Branching Networks II

Last updated: 2019/01/14, 23:14:28

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COCONUTS @networksvox

Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

29 1 of 87

These slides are brought to you by:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS @networksvox Branching

Horton ⇔ Tokunaga Reducing Horton

Networks II

Scaling relations

Models

Nutshell

References

99 € 3 of 87

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COCONUTS @networksvox Branching Networks II

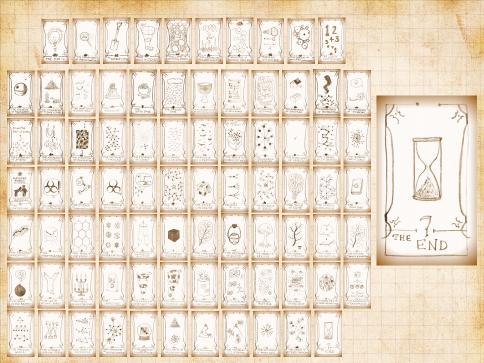
Horton A Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models

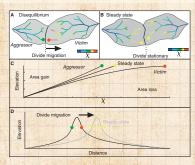
Nutshell



Piracy on the high χ 's:

"Dynamic Reorganization of River Basins"

Willett et al., Science Magazine, **343**, 1248765, 2014. [21]



$$\begin{split} \frac{\partial z(x,t)}{\partial t} &= U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n \\ z(x) &= z_{\rm b} + \left(\frac{U}{KA_0^m} \right)^{1/n} \chi \\ \chi &= \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')} \right)^{m/n} {\rm d}x' \end{split}$$

Piracy on the high χ 's:

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

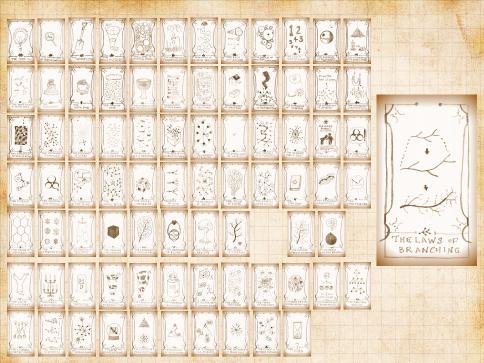
Models

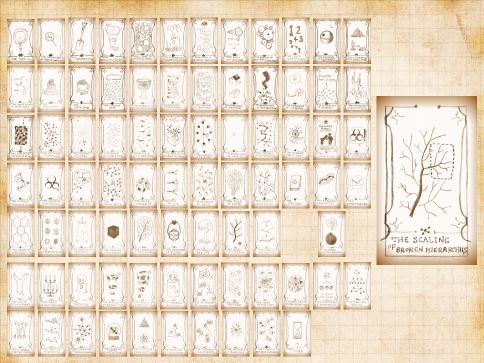
Nutshell

eferences

http://www.youtube.com/watch?v=FnroL1_-l2c?rel=0

More: How river networks move across a landscape ☑ (Science Daily)





Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.
 - Insert question from assignment 1 2
- To make a connection, clearest approach is to start with Tokunaga's law ...
- Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

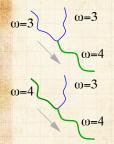
Models

Nutshell

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1}=R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- & Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1$...
 - $lackbox{1}{} 2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $lacktriangledown n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .

Insert question from assignment 1 4

Solution:

$$R_n = \frac{(2+R_T+T_1) \pm \sqrt{(2+R_T+T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

COCONUTS @networksvox Branching Networks II

Horton A Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Finding other Horton ratios

Connect Tokunaga to R_s

- $\red {\Bbb R}$ Now use uniform drainage density $ho_{
 m dd}$.
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \clubsuit For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega-1} T_k \right)$$

 \clubsuit Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \propto R_T^{\;\omega}$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

 $\red Recall \ R_\ell = R_s \ {
m so}$

$$R_{\ell} = R_s = R_T$$

And from before:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

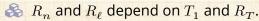
Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

Some observations:



 \triangle Seems that R_a must as well ...

Suggests Horton's laws must contain some redundancy

 \mathbb{R} We'll in fact see that $R_a = R_n$.

🙈 Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

COCONUTS @networksvox Branching Networks II

Tokunaga Reducing Horton

Horton &

Scaling relations

Fluctuations

Models

Horton and Tokunaga are happy

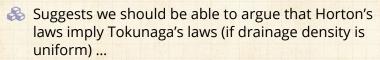
©networksvox Branching Networks II

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell,$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell / R_n.$$



Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(a) (b) Assume Horton's laws hold for number and length

- Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_{ℓ} , orders increment to $\omega+1$ and ω .
- Maintain drainage density by adding new order $\omega 1$ streams

@networksvox
Branching

Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

9 a @ 18 of 87

Horton and Tokunaga are friends

COcoNuTS @networksvox Branching Networks II

...and in detail:

- Must retain same drainage density.
- Add an extra $(R_{\ell}-1)$ first order streams for each original tributary.
- Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right).$$

 \Leftrightarrow For large ω , Tokunaga's law is the solution—let's check ...

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

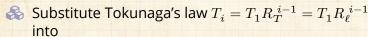
Fluctuations

Models

Nutshell

Horton and Tokunaga are friends

Just checking:



$$T_k = (R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$$

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{\ i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{\ k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{\ k-1}}{R_\ell - 1} = T_1 R_\ell^{k-1} \quad \text{...yep.} \end{split}$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

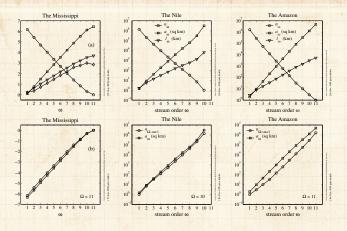
Fluctuations

riuctuations

Models

Nutshell

Horton's laws of area and number:



In bottom plots, stream number graph has been flipped vertically.

 \Leftrightarrow Highly suggestive that $R_n \equiv R_a \dots$

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

9 a @ 21 of 87

Measuring Horton ratios is tricky:

COcoNuTS @networksvox Branching

Horton ⇔ Tokunaga

Networks II

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

& How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

Reducing Horton's laws:

Rough first effort to show $R_n \equiv R_a$:

 $a_{\Omega} \propto \text{sum of all stream segment lengths in a order}$ Ω basin (assuming uniform drainage density)

So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega \bar{s}_\omega/\rho_{\rm dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Reducing Horton's laws:

Continued ...

$$\begin{split} & \mathbf{a_{\Omega}} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ & = \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \\ & \sim \frac{R_n^{\Omega-1}}{R_s} \bar{s}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow \end{split}$$

 \mathfrak{S}_{0} So, a_{Ω} is growing like R_{n}^{Ω} and therefore:

$$R_n \equiv R_a$$

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Reducing Horton's laws:

Not quite:

...But this only a rough argument as Horton's laws do not imply a strict hierarchy

Need to account for sidebranching.

Insert question from assignment 2 4

COCONUTS @networksvox Branching

Horton = Tokunaga

Networks II

Reducing Horton

Scaling relations

Fluctuations

Models

Equipartitioning:

Intriguing division of area:

- \Leftrightarrow Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- 🚳 Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$\begin{split} n_\omega \propto (R_n)^{-\omega} \\ \bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1} \end{split}$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

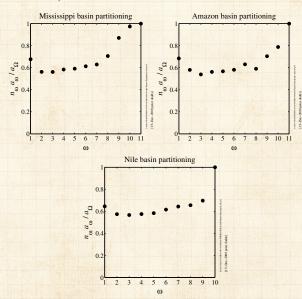
Fluctuations

Models

Nutshell

Equipartitioning:

Some examples:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

少 Q ← 29 of 87

Neural Reboot: Fwoompf

COcoNuTS @networksvox Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

http://www.youtube.com/watch?v=5mUs70SqD4o?rel=0 2

20 0f 87

COcoNuTS @networksvox Branching Networks II

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- 🙈 We have connected Tokunaga's and Horton's laws
- $\red {\Bbb S}$ Only two Horton laws are independent $(R_n=R_a)$
- \Leftrightarrow Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

@networksvox
Branching
Networks II

A little further ...

- Ignore stream ordering for the moment
- & Pick a random location on a branching network p.
- $\ref{eq:special}$ Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- $\ \, \& \ \,$ Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

Tokunaga Reducing Horton

Reducing Horton

Scaling relations

Models

Nutshell

Poforoncos

COcoNuTS
@networksvox
Branching
Networks II

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism ...

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- \Leftrightarrow Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- \clubsuit Let's work on $P(\ell)$...
- \Leftrightarrow Our first fudge: assume Horton's laws hold throughout a basin of order Ω .
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

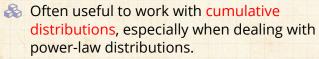
Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :



The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathrm{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

 \mathbb{R} The connection between P(x) and $P_{\searrow}(x)$ when P(x) has a power law tail is simple:

 $Arr Given P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ ,

$$\begin{split} P_{>}(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\text{max}}} P(\ell) \, \mathrm{d}\ell \\ &\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \, \mathrm{d}\ell}{\ell^{-(\gamma-1)}} \bigg|_{\ell=\ell_*}^{\ell_{\text{max}}} \\ &= \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \bigg|_{\ell=\ell_*}^{\ell_{\text{max}}} \\ &\propto \ell_*^{-(\gamma-1)} \quad \text{for } \ell_{\text{max}} \gg \ell_* \end{split}$$

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

20 € 36 of 87

Finding γ :

Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$

 $\red {\Bbb Assume}$ some spatial sampling resolution Δ

& Landscape is broken up into grid of $\Delta \times \Delta$ sites

 $\red {\$}$ Approximate $P_{>}(\ell_*)$ as

$$P_>(\ell_*) = \frac{N_>(\ell_*;\Delta)}{N_>(0;\Delta)}.$$

where $N_>(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

& Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$...

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

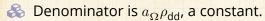
Nutshell

Finding γ :

 \mathfrak{S} Set $\ell_* = \overline{\ell}_{\omega}$, for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega + 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}{\sum_{\omega' = 1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\Delta}}$$

 \triangle Δ 's cancel



So ...using Horton's laws ...

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Finding γ :

We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- & Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega''=0$ to $\omega''=\Omega-\omega-1$ (equivalent to $\omega'=\Omega$ down to $\omega'=\omega+1$)

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

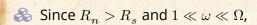
Scaling relations

Models

Nutshell

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$



$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n-1)/(a-1)$

COcoNuTS
@networksvox
Branching
Networks II

Tokunaga

Horton =

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} \\ = e^{-\omega \ln(R_n/R_s)}$$

 $ext{ } ext{Need to express right hand side in terms of } \bar{\ell}_{\omega}.$

 $\red {\Bbb S}$ Recall that ${ar \ell}_\omega \simeq {ar \ell}_1 R_\ell^{\,\omega-1}.$

$$\bar{\ell}_\omega \propto R_\ell^{\,\omega} = R_s^{\,\omega} = e^{\,\omega \ln R_s}$$

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Finding γ :

Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{\pmb{\omega}}^{} - \ln(R_n/R_s) / \ln R_s$$

$$=\bar{\ell}_{\omega}^{-(\ln\!R_n-\ln\!R_s)/\ln\!R_s}$$

$$=\bar{\ell}_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\bar{\ell}_{\omega}^{-\gamma+1}$$

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models Nutshell

Finding γ :

And so we have:

$$\gamma = {\rm ln} R_n / {\rm ln} R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$

Insert question from assignment 2 2

- Such connections between exponents are called scaling relations
- 🙈 Let's connect to one last relationship: Hack's law

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Hack's law: [6]

$$\ell \propto a^h$$

- \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- & Use Horton laws to connect h to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega}$$
 and $\bar{a}_{\omega} \propto R_n^{\,\omega}$

Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$

$$\propto (R_n^{\,\omega})^{{\rm ln}R_s/{\rm ln}R_n} \, \propto \bar{a}_\omega^{\,{\rm ln}R_s/{\rm ln}R_n} \Rightarrow \boxed{h = {\rm ln}R_s/{\rm ln}R_n}$$

COcoNuTS
@networksvox
Branching
Networks II

Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

We mentioned there were a good number of 'laws': [2]

COCONUTS
@networksvox
Branching
Networks II

Relation:

Name or description:

$T_k = T_1(R_T)^{k-1}$	Tokunaga's law
$\ell \sim L^d$	self-affinity of single channels
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths
$L_{\perp} \sim L^H$	scaling of basin widths
$P(a) \sim a^{-\tau}$	probability of basin areas
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths
$\ell \sim a^h$	Hack's law
$a \sim L^D$	scaling of basin areas
$\Lambda \sim a^{\beta}$	Langbein's law
$\lambda \sim L^{\varphi}$	variation of Langbein's law

on ⇔ inaga

Jcing Horton

ng relations uations

els hell

rences

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = \frac{R_s}{}$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	$R_a = R_n$
$\ell_{\omega+1}/\ell_{\omega} = R_{\ell}$	$R_{\ell} = R_s$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{arphi}$	$\varphi = d$

©networksvox

Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

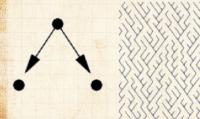
Nutshell

References

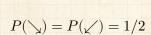
20 € 46 of 87

Scheidegger's model

Directed random networks [11, 12]



2



- Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

COcoNuTS
@networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Nutshell

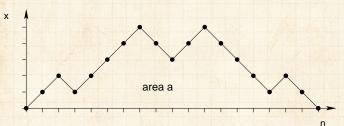
References

20 € 47 of 87

A toy model—Scheidegger's model

Random walk basins:

Boundaries of basins are random walks



COCONUTS @networksvox

Branching Networks II

Tokunaga

Horton =

Reducing Horton

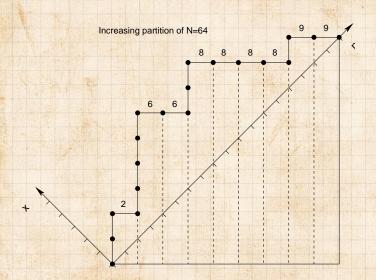
Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}.$$

and so $P(\ell) \propto \ell^{-3/2}$.

3 Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

 \Rightarrow Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.

Arr Note $\tau = 2 - h$ and $\gamma = 1/h$.

 $\Re R_n$ and R_ℓ have not been derived analytically.

COcoNuTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

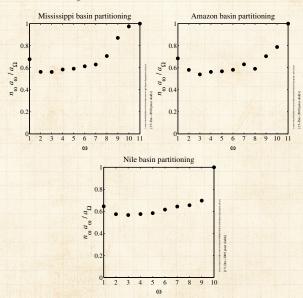
Scaling relations Fluctuations

Models

Nutshell

Equipartitioning reexamined:

Recall this story:



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

References

9 a € 51 of 87

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$
 ?

Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

Arr P(a) overcounts basins within basins ...

while stream ordering separates basins ...

COCONUTS @networksvox Branching Networks II

Tokunaga

Horton =

Reducing Horton

Scaling relations Fluctuations

Models

Nutshell

Hard neural reboot (sound matters):

ters):

Horton ⇔ Tokunaga

COcoNuTS
@networksvox
Branching
Networks II

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

https://twitter.com/round_boys/status/95187376596468121

Fluctuations

COcoNuTS @networksvox Branching Networks II

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness ...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

A toy model—Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Flow is directed downwards

COCONUTS @networksvox Branching Networks II

Tokunaga Reducing Horton

Horton =

Scaling relations

Fluctuations

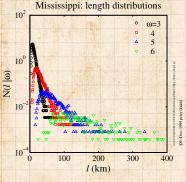
Models

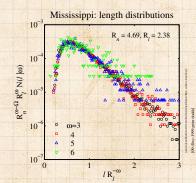
Nutshell

29 € 55 of 87

$$\hat{\mathcal{A}} \quad \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_n R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$\hat{\mathcal{A}} \quad \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$$





Scaling collapse works well for intermediate orders

All moments grow exponentially with order

COCONUTS @networksvox

Branching Networks II

Horton = Tokunaga

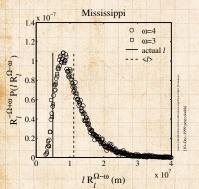
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

How well does overall basin fit internal pattern?



Actual length = 4920 km (at 1 km res)

Predicted Mean length = 11100 km

Predicted Std dev = 5600 km

Actual length/Mean length = 44 %

Okay.

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

Scaling relations

Fluctuations Models

Nutshell

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3 km):

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	$ar{a}_{\Omega}$	σ_a	$a_\Omega/ar{a}_\Omega$	$\sigma_a/ar{a}_\Omega$
Mississippi	a_{Ω} 2.74	$ar{a}_{\Omega}$ 7.55	σ _a 5.58	$a_\Omega/ar{a}_\Omega$ 0.36	$\sigma_a/ar{a}_\Omega$ 0.74
Mississippi Amazon				457 45	a, 22
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74
Amazon Nile	2.74 5.40 3.08	7.55 9.07 0.96	5.58 8.04 0.79	0.36 0.60 3.19	0.74 0.89 0.82

@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

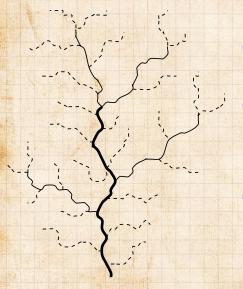
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\Re P(\ell_{\omega})$ is a convolution of distributions for the s_{ij}

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

Reducing Horton

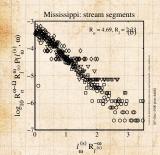
Scaling relations

Fluctuations Models

Nutshell

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

COCONUTS @networksvox Branching Networks II

Horton = Tokunaga

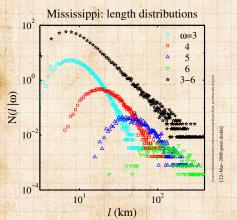
Reducing Horton

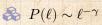
Scaling relations

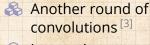
Fluctuations

Models Nutshell

Next level up: Main stream length distributions must combine to give overall distribution for stream length







Interesting ...

COcoNuTS @networksvox Branching

Horton ⇔ Tokunaga

Networks II

Reducing Horton

Scaling relations

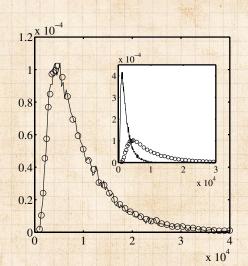
Fluctuations

Models

Nutshell

Number and area distributions for the Scheidegger model [3]

 $P(n_{1,6})$ versus $P(a_6)$ for a randomly selected $\omega=6$ basin.



COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

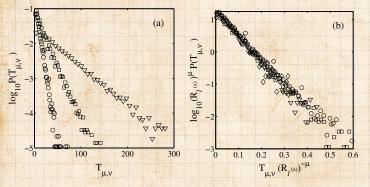
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Scheidegger:



8

Observe exponential distributions for $T_{\mu,\nu}$

 $\red {\Bbb S}$ Scaling collapse works using R_s

COcoNuTS @networksvox

Branching Networks II

Horton ⇔ Tokunaga

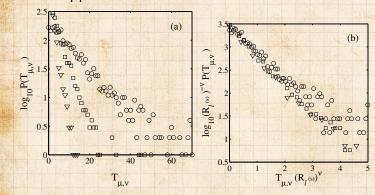
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Mississippi:



🙈 Same data collapse for Mississippi ...

COcoNuTS @networksvox

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$\boxed{P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})}$$

Exponentials arise from randomness.

& Look at joint probability $P(s_{\mu}, T_{\mu, \nu})$.

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

COcoNuTS @networksvox Branching Networks II

Network architecture:

Inter-tributary lengths exponentially distributed

Leads to random spatial distribution of stream segments

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

COCONUTS @networksvox Branching Networks II

Follow streams segments down stream from their beginning

Tokunaga Reducing Horton

 $\red{\$}$ Probability (or rate) of an order μ stream segment terminating is constant:

Scaling relations

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

Fluctuations

Probability decays exponentially with stream order

Models

Inter-tributary lengths exponentially distributed

Nutshell

⇒ random spatial distribution of stream segments.

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

where

- $p_{
 u} = \text{probability of absorbing an order } \nu \text{ side stream}$
- $\widehat{p}_{\mu}=$ probability of an order μ stream terminating
- $\red {\Bbb A}$ Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Nutshell

Now deal with this thing:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- 👶 Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

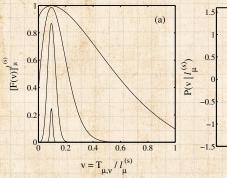
Scaling relations

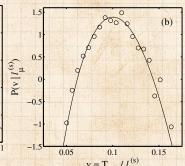
Fluctuations

Nutshell

A Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:





COcoNuTS @networksvox Branching

Networks II

Tokunaga Reducing Horton

Scaling relations

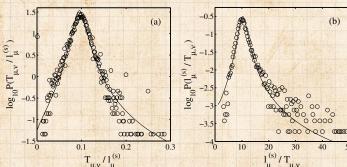
Fluctuations

Models

Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

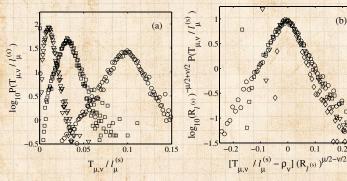
Fluctuations

Models

Nutshell

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:



COcoNuTS @networksvox

Branching Networks II

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

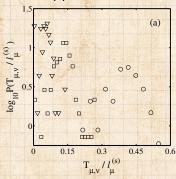
Models

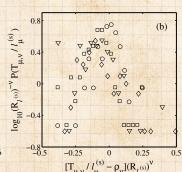
Nutshell

Generalizing Tokunaga's law

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Mississippi:





COcoNuTS @networksvox

Branching Networks II

Tokunaga

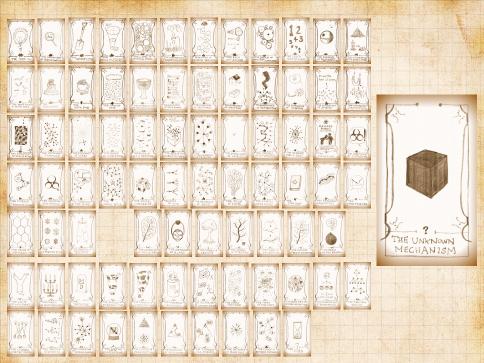
Reducing Horton

Scaling relations

Fluctuations

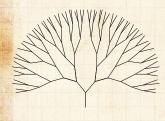
Models

Nutshell



Models

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- So let's move on ...

COcoNuTS @networksvox Branching

Branching Networks II

> Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

luctuations

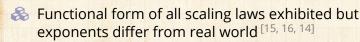
Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$



COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Scaling relation

Fluctuations

Models

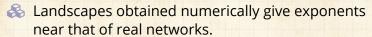
Nutshell

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

& Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \ (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^{\gamma}$$



But: numerical method used matters.

And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Theoretical networks

Summary of universality classes:

	and the second second second	
network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h\Rightarrow \ell \propto a^h$ (Hack's law). $d\Rightarrow \ell \propto L^d_\parallel$ (stream self-affinity).

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

Nutshell

Branching networks II Key Points:

- A Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- $\ensuremath{\mathfrak{S}}$ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- \Leftrightarrow For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References I

[1] H. de Vries, T. Becker, and B. Eckhardt.
Power law distribution of discharge in ideal networks.

Water Resources Research, 30(12):3541–3543, 1994. pdf 2

- [2] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf ✓
- [3] P. S. Dodds and D. H. Rothman.
 Geometry of river networks. II. Distributions of component size and number.
 Physical Review E, 63(1):016116, 2001. pdf

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References II

[4] P. S. Dodds and D. H. Rothman.

Geometry of river networks. III. Characterization of component connectivity.

Physical Review E, 63(1):016117, 2001. pdf

[5] N. Goldenfeld.

Lectures on Phase Transitions and the

Renormalization Group, volume 85 of Frontiers in

Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957. pdf

✓

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell References

少 Q ← 81 of 87

References III

[7] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. Geology, 21:591–594, 1993. pdf

- [8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar.
 Universality classes of optimal channel networks.
 Science, 272:984–986, 1996. pdf
- [9] S. D. Peckham. New results for self-similar trees with applications to river networks. Water Resources Research, 31(4):1023–1029, 1995.

COCONUTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and
Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967. pdf

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

References V

[13] R. L. Shreve.
Infinite topologically random channel networks.
Journal of Geology, 75:178–186, 1967. pdf

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, 1989.
pdf

[15] H. Takayasu, I. Nishikawa, and H. Tasaki.
Power-law mass distribution of aggregation systems with injection.
Physical Review A, 37(8):3110–3117, 1988.

COCONUTS
@networksvox
Branching
Networks II

Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References VI

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345-4347, 1989. pdf 2

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso.

Water Resources Research, 26(9):2243–4, 1990.
pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966, pdf

COcoNuTS
@networksvox
Branching
Networks II

Tokunaga
Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References VII

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.

Dynamic reorganization of river basins.

Science Magazine, 343(6175):1248765, 2014.

COcoNuTS
@networksvox
Branching
Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

9 9 € 86 of 87

References VIII

[22] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. COCONUTS @networksvox Branching Networks II

Horton = Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

