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Piracy on the high y's:

http://www.youtube.com/watch?v=FnroL1_-I2c?rel=0'

(Science Daily)
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1 “Cén Hor;jbh ;n\a.Tokunaga b‘e happy?

Horton and Tokunaga seem different:
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In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.
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~ Can Horton and Tokunaga be happy?

In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.

Oddly, Horton's laws have four parameters and
Tokunaga has two parameters.
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In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.

Oddly, Horton's laws have four parameters and
Tokunaga has two parameters.

R,.. R, R, and R, versus T; and R. One simple
redundancy: R, = R,.
Insert question from assignment 1 (£
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To make a connection, clearest approach is to
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To make a connection, clearest approach is to
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Let us make them happy

We need one more ingredient:

COcoNuTS
@networksvex

Branching
Networks Il

Horton <

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

“2a 11 o0f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

We need one more ingredient:

‘ Space-fillingness

Let us make them happy

R < R
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Let us m‘a.ke’th:em happy

We need one more ingredient:

A network is space-filling if the average distance
between adjacent streams is roughly constant.
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Let us make them happy
We need one more ingredient:

A network is space-filling if the average distance
between adjacent streams is roughly constant.

Reasonable for river and cardiovascular networks
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A network is space-filling if the average distance
between adjacent streams is roughly constant. EETIR

Reasonable for river and cardiovascular networks Models

For river networks: Nutshell
Drainage density pqq = inverse of typical distance i e
between channels in a landscape.

In terms of basin characteristics:
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Start with Tokunaga’s law: T, = T, R%!

&% Start looking for Horton's stream number law:

nw/nw+l = Rn'

< e g SRR S

COCcONuUTS =+ *
@networksvex

Branching
Networks Il

Horton <

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[eTTe)

“DaQ 120f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- More with the happy-making thing

Start looking for Horton's stream number law:

R s —

Estimate n_, the number of streams of order w in
terms of other n_,, w’ > w.
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- More with the happy-making thing

Start looking for Horton's stream number law:
”w/nw+1 = Rn'

Estimate n_, the number of streams of order w in
terms of other n_,, w’ > w.

Observe that each stream of order w terminates
by either:
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- More with the happy-making thing

Start looking for Horton's stream number law:
”w/nw+1 = Rn'

Estimate n_, the number of streams of order w in
terms of other n_,, w’ > w.

Observe that each stream of order w terminates
by either:

=3 1. Running into another stream of order w

-3 )
Y and generating a stream of order w + 1

w=4
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- More with the happy-making thing

Start looking for Horton's stream number law:
”w/nw+1 = Rn'

Estimate n_, the number of streams of order w in
terms of other n_,, w’ > w.

Observe that each stream of order w terminates

by either:

1. Running into another stream of order w
and generating a stream of order w + 1

2. Running into and being absorbed by a
stream of higher order w’ > w ...
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- More with the happy-making thing

Start looking for Horton's stream number law:
”w/nw+1 = Rn'

Estimate n_, the number of streams of order w in
terms of other n_,, w’ > w.

Observe that each stream of order w terminates

by either:

1. Running into another stream of order w
and generating a stream of order w + 1
» 2n,, , streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

COcoNuTS
@networksvex

Branching
Networks Il

Horton <

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[e]STe)

“DaQ 120f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

More with the happy-making thing @networksug

COcoNuTS
Branching
Networks Il
Start looking for Horton’s stream number law: gar o
Tokunaga
,LW/ILW+1 = Rn' Reducing Horton
Estimate n_, the number of streams of order w in Scaling relations
terms of other n,, w’ > w. Fluctuations
Observe that each stream of order w terminates i,
by elther Nutshell

References

1. Running into another stream of order w
and generating a stream of order w + 1

» 2n,, , streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

» n T, streams of order w do this

w

[e]STe)

“DaQ 120f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

‘l\/vlbre Withthe h

- e ~ R s LN T PR <

appy-making thing | %‘32%2;15@;
rancning
Networks II

~ Putting things together:
i & Horton <

= Reducing Horton
Ny = 2nw+1 +
o 5 et Scaling relations
generation

Fluctuations
Models
Nutshell
References

[eTTe)

i ! DA 130f87


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303/docs/{2019-01UVM-303}assignment1.pdf

- More with the happy-making thing arendaika,
Branching
Networks Il

- Putting things together:
. & Horton <

= Reducing Horton
L7 2nw+1 E : w/—w !
N —

1 Scaling relations
generat|on w'=w+ absorptlon
Fluctuations
Models

Nutshell

References

[eTTe)

“2a ¢ 130f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303/docs/{2019-01UVM-303}assignment1.pdf

More With the :happy-making thing

It

nw = 2nw+1 —+ Z Tw/ TL /

generat|on w/=wtl absorptlon

Use Tokunaga’s law and manipulate expression to
find Horton's law for stream numbers follows and
hence obtain R,,

Insert question from assignment 1 (£
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= Reducing Horton
nw = 2nw+1 —+ E Tw/fwnw/
——— N — e’

Scaling relations
i VR 7 z
generation @'=w+t1 apsorption T

Fluctuations

Models
Use Tokunaga’s law and manipulate expressionto .,

find Horton'’s law for stream numbers follows and e
hence obtain R,,.

Insert question from assignment 1 (£

Solution:

g (2+Rp+Ty)++/(2+Rp+T1)2—8Ry
2 2

(The larger value is the one we want.)
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Finding other Horton ratios

Connect Tokunaga to R,

Now use uniform drainage density pyq-
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Finding other Horton ratios

Now use uniform drainage density pyq-

Assume side streams are roughly separated by
distance 1/pqgq.
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Finding other Horton ratios

Now use uniform drainage density pyq-
Assume side streams are roughly separated by

distance 1/pqgq.

For an order w stream segment, expected length is

0 A —1l
Sw == Pdd

w—1
14+ ) T
k=1
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Finding other Horton ratios

Now use uniform drainage density pyq-

Assume side streams are roughly separated by
distance 1/pqgq.

For an order w stream segment, expected length is
w—1
S padl 1+ Z T},
k=1
Substitute in Tokunaga's law T}, = T, R&1:

Wil
S S [T N R
k=1
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Finding other Horton ratios

Now use uniform drainage density pyq-

Assume side streams are roughly separated by
distance 1/pqgq.

For an order w stream segment, expected length is
w—1
S padl 1+ Z T},
k=1
Substitute in Tokunaga's law T}, = T, R&1:

Wil
T LT Y R ey
k=1

COcoNuTS
@networksvex

Branching
Networks Il

Horton <

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

DA 140f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Horton

d

g et PSS [, S N G i gy g =~

hdfokunagaarehappy

- Altogether then:
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Horton and Tokunaga are happy
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. Altogether then:
. &

:>§w/’§w71 :RT = Rs :RT

<& Recall R, = R, so

(R, =R, = Ry

&> And from before:

o 2+ Rr+Ty)++Q2+ Ry +T,)2 -8Ry

e 2
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Some observations:
R, and R, depend on T; and R.
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- Horton éhd Tokunaga are happy

R, and R, depend on T; and R.
Seems that R, must as well ...
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- Horton and Tokunaga are happy

R, and R, depend on T; and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy
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 Horton and Tokunaga are happy

R, and R, depend on T; and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'll in fact seethat R, = R

n*
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 Horton and Tokunaga are happy

R, and R, depend on T; and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'll in fact seethat R, = R,,.

Also: Both Tokunaga's law and Horton's laws can
be generalized to relationships between
non-trivial statistical distributions. > !
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Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.
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Horton and Tokunaga are happy

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

RT = Ré,
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 Horton and Tokunaga are happy

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

RT = Ré,

Suggests we should be able to argue that Horton's
laws imply Tokunaga's laws (if drainage density is
uniform) ...
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Horton and Tokunaga are friends

Assume Horton's laws
hold for number and

(@) length
Start with picture
showing an order w
: stream and order w — 1
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Horton and Tokunaga are friends

Assume Horton's laws
hold for number and
length

Start with picture
showing an order w
stream and order w — 1
generating and side
streams.

Scale up by a factor of
R,, orders increment
tow+1and w.

Maintain drainage
density by adding new
order w — 1 streams
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Horton and To‘:kunaga are friends

...and in detail:
Must retain same drainage density.
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Horton and Tokunaga are friends
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- Horton and Tokunaga are friends
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Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

k—1
T, = (R, — 1) <1+2Ti> .
=t
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- Horton and Tokunaga are friends

Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

k—1
T, = (R, — 1) <1+ZT,£> .
=t

For large w, Tokunaga's law is the solution—let’s
check ...
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Horton and To:kunaga are friends

Substitute Tokunaga'slaw T, = Ty R/ =T, R,/ !

into

k—1
Te—dn 1) <1+ZTZ->
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Horton and Tokunaga are friends

Substitute Tokunaga's law T, = TR =T, R,/

k—1
Te—dn 1) <1+ZTZ->

into

@l
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Horton and Tokunaga are friends

Substitute Tokunaga's law T, = TR =T, R,/

k—1
Te—dn 1) <1+ZTZ->

into

@l

Tk:(Re—1)<

= (R, —1) (1+T1

(R, —1)

2 Rﬂk_l
LR

k—1
Rl

Rl

1+ ) TR/
=1k

)

..yep.
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- Horton's laws of area and number:

‘The Mississippi The Nile - The Amazon

o1,
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o a, (sakm)
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(4] stream order 6 stream order 6

In bottom plots, stream number graph has been

flipped vertically.
Highly suggestive that R,, = R, ...
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~ Measuring Horton ratios is tricky:

How robust are our estimates of ratios?
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Mississippi:

w range R

2,3 527
2,5]  4.86
2,7 477
3,4 472
3,6]  4.70
3,8]  4.60
[4,6]  4.69
[4,8] 457
5,77  4.68
6,7  4.63
7,8 4.6

mean u  4.69
stddevo 0.21

RCL
5.26
4.96
4.88
4.91
4.83
4.79
4.81
4.77
4.83
4.76
4.67
4.85
0.13

R,
2.48
242
2.40
2.41
2.40
2.38
2.40
2.38
2.36
2.30
2.41
2.40
0.04

RS
2.30
2.31
2.31
2.34
2.35
2.34
2.36
2.34
2.29
2.16
2.56
2.33
0.07

o/p 0.045 0.027 0.015 0.031

R,/R,
1.00
1.02
1.02
1.04
1.03
1.04
1.02
1.05
1.03
1.03
1.12
1.04
0.03

0.024
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- Amazon:;

w range

mean u
std dev o

o/

R,
4.78
4.55
4.42
4.45
4.35
4.38
4.38
4.08
4.42
0.17

0.038 0.023 0.045 0.042

R,
4.71
4.58
4.53
4.52
4.49
4.54
4.62
4.27
4.53
0.10

R,
2.47
2.32
2.24
2.26
2.20
2.22
2.22
2.05
2.25
0.10

R,
2.08
2.12
2.10
2.14
2.10
2.18
2.21
1.83
2.10
0.09

R,/R,
0.99
1.01
1.02
1.01
1.03
1.03
1.06
1.05
1.02
0.02

0.019
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Reducing Horton's laws:

ag o< sum of all stream segment lengths in a order
Q basin (assuming uniform drainage density)

So:

Q
aq = Z nwgw/pdd

w=1

no

2 £
x Z L i
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&9 T
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Reducing Horton's laws:
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Reducing Horton's laws:
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Reducing Horton's laws:

1
NRgil_ St
G

So, ag, is growing like R.$* and therefore:
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...But this only a rough argument as Horton's laws
do not imply a strict hierarchy
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| Equipartitiohihg:

Observe: Combined area of basins of order w
independent of w.
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 Equipartitioning:

Observe: Combined area of basins of order w
independent of w.

Not obvious: basins of low orders not necessarily
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| Equipartitionihg:

Mississippi basin partitioning Amazon basin partitioning
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~ Scaling laws

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga's law describes detailed architecture:

Tl Rk
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- Scaling laws

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga's law describes detailed architecture:
Tl Rk

We have connected Tokunaga’'s and Horton's laws
Only two Horton laws are independent (R,, = R,,)
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- Scaling laws

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga's law describes detailed architecture:
Tl Rk

We have connected Tokunaga’'s and Horton's laws
Only two Horton laws are independent (R,, = R,,)

Only two parameters are independent:
(T17 RT) = (er Rs)
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3
|

9 A little further ...

Scaling laws
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- Scaling laws

Ignore stream ordering for the moment
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Ignore stream ordering for the moment
Pick a random location on a branching network p.
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- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length
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- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a?
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- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.

Each point p is associated with a basin and a
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from p has length ¢?

COcoNuTS
@networksvex

Branching
Networks Il

Horton
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[e]STe)

DA 320f87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a? P(a) xa " forlargea

Q: What is probability that the longest stream
from p has length ¢?

COcoNuTS
@networksvex

Branching
Networks Il

Horton
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[e]STe)

DA 320f87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.
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longest stream length
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has area a? P(a) xa " forlargea

Q: What is probability that the longest stream
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- Scaling laws

Ignore stream ordering for the moment

Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a? P(a) xa " forlargea

Q: What is probability that the longest stream
from p has length ¢? P(/) oc ¢~ for large ¢

Roughly observed: 1.3 <7 <1.5and 1.7 < v < 2.0
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~ Scaling laws

We see them everywhere:
Earthquake magnitudes (Gutenberg-Richter law)
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We see them everywhere:
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Scaling laws

We see them everywhere:
Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)
Word frequency (Zipf's law) [**!
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- Scaling laws

We see them everywhere:
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- Scaling laws

We see them everywhere:
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City sizes (Zipf's law)
Word frequency (Zipf's law) [**!
Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !
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- Scaling laws

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) [**!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !

A big part of the story of complex systems
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- Scaling laws

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) [**!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !

A big part of the story of complex systems

Arise from mechanisms: growth, randomness,
optimization, ...
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- Scaling laws

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) [**!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !

A big part of the story of complex systems

Arise from mechanisms: growth, randomness,
optimization, ...

Our task is always to illuminate the mechanism ...
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~ Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) «x a~™ and P(¢) « ¢~ 7 starting
with Tokunaga/Horton story '/ ]

Let's work on P(?) ...
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) x a~™ and P({) o< £~ 7 starting
with Tokunaga/Horton story '/ ]
Let's work on P(/) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) «x a~™ and P(¢) « ¢~ 7 starting
with Tokunaga/Horton story '/ ]

Let's work on P(?) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) x a~™ and P({) o< £~ 7 starting
with Tokunaga/Horton story '/ ]
Let's work on P(/) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth.
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) x a~™ and P({) o< £~ 7 starting
with Tokunaga/Horton story '/ ]
Let's work on P(/) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth. Bite stick.
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- Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) «x a~™ and P(¢) « ¢~ 7 starting
with Tokunaga/Horton story '/ ]

Let's work on P(¢) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth. Bite stick.
Proceed.
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Scaling laws

Often useful to work with cumulative
distributions, especially when dealing with
power-law distributions.
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- Scaling laws

Often useful to work with cumulative
distributions, especially when dealing with
power-law distributions.

The complementary cumulative distribution turns
out to be most useful:

emax

P.(L) = P(>0,) :/ P(0)de

=

*
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~ Scaling laws

The connection between P(x) and P_(z) when
P(z) has a power law tail is simple:
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Scaling laws

The connection between P(x) and P_(z) when
P(z) has a power law tail is simple:

Given P(¢) ~ ¢~ large ¢ then for large enough ¢,

=0,
Emax
= / ¢-de
=2,
g-(v=1) |bmex
_(’7_1> =2,
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Scaling laws

The connection between P(x) and P_(z) when

P(z) has a power law tail is simple:

Given P(¢) ~ ¢~ large ¢ then for large enough ¢,
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~ Scaling laws

Aim: determine probability of randomly choosing
a point on a network with main stream length > ¢,
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Scaling laws

Aim: determine probability of randomly choosing
a point on a network with main stream length > ¢,

Assume some spatial sampling resolution A
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Horton

Aim: determine probability of randomly choosing Tokunaga
a point on a network with main stream length > ¢, reducing Horeon

Scaling relations

Assume some spatial sampling resolution A i
uctuations
Landscape is broken up into grid of A x A sites

Models
Approximate P_(¢,) as Nutshell
References
N_(£,; A)
P s > * 9 :

where N_ (¢,; A) is the number of sites with main
stream length > ..

Use Horton's law of stream segments:

§w/§w_1 = RS cee
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Finding ~:
Set ¢, =/, forsome 1 <« w < Q.

Y] hE N>(Zw;A>
B 65) = N0, A)

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[eTTe)

Q> 380f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Scaling laws
Fin y
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Scaling laws

Set/, = ¢, forsome 1l <« w < .

by Q A
P (Z ) {rdd N>(€w;A> ~ Zw’:w+l nw/sw//ﬁ
i N>(O7 A) Zi})’:l nw&w//A/

A’s cancel
Denominator is ag pqq, @ CONStant.
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Set ¢, = ¢ forsomel <« w < Q.

by Q A
P (Z ) {rdd N>(€w;A> ~ Zw’:w+l nw/sw//ﬁ
i N>(O7 A) Zi})’:l nw&w//A/

A’s cancel
Denominator is ag pqq, @ CONStant.
S04

«Q
P>(Zw> X Z nwl§w/

w/'=w+1
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Set ¢, = ¢ forsomel <« w < Q.

by Q A
P (Z ) {rdd N>(€w;A> ~ Zw’:w+l nw/sw//ﬁ
i N>(O7 A) Zi})’:l nw&w//A/

A’s cancel
Denominator is ag pqq, @ CONStant.

So ...
= Q Q
P>(Ew> X Z nwl§w/ ) Z
w/'=w+1 w/ =w+1
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Scaling laws

Set ¢, = ¢ forsomel <« w < Q.

NN ij,,w nB o K
LU mEEs ZQ w8 1K

A’s cancel
Denominator is ag pqq, @ CONStant.
So ...using Horton's laws ...

Q Q
z : = A E Q—w’
NS = (1Rn )
w/'=w+1 w/=w+1
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 Scaling laws

Finding ~:
We are here:

Q
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Scaling laws

We are here:

Q

Pyr ) oc iyl (LRI YGRiRe =)

w/'=w+1

Cleaning up irrelevant constants:
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Cleaning up irrelevant constants: Nutshell

References
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RE)x > (5

w'=w+1 U

Change summation order by substituting

Ww =0 -

Sumis now fromw” =0tow” =Q —w—1
(equivalentto w’ = Q downto w’ =w + 1)
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- Scaling laws

And so we have:

|v=InR, /InR,

Proceeding in a similar fashion, we can show

‘Tzz—lnRS/Ianzg_l/y‘
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scaling relations
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Scaling laws

And so we have:

|v=InR, /InR,

Proceeding in a similar fashion, we can show

‘Tzz—InRs/lan :2_1/7‘

Insert question from assignment 2 (£

Such connections between exponents are called
scaling relations

Let's connect to one last relationship: Hack's law
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{ o ah

Typically observed that 0.5 < h < 0.7.

Use Horton laws to connect ~ to Horton ratios:

gt o < and g o R
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Use Horton laws to connect ~ to Horton ratios:
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Typically observed that 0.5 < h < 0.7.
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gt o < and g o R
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Typically observed that 0.5 < h < 0.7.
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Typically observed that 0.5 < h < 0.7.

Use Horton laws to connect ~ to Horton ratios:

gt o < and g o R

Observe:
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- We mentioned there were a good number

of ‘laws’; !

Relation:

Ty, = Ty (Rp)*?
{~ L2

COcoNuTS
@networksvex

Branching
Networks Il
Name or description: 5
Inaga
Toku naga's law icing Horton
ng relations

self-affinity of single channels
Horton's law of stream numbers
Horton's law of main stream lengths
Horton's law of basin areas .
Horton’s law of stream segment lengths
scaling of basin widths ;
probability of basin areas
probability of stream lengths
Hack’s law

scaling of basin areas
Langbein’s law

variation of Langbein’s law 22
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- Connecting exponents

relation:
{~ L2
Ty, =Ty (Ryp)*1

nw/nw+l - Rn
&w+1/&w = Ra
Ew—‘—l/gw = RZ
0~ al
a~LP
L, ~LH
P(a) ~a™7
P(f) ~ £
A~aP
A~ L%

scaling relation/parameter: !

d
T,=R,—R,—2+2R_,/R,
Ry =R,

Rn

R,=R,

R, =R,
h=InR,/InR,,
D=d/h
H=d/h—1
T=2—h
v=1/h
B=1+h
p=d
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PO = Bl = 1/2
<= Functional form of all scaling laws exhibited but
exponents differ from real world "> 16141
<= Useful and interesting test case
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A toy model—Scheidegger’'s model
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- Prob for first return of a random walk in (1+1)
dimensions (from CSYS/MATH 300):
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 Scheidegger’s model

1
P PR A G S e O
(n) =k
and so P(¢)  ¢-3/2,

Typical area for a walk of length n is oc n3/2:

¢ x a?/3.

Find e =13 h = /3, =3/ 2:d = L
Noter =2—hand~y=1/h.
R, and R, have not been derived analytically.
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| Equipartitiohing reexamined:
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Equipartitioning

What about
Plo)i~ian" ?

Since 7 > 1, suggests no equipartitioning:

aP(a) ~a~7+! &£ const

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[eTTe)

A 520f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Equipartitioning

What about
Plo)i~ian" ?

Since 7 > 1, suggests no equipartitioning:

aP(a) ~a~7+! &£ const

P(a) overcounts basins within basins ...
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 Equipartitioning

What about
Plo)i~ian" ?

Since 7 > 1, suggests no equipartitioning:

aP(a) ~a~7+! &£ const

P(a) overcounts basins within basins ...

while stream ordering separates basins ...
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Fluctuations

Moving beyond the mean:
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Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/‘gw—l = Rs
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- Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/gw—l = Rs

Natural generalization to consider relationships
between probability distributions
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- Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/gw—l = Rs

Natural generalization to consider relationships
between probability distributions

Yields rich and full description of branching
network structure
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- Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/gw—l = Rs

Natural generalization to consider relationships
between probability distributions

Yields rich and full description of branching
network structure

See into the heart of randomness ...
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i Directed random networks
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- Generalizing Horton’s laws

b, < (Ry)” = N(llw) = (R, Re)"*F,({/RY)
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- Generalizing Horton's laws

QI
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(Rp)” = N(llw) = (R, Re)"*F,((/RY)
(Rg)” = N(alw) = (R2)"“F,(a/Ry)
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by, o (Rp)* = N({|w) = (R, Ry)"“F,(¢/RY)
a,, o« (R,)* = N(alw) = (RZ)™“F,(a/R5)

Mississippi: length distributions
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 Generalizing Horton’s laws
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b, x (Ry)” = N(fw) = (R, R,)"“F,(¢/RY)

., 5 (Ra)” = N(alw) = (R2)~“F,(a/RS) Horon <
oKunaga

Mississippi: length distributions Reducing Horton

_ Mississippi: length distributions I
10° 107
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a & Models
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= 4 References
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Scaling collapse works well for intermediate

orders
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Generalizing Horton’s laws otttk
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Networks Il

0, o< (Rp)* = N(f|w) = (R, R)"“Fy(£/Ry)
a, x (R,)” = N(alw) = (R2)~*F, (a/R%)

Tokunaga

o Mississippi: length distributions o Mississippi: length distributions Reducing Horton
: w=3 R =469.R =238 Scaling relations
1S Fluctuations
o Models
3 Nutshell
% References

0 100 200 300
I (km)

Scaling collapse works well for intermediate
orders

All moments grow exponentially with order
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Generalizing Horton's laws

How well does overall basin fit internal pattern?
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Generalizing Horton's laws

How well does overall basin fit internal pattern?

St
14310 . i Actual length = 4920
O w=4
12 o o3 km (at 1 km res)
— actual |
— ] ik
i_ 1 g <>
LRU R
E: o
=i 06l
&
o4l §
s}
0.2 g
6 ,
GO
IR (m) a0

COcoNuTS
@networksvex

Branching
Networks Il

Horton
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

[e]STe)

A 57 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Generalizing Horton's laws

How well does overall basin fit internal pattern?
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Generalizing Horton's laws

How well does overall basin fit internal pattern?

14x10” MiSSiSSippiO - Actual length = 4920
12 & s km (at 1 km res)
— actual |
T ﬁ ’ St Predicted Mean length
i = 11100 km
Predicted Std dev =
5600 km

Actual length/Mean
length = 44 %
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Generalizing Horton's laws

How well does overall basin fit internal pattern?

14x10” MiSSiSSippiO - Actual length = 4920
12 & s km (at 1 km res)
— actual |
T ﬁ ’ St Predicted Mean length
i = 11100 km
Predicted Std dev =
5600 km

Actual length/Mean
length = 44 %
Okay.
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Generalizing Horton's laws @renworkeRy

COcoNuTS
Branching
Comparison of predicted versus measured main N
stream lengths for large scale river networks (in 103
km): R
Reducing Horton
basin: EQ EQ Oy KQ /EQ O-Z/EQ Scaling relations
Mississippi  4.92 11.10 5.60 0.44 0.51 Elihidtians
Amazon 575 9.18 6.85 0.63  0.75 v e
Nile 6.49 266 220 244 0.83 Nutshell
Congo 5.07 10.13 5.75 0.50 0.57 References

Kansas 1.07 237 174 045 0.73

ag ag o, aglag 0,/ag
Mississippi  2.74 7.55 5.58 0.36 0.74
Amazon 540 9.07 8.04 0.60 0.89

Nile 3.08 096 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 049 042 0.28 0.86 S 9
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Combining stream segments distributions:

Stream segments
sum to give main
stream lengths

H=w
= E S,
p=1
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COcoNuTS

Combining stream segments distributions: oo
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Horton

Stream Segments Tokunaga
sum to give main Reducing Horton
stream Iengths Scaling relations

; Fluctuations
Models

Nutshell
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s } : ey

£UJ o a4 S’U., ererences
p=1

P(,)is a
convolution of
distributions for
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Sum of variables £, = > " s, leads to
convolution of distributions:

N(f|w) = N(s]1) x N(5|2) * - % N(s|w)
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 Generalizing Horton’s laws COcONITS

@networksvex
Branching
Networks Il
& 5 H=w
Sum of variables ¢, = >7 | s, leads to ke B
convolution of distributions: e
Reducing Horton
N(£|(JJ) £ N(S|1) *N(S|2) O N(SIQ}) Scaling relations
Fluctuations
Models
Nutshell
Mississippi: stream segments
References
n R =469 R =333
= 1
<3
= Ni(slw) = =———FE (s/ R
(5h) = o (5/ )
P
= 5 o Elay = et
—r——a——1  Mississippi: £ ~ 900 m.
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Generalizing Horton's laws

N(l |)

Next level up: Main stream length distributions
must combine to give overall distribution for

stream length

Mississippi: length distributions
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Generalizing Horton's laws

Next level up: Main stream length distributions
must combine to give overall distribution for
stream length

Mississippi: length distributions

10°
SRR o w=3
%‘% fiire—g
=, a3
10° R -
Pl
% Another round of
=560 convolutions %/
10 g
Interesting ...
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 Generalizing Horton’s laws @renworkeRy

COcoNuTS
Branching
Networks Il
—4
l‘zx 10 Horton

Tokunaga

Number and Reducing Horton

area Scaling relations

distributions for Fluctuations

the Scheidegger Models

model [3] Nutshell
References

P(nq g) versus

P(ag) for a

randomly

selected w =6

basin.
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Generalizing Tokunaga's law

Scheidegger:

1
: @ ®)
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3 =
F
£ 3 =
S 2
2 W%v &
i vvvv & &
=Y v %D Vi 10
fH20
b 8
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H
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Observe exponential distributions for T}, ,
Scaling collapse works using R,
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Generalizing Tokunaga's law

Mississippi:

2.5 3 ;
(a) ;
2% e &
=y ~ Y e,
§ 15 vuu%q%jo Fiz VD%%@
i 1. =2
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) e © - go ©
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Same data collapse for Mississippi ...
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COcoNuTS

- Generalizing Tokunaga’s law @renworkeRy

Branching
Networks Il

Horton <
So Tokunaga

P(T ) ] <Rs>ufvflpt [T'UJ’V/<RS)M7V71] Reducing Horton

Scaling relations

where 1 Fluctuations
A — —e %8, Models

v Nutshell

References

Pleiis P, )

Exponentials arise from randomness.

Look at joint probability P(s,,, T, , ).
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- Generalizing Tokunaga's law @reniarkay
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Networks Il

Horton <
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Reducing Horton
Scaling relations

Inter-tributary

Fluctuations

|engthS Models
exponentially Nutshell
d |Str|buted References
Leads to random

spatial

distribution of
stream segments
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- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

DA 670of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = /(R )P &,
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- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = /(R )P &,

Probability decays exponentially with stream
order
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- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = /(R )P &,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
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- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = /(R )P &,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments
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Generalizing Tokunaga's law otttk
Branching
Networks Il

Joint distribution for generalized version of e
orton <
TOkUnaga'S IaW Tokunaga
Reducing Horton

) S —1 LA 2] = =4 Scaling relations
P(sy, Ty ) ZPH<§1 )pu” Qs b e

Fluctuations

BBl Fsd VO ol e B0 B et i e SAE Bt S4 ! ol RO I it - o St

Models

Where Nutshell
p,, = probability of absorbing an order v side Beterehcy

stream
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Generalizing Tokunaga's law otttk
Branching
Networks Il

Joint distribution for generalized version of e
orton
TOkUnaga'S IaW Tokunaga
Reducing Horton

) S —1 LA 2] = =4 Scaling relations
P(sy, Ty ) :Pu<§i )pu” Qs b e

Fluctuations

(BB PR3 VAT PR EER LD R St S Bl SN el Sl b IS IR mr £ ey

Models

Where Nutshell
p,, = probability of absorbing an order v side ERlcrehcey

stream
p,, = probability of an order p stream terminating
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COcoNuTS

Generalizing Tokunaga’s law @renworkeRy

Branching
Networks Il

Joint distribution for generalized version of e
orton
TOkUnaga'S IaW Tokunaga

Reducing Horton

ot ol e 1 TAV ~ s, =4 Scaling relations
P(Su’Tu,v) :pu< a8 )py' (1_Pu—Pu)S“ Tyt

LTy Fluctuations

Models

where Nutshell
p,, = probability of absorbing an order v side Beterehcy

stream
p,, = probability of an order p stream terminating

Approximation: depends on distance units of s,

In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.
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Generalizing Tokunaga's law

Now deal with this thing:
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- Generalizing Tokunaga's law @reniarkay
Branching
Networks Il

Now deal with this thing: Horton <

Tokunaga

Reducing Horton

Sy S AN e B i
P(S;L’T/.l,,u) :p'u( ;—V )pvu’ (1_py_py,)SH TH’V : Scaling relations

e Fluctuations

e Models

Set (J?,y) = (SP‘"TM,V) andq: 1_pV_pH' Nutshell
approximate liberally. .
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Generalizing Tokunaga's law

Now deal with this thing:

Llaads 1IN e i
P(Su’Tu,v) :p“( % )py , (1_pV_pu)S“

n,v

Set (xvy) = (S,uaT,u,u) and 9= 1 — Py _ﬁul
approximate liberally.

Obtain
Plzy)= Ne M2 [F(y/z)]®

no-(7)" ")

where

4

My

v

=:
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Generalizing Tokunaga's law otttk

Branching
Networks Il
. Horton
Checking form of P(s,,,T,, ,) works: Tokunaga
5 Reducing Horton
Scheidegger:
1 gg Scaling relations
@ > Fluctuations
0.8 1 Models
Nutshell
4 Sk
i ko > % References
= =3
£ 04 Sl
4 A~
-0.5
0.2]
=1
0
0 0.2 0.4 0.6 0.8 1 =15
w=T 71 V=T LD
Ky WV f

A 70 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Generalizing Tokunaga's law otttk
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Horton

Checking form of P(s,,,T,, ,) works: Tokunaga
i Reducing Horton
Scheidegger:
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Generalizing Tokunaga's law

Checking form of P(s,,,T,, ,) works:

Scheidegger:
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Generalizing Tokunaga's law

Checking form of P(s,,,T,, ,) works:

Mississippi:
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Random subnetworks on a Bethe lattice
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o Y e el v i

Models
Random subnetworks on a Bethe lattice

<= Dominant theoretical
concept for several decades.

< e g SRR S

COCcONuUTS =+ *
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

[eTTe)

“2aQ 750f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Models

Dominant theoretical
concept for several decades.

Bethe lattices are fun and
tractable.
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- Models
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- Models

Dominant theoretical

concept for several decades.

Bethe lattices are fun and
tractable.

Led to idea of “Statistical
inevitability” of river
network statistics [’

But Bethe lattices
unconnected with surfaces.
In fact, Bethe lattices ~
infinite dimensional spaces
(oops).

So let's move on ...
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| Scheldeggers model
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~ Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

£ X /dF (flux) x (force)

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

€ o /dF (flux) x (force) ~ > "a,Vh,

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

€ o /d? (flux) x (force) ~> " a,Vh; ~ > a]

COcoNuTS
@networksvex

Branching
Networks Il

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Nutshell

References

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

- Optimal channel networks Grcnitkis

Branching
Networks Il

Horton <
Tokunaga

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

Reducing Horton

Scaling relations

Fluctuations

€ o /d? (flux) x (force) ~> " a,Vh; ~ > a] Models
K2 K2

Nutshell

References

Landscapes obtained numerically give exponents
near that of real networks.

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

- Optimal channel networks Grcnitkis

Branching
Networks Il

Horton <
Tokunaga

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

Reducing Horton
Scaling relations
Fluctuations
€ o /d? (flux) x (force) ~> " a,Vh; ~ > a] Models
k3 k3 Nutshell

References

Landscapes obtained numerically give exponents
near that of real networks.

But: numerical method used matters.

DA 77 of 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

€ o /d? (flux) x (force) ~> " a,Vh; ~ > a]

Landscapes obtained numerically give exponents
near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes
are that of Scheidegger, self-similar, and a third
kind of random network ¢!
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- Theoretical networks

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN's () 1/2 1
OCN's (I1) 2/3 1
OCN's (l11) 3/5 1

Real rivers 0.5-0.7 1.0-1.2

h = ¢ x a® (Hack’s law).

d = ( o« L{ (stream self-affinity).
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Branching networks Il Key Points:
% <% Horton's laws and Tokunaga law all fit together.
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Nutshell

Horton's laws and Tokunaga law all fit together.

For 2-d networks, these laws are ‘planform’ laws
and ignore slope.
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Horton's laws and Tokunaga law all fit together.
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Abundant scaling relations can be derived.

Can take R,,, R,, and d as three independent

parameters necessary to describe all 2-d
branching networks.
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Nutshell R A

Branching
Networks Il
Horton's laws and Tokunaga law all fit together. S e
For 2-d networks, these laws are ‘planform’ laws Reducing Hort
and |gn0re S|Ope. Scaling relations
Abundant scaling relations can be derived. g
Models
Can take R,,, R,, and d as three_ independent Nutshal
parameters necessary to describe all 2-d e

branching networks.

For scaling laws, only h = InR,/InR,, and d are
needed.

Laws can be extended nicely to laws of
distributions.

Numerous models of branching network evolution
exist: nothing rock solid yet.
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