Branching Networks II

Last updated: 2019/01/14, 22:50:59

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models

Nutshell References

少 Q (~ 1 of 87

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models Nutshell References

少 Q (~ 4 of 87

These slides are brought to you by:

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models References

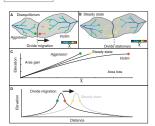
少 Q (~ 2 of 87

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins"

Willett et al.,

Science Magazine, **343**, 1248765, 2014. [21]



$$\frac{\partial z(x,t)}{\partial t} = U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n$$

$$z(x) = z_{\rm b} + \left(\frac{U}{KA_0^m}\right)^{1/n}\chi$$

$$\chi = \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')}\right)^{m/n} {\rm d}x\,'$$

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

References

Piracy on the high χ 's:

More: How river networks move across a landscape ☑ (Science Daily)

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

少 Q (~ 7 of 87

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_{\ell} = R_s$. Insert question from assignment 1 2
- To make a connection, clearest approach is to start with Tokunaga's law ...
- & Known result: Tokunaga \rightarrow Horton [18, 19, 20, 9, 2]

COcoNuTS More with the happy-making thing Branching Networks II

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .
- Insert question from assignment 1 🗹
- Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Scaling relations Fluctuations Models Nutshell References

Reducing Horton

COcoNuTS

Branching Networks II

@networksvox

少 q (~ 13 of 87

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$

COcoNuTS @networksvox Branching Networks II

夕 Q № 10 of 87

IVM S

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Horton ⇔ Tokunaga

Reducing Hortor Scaling relations Fluctuations Models References

少 Q (~ 11 of 87

Finding other Horton ratios

Connect Tokunaga to R_{\circ}

- & Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \clubsuit For an order ω stream segment, expected length is

$$\bar{s}_\omega \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_\omega \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \, \propto R_T^{\;\omega} \label{eq:sigma}$$

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models Nutshell References

•ാ q (~ 14 of 87

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models

Nutshell

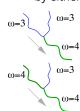
IVN S

少 Q (~ 15 of 87

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n.$
- & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- & Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

COcoNuTS Branching Networks II

Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

夕 Q № 12 of 87

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

 \Re Recall $R_{\ell} = R_{s}$ so

$$R_\ell = R_s = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton and Tokunaga are happy

Some observations:

- R_n and R_ℓ depend on T_1 and R_T .
- Suggests Horton's laws must contain some redundancy
- $\ensuremath{\mathfrak{S}}$ We'll in fact see that $R_a=R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations

Models Nutshell References

夕 Q № 16 of 87

Horton and Tokunaga are friends

...and in detail:

- Must retain same drainage density.
- $\begin{cases} \& \end{cases} \label{eq:conditional} \end{cases} \begin{cases} Add an extra <math>(R_\ell-1)$ first order streams for each original tributary.
- \clubsuit Since by definition, an order $\omega + 1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right).$$

& For large ω , Tokunaga's law is the solution—let's check ...

COcoNuTS Branching Networks II

Reducing Horton Scaling relations Fluctuations

Models Nutshell References

•9 q (~ 19 of 87

Horton and Tokunaga are happy

The other way round

 $\ensuremath{\mathfrak{S}}$ Note: We can invert the expresssions for R_n and R_{ℓ} to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ...

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models References

少 Q (~ 17 of 87

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \\ &= R^{k-1} \end{split}$$

$$\simeq (R_{\ell}-1)T_{1}\frac{R_{\ell}^{\ k-1}}{R_{\ell}-1} = T_{1}R_{\ell}^{k-1} \quad \text{ ...yep.}$$

COcoNuTS @networksvox Branching Networks II

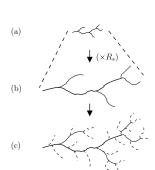
Reducing Horton Scaling relations Fluctuations Models

Nutshell References

•> q (~ 20 of 87

Horton and Tokunaga are friends

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- 🗞 Scale up by a factor of R_{ℓ} , orders increment to $\omega + 1$ and ω .
- Maintain drainage density by adding new order $\omega - 1$ streams

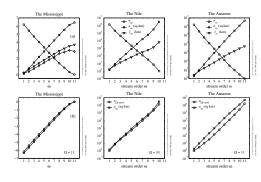
COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell

夕∢ॡ 18 of 87

Horton's laws of area and number:



- 🚵 In bottom plots, stream number graph has been flipped vertically.
- \clubsuit Highly suggestive that $R_n \equiv R_a$...

COcoNuTS Branching Networks II

Horton ⇔

Reducing Horton Fluctuations

Models Nutshell

少 q (~ 21 of 87

Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models Nutshell

References

少 Q (→ 22 of 87

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

 $\& a_{\Omega} \propto \text{sum of all stream segment lengths in a order}$ Ω basin (assuming uniform drainage density)

🚜 So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega \bar{s}_\omega/\rho_{\rm dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \stackrel{\mathbf{n}_{\Omega}}{\widehat{\mathbf{1}}}}_{\mathbf{n}_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\;\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

@networksvox

•9 q (~ 25 of 87

COcoNuTS @networksvox

Branching Networks II

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

Mississippi:

	_	_	_	_	- /-
ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

COcoNuTS @networksvox Branching Networks II

Reducing Horton Scaling relations Fluctuations

Models Nutshell References

少 Q (~ 23 of 87

Reducing Horton's laws:

Continued ...

$$\begin{split} & \mathbf{a_{\Omega}} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ & = \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \end{split}$$

$$R_s \stackrel{\text{red}}{=} R_n \quad 1 - (R_s/R_n)$$

 $\sim R_n^{\Omega-1} ar{s}_1 rac{1}{1-(R_s/R_n)}$ as $\Omega \nearrow$

 $\mbox{\&}$ So, a_{Ω} is growing like $R_{n}^{\ \Omega}$ and therefore:

•> q (~ 26 of 87

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relatio

Fluctuations

Models

Nutshell

•9 q (~ 27 of 87

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relation

Fluctuations Models

Nutshell

夕 Q ← 24 of 87

Reducing Horton's laws:

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

Need to account for sidebranching.

🙈 Insert question from assignment 2 🗹

Equipartitioning:

Intriguing division of area:

- & Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$n_\omega \propto (R_n)^{-\omega}$$

$$\bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation Fluctuations Models

Nutshell References

夕 Q № 28 of 87

Scaling laws

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- A Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- \mathfrak{S} Only two Horton laws are independent ($R_n = R_a$)
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

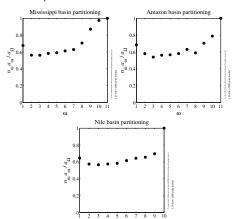
Fluctuations Models

Nutshell References

少 q (~ 31 of 87

Equipartitioning:

Some examples:



COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

References

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relat

Fluctuations

Models

Nutshell

少 Q (~ 29 of 87

Scaling laws

A little further ...

Scaling laws

- Ignore stream ordering for the moment
- \aleph Pick a random location on a branching network p.
- & Each point p is associated with a basin and a longest stream length
- \mathbb{Q} : What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

COcoNuTS Branching Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

•> q (~ 32 of 87

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

∙) q (~ 33 of 87

Wealth (maybe not—at least heavy tailed)

Word frequency (Zipf's law) [22]

We see them everywhere:

City sizes (Zipf's law)

Statistical mechanics (phase transitions) [5]

Probability distributions with power-law decays

Earthquake magnitudes (Gutenberg-Richter law)

- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism ...

Neural Reboot: Fwoompf

夕 Q № 30 of 87

Scaling laws

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- $\ \ \,$ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\ 1,\ 2]}$
- & Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- & (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_>(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$

8

$$P_>(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Scaling laws

Finding γ :

- \clubsuit The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- $Arr Given P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ ,

$$P_{>}(\ell_*) = \int_{\ell=\ell}^{\ell_{\rm max}} P(\ell) \, \mathrm{d}\ell$$

$$\sim \int_{\ell-\ell}^{\ell_{max}} {\ell^{-\gamma}} d\ell$$

$$= \left. \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \right|_{\ell=\ell}^{\ell_{\max}}$$

$$\propto \ell_*^{-(\gamma-1)}$$
 for $\ell_{\text{max}} \gg \ell_*$

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models

Nutshell

References

•9 q (~ 34 of 87

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Models

References

Reducing Horton

Scaling relations

Scaling laws

Scaling laws

stream length $> \ell_*$.

 $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$...

Finding γ :

Finding γ :

 \mathfrak{S} Set $\ell_* = \bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\&}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\&}}$$

Aim: determine probability of randomly choosing

💫 Assume some spatial sampling resolution Δ

Use Horton's law of stream segments:

& Landscape is broken up into grid of $\Delta \times \Delta$ sites

a point on a network with main stream length $> \ell_*$

 $P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{\sim}(0; \Delta)}.$

where $N_{>}(\ell_{*};\Delta)$ is the number of sites with main

- & Δ 's cancel
- So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell References

少 q (~ 37 of 87

COcoNuTS Branching Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

•> < ℃ 38 of 87

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

少 Q (~ 39 of 87

COcoNuTS

少 Q (~ 35 of 87

Branching Networks II

Horton ⇔ Tokunaga Reducing Hortor

Scaling relations Fluctuations

Models

Nutshell References

夕 Q № 36 of 87

Scaling laws

Finding γ :

We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\,\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega - \omega'.$
- $\mbox{\&}$ Sum is now from $\omega''=0$ to $\omega''=\Omega-\omega-1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Scaling laws

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 $\red since R_n > R_s \ {\rm and} \ 1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n-1)/(a-1)$

Scaling laws

Finding γ :

Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} \\ = e^{-\omega \ln(R_n/R_s)}$$

- & Need to express right hand side in terms of $\bar{\ell}_{\omega}$.
- \Re Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\omega} = R_{s}^{\omega} = e^{\omega \ln R_{s}}$$

Scaling laws

Finding γ :

Therefore:

$$P_>(\overline{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\rm co} - \ln(R_n/R_s) / \ln R_s$$

$$= \bar{\ell}_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

8

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$

8

$$=\bar{\ell}_{\omega}^{-\gamma+1}$$

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models Nutshell

•9 q (~ 40 of 87

COcoNuTS @networksvox

Branching Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

少 Q (~ 41 of 87

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

IVM S

•9 a (≈ 42 of 87

Scaling laws

Finding γ :

And so we have:

$$\gamma = \ln\!R_n/\!\ln\!R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - {\rm ln}R_s/{\rm ln}R_n = 2 - 1/\gamma$$

Insert question from assignment 2 2

- Such connections between exponents are called scaling relations
- & Let's connect to one last relationship: Hack's law

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

References

•9 q (~ 43 of 87

COcoNuTS @networksvox

Branching Networks II

Reducing Horton Scaling relations

Models

Nutshell

Scaling laws

Hack's law: [6]

 $\ell \propto a^h$

- \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- & Use Horton laws to connect h to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

Observe:

 $T_k =$

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$

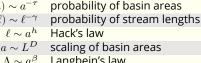
$$\propto \left(R_n^{\,\omega}\right)^{\ln\!R_s/\ln\!R_n} \, \propto \bar{a}_\omega^{\,\ln\!R_s/\ln\!R_n} \Rightarrow \boxed{\hbar = \ln\!R_s/\!\ln\!R_n}$$

COcoNuTS Branching Networks II

We mentioned there were a good number of 'laws': [2]

Polation: Name or description:

Relation.	Name of description.	on ⇔
		ınaga
$= T_1(R_T)^{k-1}$	Tokunaga's law	ıcing Horton
$\ell \sim L^d$	self-affinity of single channels	ng relations
$\omega/n_{\omega\pm1}=R_n$	Horton's law of stream numbers	uations
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths	hell
$a_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	rences
$s_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths	
$L_{\perp} \sim L^H$	scaling of basin widths	YL C
$P(a) \sim a^{-\tau}$	probability of basin areas	~ ZZ (Z



 $\Lambda \sim a^{\beta}$ Langbein's law variation of Langbein's law

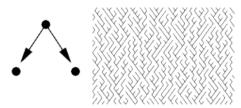
Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{}$
$n_{\omega}/n_{\omega+1} = R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	$R_a = R_n$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = \frac{R_s}{}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

Scheidegger's model

Directed random networks [11, 12]



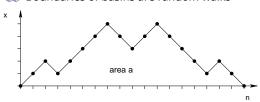
$$P(\searrow) = P(\swarrow) = 1/2$$

- Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models

Nutshell References

少 Q (~ 46 of 87

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Models Nutshell

References

少 Q (~ 47 of 87

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

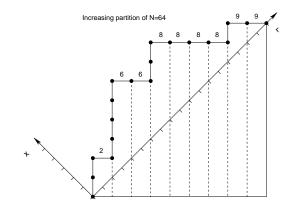
Nutshell

少 q (~ 48 of 87

Scheidegger's model

Scheidegger's model

and so $P(\ell) \propto \ell^{-3/2}$.



Prob for first return of a random walk in (1+1)

 $\mbox{\ensuremath{\&}}$ Typical area for a walk of length n is $\propto n^{3/2}$:

 $\Re R_n$ and R_ℓ have not been derived analytically.

 $P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$.

 $\ell \propto a^{2/3}$.

Amazon basin partitioning

dimensions (from CSYS/MATH 300):

 \Re Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

 \Re Note $\tau = 2 - h$ and $\gamma = 1/h$.

Equipartitioning reexamined:

Recall this story:

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

少 Q (~ 49 of 87

COcoNuTS @networksvox Branching Networks II

Reducing Horton

Scaling relations

Models

Nutshell

References

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

•9 q (~ 51 of 87

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

 $\mbox{\&}$ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \mathsf{const}$$

 $\Re P(a)$ overcounts basins within basins ...

🚓 while stream ordering separates basins ...

COcoNuTS Branching Networks II

Reducing Horton

Scaling relations Fluctuations

Models Nutshell References

夕 Q № 52 of 87

COcoNuTS @networksvox

Branching Networks II

Reducing Horton

Scaling relations

Models

References

A toy model—Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Flow is directed downwards

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

•9 q (~ 55 of 87

COcoNuTS @networksvox Branching Networks II

Reducing Horton

Scaling relations Fluctuations

Models Nutshell

References

少∢ (~ 56 of 87

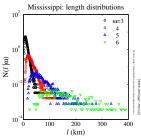
Hard neural reboot (sound matters):

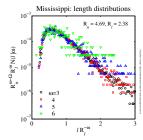
https://twitter.com/round_boys/status/951873765964681216

Generalizing Horton's laws

 $\label{eq:lambda} \tilde{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$

 $\label{eq:alpha} \hat{a}_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$





Scaling collapse works well for intermediate orders

All moments grow exponentially with order

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

Natural generalization to consider relationships between probability distributions

Yields rich and full description of branching network structure

See into the heart of randomness ...

COcoNuTS Branching Networks II

少 Q ← 53 of 87

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

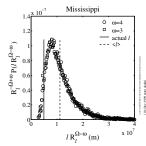
Fluctuations Models

Nutshell References

IVM S 少 q (~ 54 of 87

Generalizing Horton's laws

A How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

COcoNuTS Branching Networks II

> Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations

Models Nutshell

少 Q (~ 57 of 87

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in $10^3\,\rm km$):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_{ℓ}	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	\bar{a}_{Ω}	σ_a	$a_{\Omega}/\bar{a}_{\Omega}$	σ_a/\bar{a}_Ω
Mississippi	a_{Ω} 2.74	$ar{a}_{\Omega}$ 7.55	σ _a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon				427 42	
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74 0.89

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

୍ଞା <mark>।</mark> ୬୧୯ 58 of 87 stream length

Generalizing Horton's laws

Mississippi: length distributions

& Next level up: Main stream length distributions

must combine to give overall distribution for

(a) (b) N

 $\Re P(\ell) \sim \ell^{-\gamma}$

Another round of convolutions [3]

Interesting ...

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

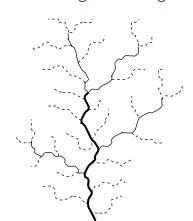
Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

୬९୯ 61 of 87

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\begin{array}{ll} \& & P(\ell_\omega) \text{ is a} \\ & \text{convolution of} \\ & \text{distributions for} \\ & \text{the } s_\omega \end{array}$

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell

ି । ଓ ୬୧୯ 59 of 87

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

References

IVM S

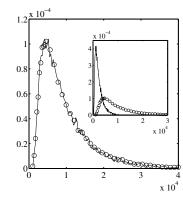
少 q (~ 60 of 87

Generalizing Horton's laws

l(km)

10

Number and area distributions for the Scheidegger model [3]



COcoNuTS @networksvox Branching Networks II

Tokunaga

Reducing Horton

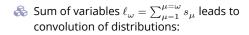
Scaling relations

Fluctuations

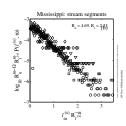
Fluctuations
Models
Nutshell
References

少 q C → 62 of 87

Generalizing Horton's laws



$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



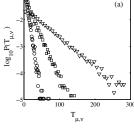
$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

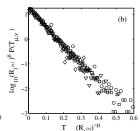
$$F(x)=e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

COCONUTS @networksyox Branching Networks II

Scheidegger:





 $\mbox{\&}$ Observe exponential distributions for $T_{\mu,\nu}$

 $\ref{eq:scaling}$ Scaling collapse works using R_s

COcoNuTS @networksvo Branching Networks II

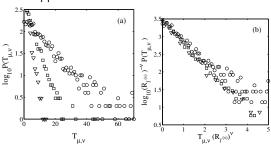
Horton ⇔ Tokunaga Reducing Horton Scaling relations

Models Nutshell

୬९℃ 63 of 87

Generalizing Tokunaga's law

Mississippi:



🙈 Same data collapse for Mississippi ...

COCONUTS @networksyox Generalizing Tokunaga's law Branching Networks II

- Follow streams segments down stream from their beginning
- $\ensuremath{\mathfrak{S}}$ Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ♣ ⇒ random spatial distribution of stream segments

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

Nutshell References

少Q (~ 67 of 87

Generalizing Tokunaga's law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- & Look at joint probability $P(s_{\mu}, T_{\mu, \nu})$.

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

IVM S

夕 Q № 64 of 87

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS

Branching Networks II

Horton ⇔ Tokunaga

◆9 < 0 65 of 87

Generalizing Tokunaga's law

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- $p_{\nu} = {
 m probability} \ {
 m of} \ {
 m absorbing} \ {
 m an order} \ {
 m order}$
- ${f \widehat{p}}_{\mu}={f probability}$ of an order μ stream terminating
- & Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Branching Networks II

Reducing Horton

Scaling relations Fluctuations

Models Nutshell

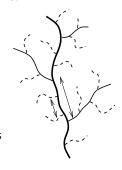
References

少 Q ← 68 of 87

Generalizing Tokunaga's law

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments



Scaling relations
Fluctuations
Models
Nutshell

Reducing Horton

夕 Q № 66 of 87

Generalizing Tokunaga's law

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- Set $(x,y)=(s_{\mu},T_{\mu,\nu})$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = N x^{-1/2} \left[F(y/x) \right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

> Fluctuations Models

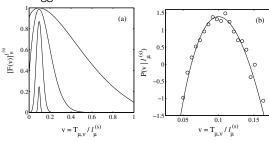
Nutshell References

少 Q ← 69 of 87

Generalizing Tokunaga's law

 $\mbox{\&}$ Checking form of $P(s_{\mu},T_{\mu,\nu})$ works:

Scheidegger:



COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

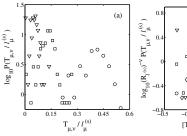
Fluctuations Models Nutshell References

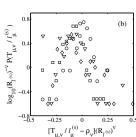
少 q (~ 70 of 87

Generalizing Tokunaga's law

& Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Mississippi:





COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models Nutshell

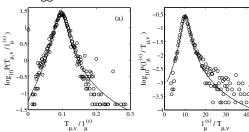
Nutshell References

少 Q (~ 73 of 87

Generalizing Tokunaga's law

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:



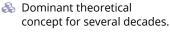
COcoNuTS @networksvox Branching Networks II

Tokunaga Reducing Horton Scaling relations

Fluctuations
Models
Nutshell
References

Models

Random subnetworks on a Bethe lattice [13]



- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on ...

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations

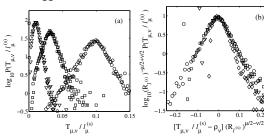
Models Nutshell References

少Q (~ 75 of 87

Generalizing Tokunaga's law

 $\mbox{\ensuremath{\&}}$ Checking form of $P(s_{\mu},T_{\mu,\nu})$ works:

Scheidegger:



COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

少 q (~ 72 of 87

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

COcoNuTS @networksvo. Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

少 Q (~ 76 of 87

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

& Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \ (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- & But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L^d_{\parallel}$ (stream self-affinity).

Nutshell

Branching networks II Key Points:

- A Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- $\ \, \ \, \ \, \ \,$ For scaling laws, only $h=\ln\!R_\ell/\ln\!R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

COcoNuTS @networksvo: Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

少 Q (~ 77 of 87

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell References

少 Q C→ 78 of 87

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Nutshell References

少 q (~ 79 of 87

References I

- [1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal networks. Water Resources Research, 30(12):3541–3543, 1994. pdf
- [3] P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Nutshell References

1YN | 8

少 Q (~ 80 of 87

References II

- [4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf ☑
- [5] N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics. Addison-Wesley, Reading, Massachusetts, 1992.
- [6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland. United States Geological Survey Professional

Paper, 294-B:45-97, 1957. pdf

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell References

少∢ № 81 of 87

COcoNuTS @networksvo Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models

Nutshell References

少 q (~ 82 of 87

References III

[7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

[8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984–986, 1996. pdf

[9] S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023–1029, 1995.

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967. pdf ☑

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

References V

[13] R. L. Shreve.

Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf 4

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection. Physcial Review Letters, 63(23):2563-2565, 1989. pdf 🗹

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110-3117, 1988.

References VI

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, 1989. pdf

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. Water Resources Research, 26(9):2243-4, 1990. pdf ☑

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1-19, 1966. pdf ☑

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models

Nutshell References

夕 Q ← 83 of 87

COcoNuTS @networksyox Branching Networks II

Reducing Horton Scaling relations Fluctuations Models References

少 Q (~ 84 of 87

COcoNuTS Branching Networks II

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

∮) q (~ 85 of 87

References VII

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1-27, 1978. pdf

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.

Dynamic reorganization of river basins. Science Magazine, 343(6175):1248765, 2014. pdf 🖸

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Addison-Wesley, Cambridge, MA, 1949. COcoNuTS Branching Networks II

Horton ⇔

Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

少 q (~ 86 of 87

COcoNuTS Branching Networks II

Reducing Horton Scaling relations

Fluctuations Models Nutshell

References

•ാ q (~ 87 of 87