$

2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

UVN SO

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

(0) = 3

 $\omega = 4$

 $\omega = 3$

 $\omega = 4$

ω=3

 $\omega = 4$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Solution Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution \otimes Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

WN OS

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

(0) = 3

 $\omega = 4$

(n)=4

 $\omega = 3$

ω=3

 $\omega = 4$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Solution Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- Solution \otimes Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Putting things together:

2

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} +$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 13 of 87

UVR OO

Putting things together:

2

 $n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\infty} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

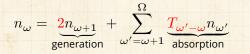
Nutshell

References

na (~ 13 of 87

Putting things together:

2



Solution Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .

lnsert question from assignment 1 🗹

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

Dac 13 of 87

Putting things together:

2

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

Solution Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .

Insert question from assignment 1 C
 Solution:

$$R_n = \frac{(2+R_T+T_1)\pm \sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

(The larger value is the one we want.)

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding other Horton ratios

Connect Tokunaga to R_s

Solution Now use uniform drainage density ρ_{dd} .

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 14 of 87

Finding other Horton ratios

Connect Tokunaga to R_s

Now use uniform drainage density ρ_{dd}.
 Assume side streams are roughly separated by distance 1/ρ_{dd}.

COcoNuTS @networksvox

Branching Networks II

Horton S Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding other Horton ratios

Connect Tokunaga to R_s

- Solution Now use uniform drainage density ρ_{dd} .
- Solution Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- So For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Finding other Horton ratios

Connect Tokunaga to R_s

- \aleph Now use uniform drainage density ρ_{dd} .
- Solution Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- So For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

 \bigotimes Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right)$$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

🧼 👸 ୬ ୨.୧. 14 of 87

Finding other Horton ratios

Connect Tokunaga to R_s

- Solution Now use uniform drainage density ρ_{dd} .
- Solution Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- So For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

 \bigotimes Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{(k-1)} \right) \propto R_T^{(\omega)}$$

COcoNuTS @networksvox

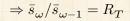
Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

🧼 👸 ୬ ୨.୧. 14 of 87

Altogether then:

2



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 15 of 87

WN S

Altogether then:

2

 $\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 15 of 87

UVR OO

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

2

 $Recall R_{\ell} = R_s$ so

$$R_\ell = R_s = R_T$$

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQQ 15 of 87

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

2

Recall
$$R_{\ell} = R_s$$
 so

$$R_\ell = R_s = R_T$$

🚳 And from before:

$$R_n = \frac{(2+R_T+T_1) + \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

WN S

Some observations:

 \mathfrak{S}_{R_n} and R_ℓ depend on T_1 and R_T .

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

990 16 of 87

Some observations:

 $\begin{array}{l} \underset{l}{\otimes} \quad R_n \text{ and } R_\ell \text{ depend on } T_1 \text{ and } R_T. \\ \\ \underset{l}{\otimes} \quad \text{Seems that } R_a \text{ must as well } \dots \end{array}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 16 of 87

Some observations:

- \mathfrak{S}_{R_n} and R_ℓ depend on T_1 and R_T .
- \bigotimes Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Some observations:

- \mathfrak{S}_{R_n} and R_ℓ depend on T_1 and R_T .
- \bigotimes Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy

 \bigotimes We'll in fact see that $R_a = R_n$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Some observations:

- \mathfrak{S}_{R_n} and R_ℓ depend on T_1 and R_T .
- \bigotimes Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy

 \bigotimes We'll in fact see that $R_a = R_n$.

Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. ^[3, 4] COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

The other way round

Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

Dac 17 of 87

The other way round

2

2

Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

 $T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Nodels Nutshell References

990 17 of 87

WN OS

The other way round

2

2

Note: We can invert the expressions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

 $T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n.$

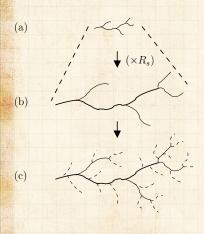
Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ... COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

DQ @ 17 of 87

From Horton to Tokunaga^[2]



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

うへへ 18 of 87

From Horton to Tokunaga^[2]

(a)

(b)

(c)

Assume Horton's laws hold for number and length COcoNuTS @networksvox

Branching Networks II

Horton tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

3

From Horton to Tokunaga^[2]

(a)

(b)

(c)

Assume Horton's laws hold for number and length

Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.

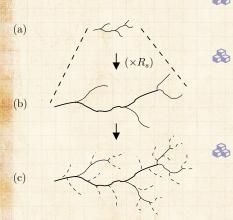
COcoNuTS @networksvox

Branching Networks II

Horton tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

na 18 of 87

From Horton to Tokunaga^[2]



Assume Horton's laws hold for number and length

> Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.

Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .

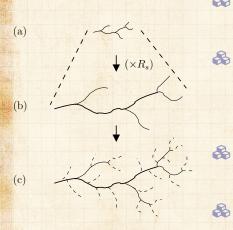
COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

990 18 of 87

From Horton to Tokunaga^[2]



Assume Horton's laws hold for number and length

> Start with picture showing an order ω stream and order $\omega - 1$ generating and side streams.

Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .

Maintain drainage density by adding new order $\omega - 1$ streams

COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

UVN SO

DQ @ 18 of 87

...and in detail:

🚳 Must retain same drainage density.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na (~ 19 of 87

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na (~ 19 of 87

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right)$$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

References

...and in detail:

- 🚳 Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right)$$

Solution For large ω , Tokunaga's law is the solution—let's check ...

COcoNuTS @networksvox

Branching Networks II

Horton tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right)$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokuñaga Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

20 of 87

Just checking:

2

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{\kappa-1} T_i\right)$$

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right)$$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

Just checking:

2

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{\kappa-1} T_i \right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \end{split}$$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

20 of 87

Just checking:

2

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{\kappa-1} T_i \right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \end{split}$$

$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{\ k-1}}{R_{\ell} - 1}$$

COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

na @ 20 of 87

Just checking:

2

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{\kappa-1} T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \end{split}$$

$$\simeq (R_{\ell}-1)T_1 \frac{R_{\ell}^{\ k-1}}{R_{\ell}-1} = T_1 R_{\ell}^{k-1} \quad ... {\rm yep}.$$

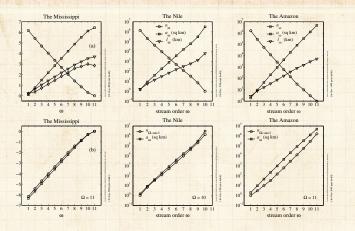
COcoNuTS @networksvox

Branching Networks II

Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell References

20 of 87

Horton's laws of area and number:



In bottom plots, stream number graph has been flipped vertically.

 \mathfrak{S} Highly suggestive that $R_n \equiv R_a \dots$

@networksvox Branching Networks II Horton 👄 Tokunaga **Reducing Horton** Scaling relations Fluctuations Models Nutshell

COCONUTS

UVN SO

29 c 21 of 87

Measuring Horton ratios is tricky:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح

How robust are our estimates of ratios?

Measuring Horton ratios is tricky:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح

How robust are our estimates of ratios?
 Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3,8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5,7]	4.68	4.83	2.36	2.29	1.03
[6,7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024
		No. of Concession, Name			

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell

References

ク へ ~ 23 of 87

WR 8

Amazon:

COcoNuTS @networksvox

Branching Networks II

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n	Horton ⇔ Tokunaga
[2, 3]	4.78	4.71	2.47	2.08	0.99	Reducing Horton
[2, 5]	4.55	4.58	2.32	2.12	1.01	Scaling relations
[2,7]	4.42	4.53	2.24	2.10	1.02	Fluctuations
[3,5]	4.45	4.52	2.26	2.14	1.01	Models
[3,7]	4.35	4.49	2.20	2.10	1.03	Nutshell
[4, 6]	4.38	4.54	2.22	2.18	1.03	References
[5, 6]	4.38	4.62	2.22	2.21	1.06	
[6,7]	4.08	4.27	2.05	1.83	1.05	
mean μ	4.42	4.53	2.25	2.10	1.02	St.
std dev σ	0.17	0.10	0.10	0.09	0.02	L.X.
σ/μ	0.038	0.023	0.045	0.042	0.019	

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 25 of 87

UVR OO

Rough first effort to show $R_n \equiv R_a$:

 $a_{\Omega} \propto sum of all stream segment lengths in a order$ $\Omega basin (assuming uniform drainage density)$ COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

Rough first effort to show $R_n \equiv R_a$:

So: $a_{\Omega} \propto \text{sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) $$$ So:$

$$a_\Omega\simeq\sum_{\omega=1}^\Omega n_\omega\bar{s}_\omega/\rho_{\rm dd}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Rough first effort to show $R_n \equiv R_a$:

 $\propto \sum_{\omega=1}$

So: $a_{\Omega} \propto \text{sum of all stream segment lengths in a order } \Omega \text{ basin (assuming uniform drainage density)}$

COCONUTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

WN OS

Rough first effort to show $R_n \equiv R_a$:

So: $a_{\Omega} \propto \text{sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) $$$ So:$

$$a_\Omega\simeq\sum_{\omega=1}^\Omega n_\omega\bar{s}_\omega/\rho_{\rm dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\,\Omega-\omega}\cdot \widehat{1}}_{n_\omega}^{n_\Omega}$$

COcoNuTS @networksvox

Branching Networks II

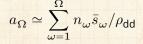
Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Rough first effort to show $R_n \equiv R_a$:

So: $a_{\Omega} \propto \text{sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) $$$ So:$



$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\,\Omega-\omega}\cdot \hat{1}}_{n_\omega} \underbrace{\bar{s}_1\cdot R_s^{\,\omega-1}}_{\bar{s}_\omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

DQ @ 25 of 87

Rough first effort to show $R_n \equiv R_a$:

So: $a_{\Omega} \propto \text{sum of all stream segment lengths in a order Ω basin (assuming uniform drainage density) $$$ So:$

$$a_\Omega\simeq\sum_{\omega=1}^\Omega n_\omega\bar{s}_\omega/\rho_{\rm dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \frac{R_n^{\ \Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

na @ 25 of 87

Continued ...

3

$$a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 26 of 87

UVN OS

Continued ...

3

$$\begin{aligned} & \boldsymbol{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ &= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \end{aligned}$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

26 of 87

Continued ...

3

$$a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$$

$$\sim R_n^{\Omega-1} ar{s}_1 rac{1}{1-(R_s/R_n)}$$
 as $\Omega
earrow$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations

Models

Nutshell

References

na @ 26 of 87

Continued ...

2

$$a_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$=\frac{R_n^{22}}{R_s}\bar{s}_1\frac{R_s}{R_n}\frac{1-(R_s/R_n)^{22}}{1-(R_s/R_n)}$$

$$\sim {R_n^{\Omega-1}} ar{s}_1 {1\over 1-(R_s/R_n)}$$
 as $\Omega
earrow$

 \mathfrak{S} So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Models

Nutshell

References

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 27 of 87

Not quite:

 ...But this only a rough argument as Horton's laws do not imply a strict hierarchy
 Need to account for sidebranching. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 27 of 87

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy
 Need to account for sidebranching.
 Insert question from assignment 2 ^C

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 27 of 87

Intriguing division of area:

Solution Observe: Combined area of basins of order ω independent of ω .

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 28 of 87

WN OS

Intriguing division of area:

- Solution Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Intriguing division of area:

- Solution Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
 - Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Intriguing division of area:

- Solution Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- 🚳 Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

Reason:

$$\begin{split} n_\omega \propto (R_n)^{-\omega} \\ \bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{split}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Equipartitioning: Some examples:



8 9 10

ω 6

1 2 3 4 5

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

うへで 29 of 87

Neural Reboot: Fwoompf

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

(in 10)

http://www.youtube.com/watch?v=5mUs70SqD4o?rel=0

The story so far:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 31 of 87

The story so far:

Natural branching networks are hierarchical, self-similar structures COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ (~ 31 of 87

WN OO

The story so far:

Natural branching networks are hierarchical, self-similar structures

🚳 Hierarchy is mixed

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 31 of 87

WN OS

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- 🚳 Hierarchy is mixed
- Solution Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 31 of 87

WN OS

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- 🚳 Hierarchy is mixed
- Solution Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- 🚳 We have connected Tokunaga's and Horton's laws

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- 🚳 Hierarchy is mixed
- Solution Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- 🛞 We have connected Tokunaga's and Horton's laws
 - Only two Horton laws are independent $(R_n = R_a)$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 31 of 87

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- 🚳 Hierarchy is mixed
- Solution Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- 🛞 We have connected Tokunaga's and Horton's laws
- Solution Only two Horton laws are independent $(R_n = R_a)$
- Solution Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A little further ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 32 of 87

A little further ...

Ignore stream ordering for the moment

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 32 of 87

UVR OO

A little further ...

Ignore stream ordering for the moment
 Pick a random location on a branching network p.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 32 of 87

A little further ...

- lgnore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A little further ...

- Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a?

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A little further ...

- Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a?
- Solution Q: What is probability that the longest stream from p has length ℓ ?

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A little further ...

- Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Solution Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- Solution Q: What is probability that the longest stream from p has length ℓ ?

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 32 of 87

UVN OO

A little further ...

- Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Solution Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- 𝔅 **Q**: What is probability that the longest stream from *p* has length *ℓ*? $P(ℓ) ∝ ℓ^{-γ}$ for large *ℓ*

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 32 of 87

UVN OO

A little further ...

- 🚳 Ignore stream ordering for the moment
- \bigotimes Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Solution Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- 𝔅 **Q**: What is probability that the longest stream from *p* has length *ℓ*? $P(ℓ) ∝ ℓ^{-γ}$ for large *ℓ*
 - Roughly observed: $1.3 \leq \tau \leq 1.5$ and $1.7 \leq \gamma \leq 2.0$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN OO

Probability distributions with power-law decays

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 33 of 87

WN S

Probability distributions with power-law decays

🚳 We see them everywhere:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 33 of 87

WN OO

Probability distributions with power-law decays

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 33 of 87

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[22]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Source of the second se
 - Wealth (maybe not—at least heavy tailed)

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays We see them everywhere: Earthquake magnitudes (Gutenberg-Richter law) City sizes (Zipf's law)

- Word frequency (Zipf's law)^[22]
- Wealth (maybe not—at least heavy tailed)
- Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- A big part of the story of complex systems
 Arise from mechanisms: growth, randomness, optimization, ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- 🚳 We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law)^[22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions)^[5]
- line and the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- 🚳 Our task is always to illuminate the mechanism ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 34 of 87

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 34 of 87

Connecting exponents

We have the detailed picture of branching networks (Tokunaga and Horton)

Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story ^[17, 1, 2]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- 3 Let's work on $P(\ell)$...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Solution of order Ω .

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \bigotimes Let's work on $P(\ell)$...
- Solution of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

うへへ 34 of 87

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Solution of the second state of the second state Ω and Ω
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- 🗞 Next: place stick between teeth.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Solution of the second state of the second state Ω and Ω
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- 🚳 Next: place stick between teeth. Bite stick.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- Solution Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- Solution of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 35 of 87

Finding γ :

Often useful to work with cumulative distributions, especially when dealing with power-law distributions. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

2

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

2

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\max}} P(\ell) \mathrm{d}\ell$$

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

🚳 Also known as the exceedance probability.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

990 36 of 87

WN OS

The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:

 \mathfrak{F} Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_>(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

WN OS

2 a a 36 of 87

- The connection between P(x) and $P_>(x)$ when P(x) has a power law tail is simple:
- $\ref{eq: eq: large larg$

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{max}} {\ell^{-\gamma}} d\ell$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

990 36 of 87

Solution The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: Solution $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\max}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \frac{\ell^{-\gamma} \mathrm{d}\ell}{}$$

$$= \left. \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 36 of 87

Solution The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple: Solution $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_{*}) = \int_{\ell=\ell_{*}}^{\ell_{\max}} P(\ell) \, \mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\max}} \ell^{-\gamma} \mathrm{d}\ell$$

$$= \left. \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \right|_{\ell=\ell_*}^{\ell_{\max}}$$

$$\propto \ell_*^{-(\gamma-1)}$$
 for $\ell_{\max} \gg \ell_*$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na a 37 of 87

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length > ℓ_{*}
 Assume some spatial sampling resolution Δ

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na a 37 of 87

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ Assume some spatial sampling resolution Δ Landscape is broken up into grid of $\Delta \times \Delta$ sites COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ Assume some spatial sampling resolution Δ Landscape is broken up into grid of $\Delta \times \Delta$ sites Approximate $P_>(\ell_*)$ as

$$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 37 of 87

WN OS

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$ Assume some spatial sampling resolution Δ Landscape is broken up into grid of $\Delta \times \Delta$ sites Approximate $P_>(\ell_*)$ as

$$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Solution Use Horton's law of stream segments:

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s \dots$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

WN OS

DQ @ 37 of 87

Finding γ :

 \mathfrak{S} Set $\ell_* = \overline{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN OS

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\ell_{\omega}; \Delta)}{N_{>}(0; \Delta)}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

 Δ 's cancel

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 38 of 87

UVN OS

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

Δ 's cancel

 \mathfrak{F} Denominator is $a_{\Omega}\rho_{dd}$, a constant.

COcoNuTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

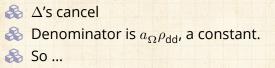
WN S

Finding γ :

8

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \Delta}$$



$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'}$$

COcoNuTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

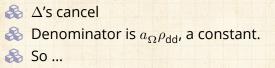
2 C 38 of 87

Finding γ :

8

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \underline{A}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \underline{A}}$$



$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

Δ's cancel
 Denominator is
$$a_{\Omega} \rho_{dd}$$
, a constant.
 So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'})$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Finding γ :

ł

Set
$$\ell_* = \overline{\ell}_{\omega}$$
 for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \measuredangle}$$

Δ's cancel
 Denominator is
$$a_{\Omega} \rho_{dd}$$
, a constant.
 So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1}) (\bar$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

200 38 of 87

WR 8

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ (39 of 87

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 39 of 87

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Change summation order by substituting $\omega'' = \Omega - \omega'.$

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

UVN SO

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Change summation order by substituting $\omega'' = \Omega - \omega'.$ Sum is now from $\omega'' = 0$ to $\omega'' = \Omega - \omega - 1$ COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

2 a a 39 of 87

Finding γ :

🚳 We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

Change summation order by substituting $\omega'' = \Omega - \omega'.$

Sum is now from $\omega'' = 0$ to $\omega'' = \Omega - \omega - 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding γ :

 $P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 A 40 of 87

UVN OS

Finding γ :

2

 $P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 A 40 of 87

WN OS

Finding γ :

2

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 \clubsuit Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 A 40 of 87

UVN OS

Finding γ :

2

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 \clubsuit Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 40 of 87

Finding γ :

2

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 $rac{R_n}{l} > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 40 of 87

Finding γ :

🚳 Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na (41 of 87

UVN S

Finding γ :

🚳 Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 41 of 87

Finding γ :

🚳 Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

\mathfrak{F} Need to express right hand side in terms of $\overline{\ell}_{\mu}$.

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 41 of 87

UVN SO

Finding γ :

🚳 Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

 \mathfrak{F} Need to express right hand side in terms of $\overline{\ell}_{\mu}$. \mathfrak{R} Recall that $\overline{\ell}_{\omega} \simeq \overline{\ell}_1 R_{\ell}^{\omega-1}$.

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

WN OS

Finding γ :

2

🚳 Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

 \mathfrak{F} Need to express right hand side in terms of $\overline{\ell}_{\mu}$. \mathfrak{R} Recall that $\overline{\ell}_{\omega} \simeq \overline{\ell}_1 R_{\ell}^{\omega-1}$.

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\,\omega} = R_s^{\,\omega} = e^{\,\omega \ln R_s}$$

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

WN OS DQ @ 41 of 87

🚳 Therefore:

 $P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 42 of 87

UVN OS

🚳 Therefore:

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

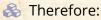
Models

Nutshell

References

DQ @ 42 of 87

UVN OS



2

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto ar{\ell}_{\omega} - \ln(R_n/R_s) / \ln R_s$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

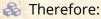
Fluctuations

Models

Nutshell

References

na a 42 of 87



2

-

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

 $=\bar{\boldsymbol{\ell}}_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

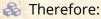
Fluctuations

Models

Nutshell

References

DQ @ 42 of 87



2

-

2

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

 $=\bar{\boldsymbol{\ell}}_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s+1}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

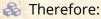
Fluctuations

Models

Nutshell

References

990 42 of 87



2

-

2

2

$$P_{>}(\bar{\ell}_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\omega}^{-\ln(R_n/R_s)/\ln R_s}$$

 $=\bar{\boldsymbol{\ell}}_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$= \bar{\ell}_{\omega}^{-\gamma+1}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 42 of 87

Finding γ :

And so we have:

$$\gamma = {\rm ln}R_n/{\rm ln}R_s$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 43 of 87

UVN OS

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

 $\tau=2-{\rm ln}R_s/{\rm ln}R_n=2-1/\gamma$

Insert question from assignment 2 🖸

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

WN OS

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

Insert question from assignment 2 🖸

$$\tau=2-{\rm ln}R_s/{\rm ln}R_n=2-1/\gamma$$

Such connections between exponents are called scaling relations

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

29 C 43 of 87

UVN SO

Finding γ :

And so we have:

 $\gamma = \ln R_n / \ln R_s$

Proceeding in a similar fashion, we can show

$$\tau=2-{\rm ln}R_s/{\rm ln}R_n=2-1/\gamma$$

Insert question from assignment 2 C

Such connections between exponents are called scaling relations

A Let's connect to one last relationship: Hack's law

COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

UVN SO

Hack's law: [6]

2

 $\ell \propto a^h$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na (44 of 87

Hack's law: [6]

2

 \clubsuit Typically observed that $0.5 \leq h \leq 0.7$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na a 44 of 87

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Solution laws to connect *h* to Horton ratios:

 $\bar{\ell}_{\omega} \propto R_s^{\omega}$ and $\bar{a}_{\omega} \propto R_n^{\omega}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Dac 44 of 87

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Solution Use Horton laws to connect *h* to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

👶 Observe:

$$\bar{\ell}_\omega \propto e^{\omega {\rm ln} R_s}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Dac 44 of 87

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Solution Use Horton laws to connect *h* to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

🚳 Observe:

$$\bar{\ell}_{\omega} \propto e^{\omega {\rm ln}R_s} \propto \left(e^{\omega {\rm ln}R_n}\right)^{{\rm ln}R_s/{\rm ln}R_n}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Dac 44 of 87

Scaling laws

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Solution Use Horton laws to connect *h* to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

👶 Observe:

$$\bar{\ell}_{\omega} \propto e^{\omega {\rm ln} R_s} \propto \left(e^{\omega {\rm ln} R_n} \right)^{{\rm ln} R_s / {\rm ln} R_n}$$

 $\propto \left(R_n^{\,\omega} \right)^{\ln R_s / \ln R_n}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na (~ 44 of 87

Scaling laws

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Use Horton laws to connect *h* to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

👶 Observe:

$$\bar{\ell}_{\omega} \propto e^{\omega {\rm ln}R_s} \propto \left(e^{\omega {\rm ln}R_n}\right)^{{\rm ln}R_s/{\rm ln}R_n}$$

 $\propto \left(R_n^{\,\omega}\right)^{\ln R_s/\ln R_n} \propto \bar{a}_{\omega}^{\,\ln R_s/\ln R_n}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Dac 44 of 87

Scaling laws

Hack's law: [6]

2

 $\ell \propto a^h$

Solution Typically observed that $0.5 \leq h \leq 0.7$. Use Horton laws to connect *h* to Horton ratios:

$$ar{\ell}_\omega \propto R_s^{\,\omega}$$
 and $ar{a}_\omega \propto R_n^{\,\omega}$

🚳 Observe:

$$\bar{\ell}_{\omega} \propto e^{\omega {\rm ln} R_s} \propto \left(e^{\omega {\rm ln} R_n} \right)^{{\rm ln} R_s / {\rm ln} R_n}$$

$$\propto (R_n^{\,\omega})^{\ln R_s/\ln R_n} \propto \bar{a}_{\omega}^{\,\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQC 44 of 87

We mentioned there were a good number of 'laws':^[2]

Relation: Name or description:

COcoNuTS @networksvox

on ⇔

Branching Networks II

		inaga
$T_k = T_1(R_T)^{k-1}$	Tokunaga's law	Jcing Horton
$\ell \sim L^d$	self-affinity of single channels	ng relations
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	uations
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths	hell
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	rences
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths	
$L_{\perp} \sim L^H$	scaling of basin widths	YES
$P(a) \sim a^{-\tau}$	probability of basin areas	SE:
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	XX
$\ell \sim a^h$	Hack's law	S
$a \sim L^D$	scaling of basin areas	\sim
$\Lambda \sim a^\beta$	Langbein's law	
$\lambda \sim L^{\varphi}$	variation of Langbein's law	000

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: ^[2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{R_s}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}$	$R_{\ell} = \frac{R_s}{R_s}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_\perp \sim L^H$	H = d/h - 1
$P(a) \sim a^{-\tau}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^\beta$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Directed random networks^[11, 12]

2

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

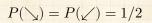
Fluctuations

Models

Nutshell

References

الله الح

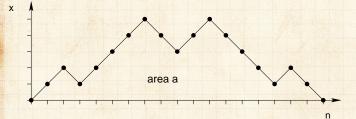


Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14]
 Useful and interesting test case

A toy model—Scheidegger's model

Random walk basins:

🗞 Boundaries of basins are random walks



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

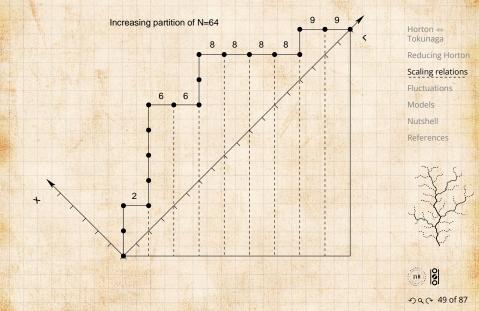
References

DQC 48 of 87

UVN OS

COcoNuTS @networksvox

Branching Networks II



Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 50 of 87

3

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

nac 50 of 87

3

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$. Syntaxic Typical area for a walk of length *n* is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}.$$

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

29 C 50 of 87

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$. Sypical area for a walk of length *n* is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}.$

8

3

Find
$$\tau = 4/3$$
, $h = 2/3$, $\gamma = 3/2$, $d = 1$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

3

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

 \clubsuit Typical area for a walk of length n is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}.$

Solution Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1. Note $\tau = 2 - h$ and $\gamma = 1/h$.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 a a 50 of 87

3

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$.

 \clubsuit Typical area for a walk of length n is $\propto n^{3/2}$:

 $\ell \propto a^{2/3}$.

So Find
$$\tau = 4/3$$
, $h = 2/3$, $\gamma = 3/2$, $d = 1$.
Note $\tau = 2 - h$ and $\gamma = 1/h$.
 R_n and R_ℓ have not been derived analytically.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

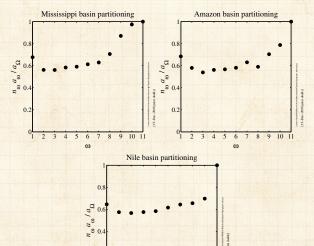
References

WN OS

Equipartitioning reexamined: Recall this story:

0.2

1 2 3 4 5



8 9 10

ω 6 COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

うへで 51 of 87

🚳 What about

$$P(a) \sim a^{-\tau}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 52 of 87

🚳 What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

WN S

🚳 What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

 $\bigotimes P(a)$ overcounts basins within basins ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

🚳 What about

$$P(a) \sim a^{-\tau}$$

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

 $\Re P(a)$ overcounts basins within basins ... \Re while stream ordering separates basins ... COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Hard neural reboot (sound matters):

https://twitter.com/round_boys/status/95187376596468121

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

ng @ 53 of 87

Moving beyond the mean:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 54 of 87

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 54 of 87

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

Natural generalization to consider relationships between probability distributions COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 54 of 87

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

Natural generalization to consider relationships between probability distributions

Sector Structure Yields rich and full description of branching network structure

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- 🗞 See into the heart of randomness ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

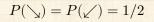
Nutshell

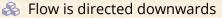
References

A toy model—Scheidegger's model

Directed random networks^[11, 12]

2





COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 55 of 87

UVN OO

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 0 56 of 87

WN OO

 $\begin{array}{l} \bigotimes \hspace{0.1cm} \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ \bigotimes \hspace{0.1cm} \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{array}$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

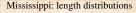
Nutshell

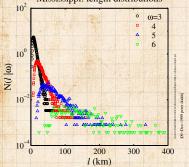
References

うへで 56 of 87

WN OS

 $\begin{array}{l} \bigotimes \\ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ \bigotimes \\ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{array}$





COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

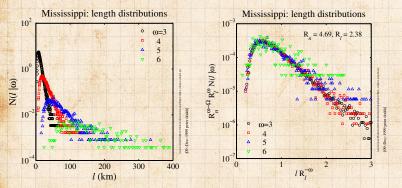
Models

Nutshell

References

na ~ 56 of 87

$$\begin{split} & \underbrace{\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ & \underset{a}{\otimes} \ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{split}$$



Scaling collapse works well for intermediate orders

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

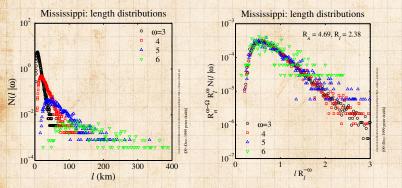
Models

Nutshell

References

ク へ ~ 56 of 87

$$\begin{split} & \underbrace{\bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega}) \\ & \underset{a}{\otimes} \ \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega}) \end{split}$$



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

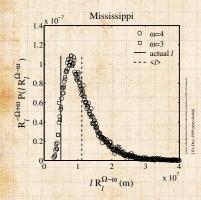
References

Scaling collapse works well for intermediate orders

All moments grow exponentially with order

na ~ 56 of 87

How well does overall basin fit internal pattern?



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 57 of 87

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

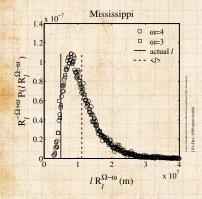
్ 8

How well does overall basin fit internal pattern?

3

Actual length = 4920

km (at 1 km res)



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

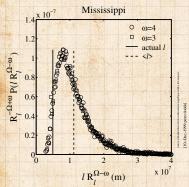
Fluctuations Models

Nutshell

References

WR 8

DQ @ 57 of 87



How well does overall basin fit internal pattern?

3

Actual length = 4920

Predicted Mean length

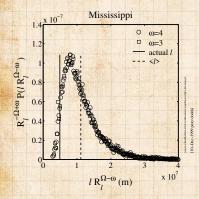
km (at 1 km res)

= 11100 km

COcoNuTS @networksvox

Branching Networks II

How well does overall basin fit internal pattern?



 Actual length = 4920 km (at 1 km res)
 Predicted Mean length = 11100 km
 Predicted Std dev = 5600 km Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

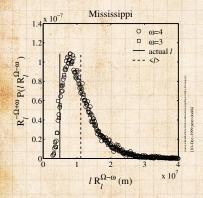
Nutshell

References

COcoNuTS @networksvox

Branching Networks II

How well does overall basin fit internal pattern?



 Actual length = 4920 km (at 1 km res)
 Predicted Mean length = 11100 km
 Predicted Std dev = 5600 km
 Actual length/Mean length = 44 % Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

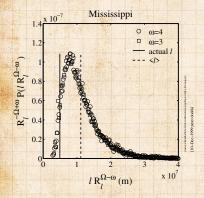
References

うへで 57 of 87

COcoNuTS @networksvox

Branching Networks II

How well does overall basin fit internal pattern?



Actual length = 4920km (at 1 km res) Predicted Mean length = 11100 kmPredicted Std dev = 5600 km Actual length/Mean 2 length = 44%Okay.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

References

na ~ 57 of 87

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

	274 Sec. 20.1	22 Carbon (1922 1923 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1935 1	and the second second		
basin:	ℓ_{Ω}	$\bar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/\bar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
				Contraction of the second strategy of	
	a_{Ω}	\bar{a}_{Ω}	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	σ_a/\bar{a}_Ω
Mississippi	a _Ω 2.74	$ar{a}_{\Omega}$ 7.55	σ _a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon	45	30	<u>a</u>		
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36 0.60	0.74 0.89
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 58 of 87

Combining stream segments distributions:

COcoNuTS @networksvox

Branching Networks II

Stream segments sum to give main stream lengths

2

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models

Nutshell

References

2 Q C 59 of 87

Combining stream segments distributions:

COcoNuTS @networksvox

Branching Networks II

Stream segments sum to give main stream lengths

9

 $\begin{array}{c} \textcircled{\begin{subarray}{c} \label{eq:powerserved} & P(\ell_{\omega}) \text{ is a} \\ & \text{convolution of} \\ & \text{distributions for} \\ & \text{the } s_{\omega} \end{array}$

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

nac 59 of 87

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \dots * N(s|\omega)$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

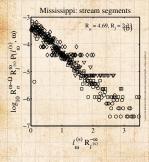
Nutshell

References

na @ 60 of 87

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \dots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

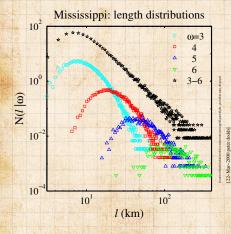
Models

Nutshell

References

Next level up: Main stream length distributions must combine to give overall distribution for stream length

 $\gtrsim P(\ell) \sim \ell^{-\gamma}$



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

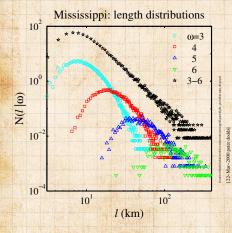
Models

Nutshell

References

الله الم

Next level up: Main stream length distributions must combine to give overall distribution for stream length



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

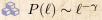
Scaling relations

Fluctuations

Models

Nutshell

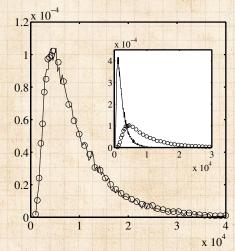
References



Another round of convolutions ^[3]
 Interesting ...

990 61 of 87

Number and area distributions for the Scheidegger model ^[3]
 P(n_{1,6}) versus P(a₆) for a randomly selected $\omega = 6$ basin.



COcoNuTS @networksvox

Branching Networks II

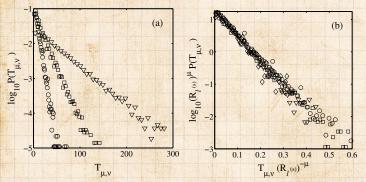
Horton ↔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

الله الح مرد 62 of 87

Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models

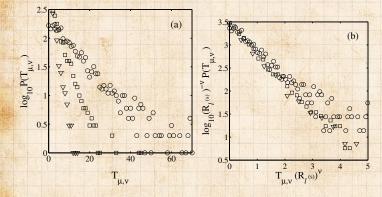
Nutshell

References

Scaling collapse works using R_s

na @ 63 of 87

Mississippi:



\delta Same data collapse for Mississippi ...

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

20 0 64 of 87

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$\begin{aligned} P_t(z) &= \frac{1}{\xi_t} e^{-z/\xi_t}. \end{aligned} \\ P(s_\mu) \Leftrightarrow P(T_{\mu,\nu}) \end{aligned}$$

Solution Exponentials arise from randomness. Solution Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

290 65 of 87

Network architecture:

Inter-tributary lengths exponentially distributed

3

Leads to random spatial distribution of stream segments

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

u

 $\mu - 2$

Nutshell

References

20 0 66 of 87

Follow streams segments down stream from their beginning

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

990 67 of 87

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 67 of 87

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

29 C 67 of 87

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

Probability decays exponentially with stream order

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

الله الح

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

Probability decays exponentially with stream order

Inter-tributary lengths exponentially distributed

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Follow streams segments down stream from their beginning

Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu}\simeq 1/(R_s)^{\mu-1}\xi_s$$

Probability decays exponentially with stream order

Inter-tributary lengths exponentially distributed

 $\$ \Rightarrow$ random spatial distribution of stream segments

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

 $p_{\nu} = \text{probability of absorbing an order } \nu$ side stream

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

2 0 0 68 of 87

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- $p_{\nu} = \text{probability of absorbing an order } \nu \text{ side stream}$
 - $\tilde{p}_{\mu} = probability$ of an order μ stream terminating

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu} - 1}$$

where

- $p_{\nu} = \text{probability of absorbing an order } \nu \text{ side stream}$
- $\widehat{p}_{\mu} = probability$ of an order μ stream terminating

Approximation: depends on distance units of s_{μ}

In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Now deal with this thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu}}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

 $^{-1}$

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 69 of 87

UVN OS

Now deal with this thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu}}$$

Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 - p_{\nu} - \tilde{p}_{\mu}$, approximate liberally. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

-1

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

ク へ 69 of 87

Now deal with this thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} \binom{s_{\mu} - 1}{T_{\mu, \nu}} p_{\nu}^{T_{\mu, \nu}} (1 - p_{\nu} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu, \nu}}$$

Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 - p_{\nu} - \tilde{p}_{\mu}$, approximate liberally. Obtain

$$P(x, y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

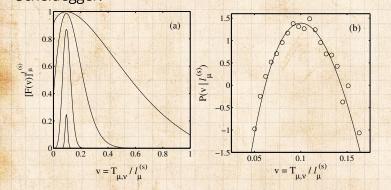
Models

.-1

Nutshell

References

Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

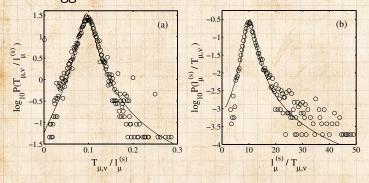
Nutshell

References

200 70 of 87

WN OO

Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

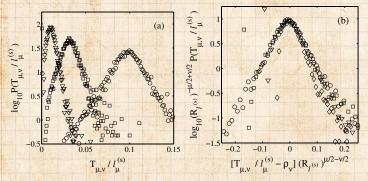
Models

Nutshell

References

DQQ 71 of 87

Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

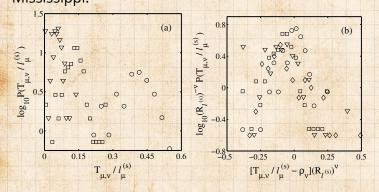
Models

Nutshell

References

200 72 of 87

Schecking form of $P(s_{\mu}, T_{\mu,\nu})$ works: Mississippi:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

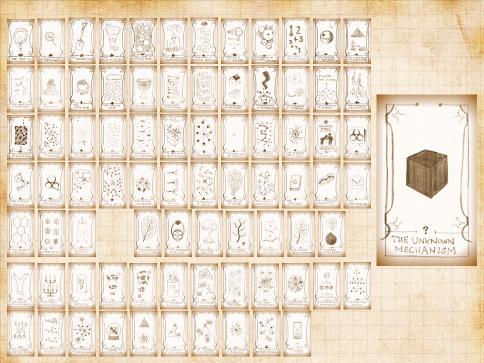
Fluctuations

Models

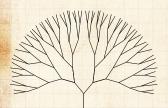
Nutshell

References

na ~ 73 of 87



Random subnetworks on a Bethe lattice ^[13]



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 75 of 87

WN S

Random subnetworks on a Bethe lattice ^[13]

Dominant theoretical concept for several decades. COCONUTS @networksvox

Branching Networks II

Horton 👄 Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

DQ @ 75 of 87

Random subnetworks on a Bethe lattice ^[13]

 Dominant theoretical concept for several decades.
 Bethe lattices are fun and tractable. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nurshell

References

na ~ 75 of 87

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
 Bethe lattices are fun and
- tractable.
 - inevitability" of river network statistics^[7]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

Reference

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
 - But Bethe lattices unconnected with surfaces.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

DQ @ 75 of 87

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

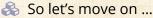
Nutshell

- Ar

الا الم

Random subnetworks on a Bethe lattice [13]

- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics^[7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell

References

Scheidegger's model

2

Directed random networks [11, 12]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

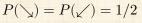
Reducing Horton

Scaling relations

Fluctuations

Models

References



Functional form of all scaling laws exhibited but exponents differ from real world ^[15, 16, 14]

nac 76 of 87

Rodríguez-Iturbe, Rinaldo, et al. [10]

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 77 of 87

Rodríguez-Iturbe, Rinaldo, et al. [10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Dac 77 of 87

Rodríguez-Iturbe, Rinaldo, et al. [10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

 $\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force})$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Rodríguez-Iturbe, Rinaldo, et al. [10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} ~(\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Rodríguez-Iturbe, Rinaldo, et al. [10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}$$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References

الله الح

Rodríguez-Iturbe, Rinaldo, et al.^[10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}$$

Landscapes obtained numerically give exponents near that of real networks. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Rodríguez-Iturbe, Rinaldo, et al.^[10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}$$

Landscapes obtained numerically give exponents near that of real networks.

🚳 But: numerical method used matters.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Rodríguez-Iturbe, Rinaldo, et al.^[10]

Solution Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \; (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_{i} a_{i} \nabla h_{i} \sim \sum_{i} a_{i}^{\gamma}$$

Landscapes obtained numerically give exponents near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network^[8] COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Theoretical networks

Summary of universality classes:

	and the second se	
network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0-1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity). COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 78 of 87

Branching networks II Key Points:

🚳 Horton's laws and Tokunaga law all fit together.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

WN OO

Branching networks II Key Points:

Horton's laws and Tokunaga law all fit together.
 For 2-d networks, these laws are 'planform' laws and ignore slope.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na ~ 79 of 87

Branching networks II Key Points:

- 🚳 Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching networks II Key Points:

- lorton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- So Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

UVN OO

Branching networks II Key Points:

- 🛞 Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- So Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- So For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Branching networks II Key Points:

- 🛞 Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- So Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- So For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

్ 8

References I

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

IN |S

 H. de Vries, T. Becker, and B. Eckhardt.
 Power law distribution of discharge in ideal networks.
 Water Resources Research, 30(12):3541–3543, 1994. pdf C

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf C

[3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf 7

References II

[4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf

 [5] N. Goldenfeld.
 Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.
 Addison-Wesley, Reading, Massachusetts, 1992.

 [6] J. T. Hack.
 Studies of longitudinal stream profiles in Virginia and Maryland.
 United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

na @ 81 of 87

References III

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

 [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
 Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf ^[2]

 [9] S. D. Peckham. New results for self-similar trees with applications to river networks. <u>Water Resources Research</u>, 31(4):1023–1029, 1995. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

の Q へ 82 of 87

References IV

 [10] I. Rodríguez-Iturbe and A. Rinaldo.
 Fractal River Basins: Chance and Self-Organization.
 Cambridge University Press, Cambrigde, UK, 1997.
 [11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench. Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967.

[12] A. E. Scheidegger. <u>Theoretical Geomorphology</u>. Springer-Verlag, New York, third edition, 1991.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

References V

[13] R. L. Shreve. Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf 7

[14] H. Takayasu. Steady-state distribution of generalized aggregation system with injection. <u>Physcial Review Letters</u>, 63(23):2563–2565, 1989. pdf

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection. Physical Review A, 37(8):3110–3117, 1988. COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

DQ @ 84 of 87

References VI

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345–4347, 1989. pdf

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. <u>Water Resources Research</u>, 26(9):2243–4, 1990. pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf COcoNuTS @networksvox

Branching Networks II

Horton Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

UVN

References VII

pdfC

[19] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1-27, 1978. pdf [20] E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984. [21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen. Dynamic reorganization of river basins.

Science Magazine, 343(6175):1248765, 2014.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

A.

(in 19

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

