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These slides are also brought to you by:

Special Guest Executive Producer

 On Instagram at pratchett_the_cat
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Introduction
Branching networks are useful things:
 Fundamental to material supply and collection
 Supply: From one source to many sinks in 2- or

3-d.
 Collection: From many sources to one sink in 2- or

3-d.
 Typically observe hierarchical, recursive

self-similar structure

Examples:
 River networks (our focus)
 Cardiovascular networks
 Plants
 Evolutionary trees
 Organizations (only in theory …)
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Branching networks are everywhere …

http://hydrosheds.cr.usgs.gov/
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http://www.twitter.com/@peterdodds
http://www.uvm.edu/~cems/mathstat/
http://www.uvm.edu/~cems/complexsystems/
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Branching networks are everywhere …

http://en.wikipedia.org/wiki/Image:Applebox.JPG

COcoNuTS
@networksvox

Branching
Networks I

Introduction
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

.
.
.
.
.

.
11 of 56

An early thought piece: Extension and Integration
.■•■-'. .. _ _.,

to caves in the

-> gee an ampler

keep the source
came from the

vater was often
:w Anio conduit

lpure water by
i the Alsietina

i not distributed

the naval lake

r-i'ed aqueducts

drinking water.
! 39 ornamental

aths, like those

city also were

reservoirs was

lieves, and the

prietors having
to water their

naae a survey

nts.

and fountains

The healing
in Italy, espe-

te and Naples

er Mediterra-

sver limestone

eioped which

y varied and
laced also by

ve the spring

js festival in

of Italy and

ire abundant

_

TV Gteoarap .'oil Review

V _ l _ t l , | C j 2 i

[gf^^.rp/evi]
THE DEVELOPMENT OF DRAINAGE SYSTEMS-

A SYNOPTIC VIEW*

Waldo S. Glock

Carnegie Institution of Washington

PHYSICAL geography has a dual nature.' It includes a static
or passive phase mvoiving the detailed form of the land surfac_

and a dynamic or act.ve phase involving the agents and proc
esses mod.fymg those surfaces. The first of these phases is known
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“The Development of Drainage Systems: A
Synoptic View”
Waldo S. Glock,
The Geographical Review, 21, 475–482,
1931. [2]
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Abstraction,
Absorption.
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believed, an ideal scheme should follow. Little doubt can exist that
such an .deal scheme acts as an axis of variation about which natural

phenomena appear to group themselves.

Fig. 8—An ideal diagrammatic summary of the development or a drainage system g.ven for purposes
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The Stage of Integration

The processes responsible for integration may be designated as

follows: (1) abstraction, the loss of identity suffered bv a secondary-

stream at the hands of its primary; (2) absorption, the disappearance
ot a stream save immediately after rainfall; and (3) a sort of adjust

ment or aggression, the attempt made by the main stream to reach

the sea by the shortest route consistent with regional slope. The

reappearance of the skeletonized form out of the intricate plexus
of streams some time after maximum extension definitely marks

the existence of integration (Fig. 6). It constitutes the second and

nnal stage in the developmental history of a drainage system.

_ Abstraction refers to the elimination of a secondary stream by
its primary. As the stream swings from side to side it constantlv

I '

The sequential stages recognized in the evolution of a
drainage system are “extension” and “integration”; the
first, a stage of increasing complexity; the second, of
simplification.
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Shaw and Magnasco’s beautiful erosion
simulations:a

aUnpublished!
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Geomorphological networks

Definitions
 Drainage basin for a point 𝑝 is the complete region

of land from which overland flow drains through 𝑝.
 Definition most sensible for a point in a stream.
 Recursive structure: Basins contain basins and so

on.
 In principle, a drainage basin is defined at every

point on a landscape.
 On flat hillslopes, drainage basins are effectively

linear.
 We treat subsurface and surface flow as following

the gradient of the surface.
 Okay for large-scale networks …
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Basic basin quantities: 𝑎, 𝑙, 𝐿∥, 𝐿⟂:

a
L?0

L? Lk = L
a0 ll0Lk0

 𝑎 = drainage
basin area

 ℓ = length of
longest (main)
stream (which
may be fractal)

 𝐿 = 𝐿∥ =
longitudinal
length of basin

 𝐿 = 𝐿⟂ = width of
basin

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Image:Applebox.JPG
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/glock1931a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/glock1931a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/glock1931a.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
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Allometry

 Isometry:
dimensions scale
linearly with each
other.

 Allometry:
dimensions scale
nonlinearly.
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:
 ℓ ∝ 𝑎ℎ
 ℓ ∝ 𝐿𝑑
 Combine above:𝑎 ∝ 𝐿𝑑/ℎ ≡ 𝐿𝐷

‘Laws’
 Hack’s law (1957) [3]: ℓ ∝ 𝑎ℎ

reportedly 0.5 < ℎ < 0.7
 Scaling of main stream length with basin size:ℓ ∝ 𝐿𝑑∥

reportedly 1.0 < 𝑑 < 1.1
 Basin allometry: 𝐿∥ ∝ 𝑎ℎ/𝑑 ≡ 𝑎1/𝐷𝐷 < 2 → basins elongate.
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There are a few more ‘laws’: [1]

Relation: Name or description:𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 Tokunaga’s lawℓ ∼ 𝐿𝑑 self-affinity of single channels𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 Horton’s law of stream numbers̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ Horton’s law of main stream lengths̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 Horton’s law of basin areas̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 Horton’s law of stream segment lengths𝐿⟂ ∼ 𝐿𝐻 scaling of basin widths𝑃 (𝑎) ∼ 𝑎−𝜏 probability of basin areas𝑃(ℓ) ∼ ℓ−𝛾 probability of stream lengthsℓ ∼ 𝑎ℎ Hack’s law𝑎 ∼ 𝐿𝐷 scaling of basin areasΛ ∼ 𝑎𝛽 Langbein’s law𝜆 ∼ 𝐿𝜑 variation of Langbein’s law
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Reported parameter values: [1]

Parameter: Real networks:𝑅𝑛 3.0–5.0𝑅𝑎 3.0–6.0𝑅ℓ = 𝑅𝑇 1.5–3.0𝑇1 1.0–1.5𝑑 1.1 ± 0.01𝐷 1.8 ± 0.1ℎ 0.50–0.70𝜏 1.43 ± 0.05𝛾 1.8 ± 0.1𝐻 0.75–0.80𝛽 0.50–0.70𝜑 1.05 ± 0.05
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Kind of a mess …

Order of business:
1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out …

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
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Stream Ordering:

Method for describing network architecture:
 Introduced by Horton (1945) [4]

 Modified by Strahler (1957) [7]

 Term: Horton-Strahler Stream Ordering [5]

 Can be seen as iterative trimming of a network.
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Stream Ordering:

Some definitions:
 A channel head is a point in landscape where flow

becomes focused enough to form a stream.
 A source stream is defined as the stream that

reaches from a channel head to a junction with
another stream.

 Roughly analogous to capillary vessels.
 Use symbol 𝜔 = 1, 2, 3, … for stream order.
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Stream Ordering:

1. Label all source streams as order 𝜔 = 1 and
remove.

2. Label all new source streams as order 𝜔 = 2 and
remove.

3. Repeat until one stream is left (order = Ω)
4. Basin is said to be of the order of the last stream

removed.
5. Example above is a basin of order Ω = 3.
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Stream Ordering—A large example:
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Stream Ordering:
Another way to define ordering:
 As before, label all source streams as order 𝜔 = 1.
 Follow all labelled streams downstream
 Whenever two streams of the same order (𝜔)

meet, the resulting stream has order incremented
by 1 (𝜔 + 1).

 If streams of different
orders 𝜔1 and 𝜔2 meet, then
the resultant stream has
order equal to the largest of
the two.

 Simple rule:𝜔3 = max(𝜔1, 𝜔2) + 𝛿𝜔1,𝜔2
where 𝛿 is the Kronecker delta.
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Stream Ordering:

One problem:
 Resolution of data messes with ordering
 Micro-description changes (e.g., order of a basin

may increase)
 …but relationships based on ordering appear to

be robust to resolution changes.

Utility:
 Stream ordering helpfully discretizes a network.
 Goal: understand network architecture

http://www.uvm.edu
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Basic algorithm for extracting networks from
Digital Elevation Models (DEMs):

 Also:
/Users/dodds/work/rivers/1998dems/kevinlakewaster.c
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Stream Ordering:

Resultant definitions:
 A basin of order Ω has 𝑛𝜔 streams (or sub-basins)

of order 𝜔.
 𝑛𝜔 > 𝑛𝜔+1

 An order 𝜔 basin has area 𝑎𝜔.
 An order 𝜔 basin has a main stream length ℓ𝜔.
 An order 𝜔 basin has a stream segment length 𝑠𝜔

1. an order 𝜔 stream segment is only that part of the
stream which is actually of order 𝜔

2. an order 𝜔 stream segment runs from the basin
outlet up to the junction of two order 𝜔 − 1
streams

COcoNuTS
@networksvox

Branching
Networks I

Introduction
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

.
.
.
.
.

.
37 of 56

Horton’s laws
Self-similarity of river networks
 First quantified by Horton (1945) [4], expanded by

Schumm (1956) [6]

Three laws:
 Horton’s law of stream numbers:𝑛𝜔/𝑛𝜔+1 = 𝑅𝑛 > 1
 Horton’s law of stream lengths:̄ℓ𝜔+1/ ̄ℓ𝜔 = 𝑅ℓ > 1
 Horton’s law of basin areas:̄𝑎𝜔+1/ ̄𝑎𝜔 = 𝑅𝑎 > 1
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Horton’s laws
Horton’s Ratios:
 So …laws are defined by three ratios:𝑅𝑛, 𝑅ℓ, and 𝑅𝑎.
 Horton’s laws describe exponential decay or

growth: 𝑛𝜔 = 𝑛𝜔−1/𝑅𝑛= 𝑛𝜔−2/𝑅 2𝑛⋮= 𝑛1/𝑅 𝜔−1𝑛= 𝑛1𝑒−(𝜔−1)ln𝑅𝑛
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Horton’s laws

Similar story for area and length:
 ̄𝑎𝜔 = ̄𝑎1𝑒(𝜔−1)ln𝑅𝑎
 ̄ℓ𝜔 = ̄ℓ1𝑒(𝜔−1)ln𝑅ℓ
 As stream order increases, number drops and

area and length increase.
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Horton’s laws

A few more things:
 Horton’s laws are laws of averages.
 Averaging for number is across basins.
 Averaging for stream lengths and areas is within

basins.
 Horton’s ratios go a long way to defining a

branching network …
 But we need one other piece of information …
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Horton’s laws

A bonus law:
 Horton’s law of stream segment lengths:̄𝑠𝜔+1/ ̄𝑠𝜔 = 𝑅𝑠 > 1
 Can show that 𝑅𝑠 = 𝑅ℓ.
 Insert question from assignment 1
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Horton’s laws in the real world:
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Horton’s laws-at-large

Blood networks:
 Horton’s laws hold for sections of cardiovascular

networks
 Measuring such networks is tricky and messy …
 Vessel diameters obey an analogous Horton’s law.
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Data from real blood networks

Network 𝑅𝑛 𝑅𝑟 𝑅ℓ − ln𝑅𝑟
ln𝑅𝑛 − ln𝑅ℓ

ln𝑅𝑛 𝛼
West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) [11] 3.67 1.71 1.78 0.41 0.44 0.79

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303/docs/{2019-01UVM-303}assignment1.pdf
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds


COcoNuTS
@networksvox

Branching
Networks I

Introduction
Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

.
.
.
.
.

.
45 of 56

Horton’s laws

Observations:
 Horton’s ratios vary:𝑅𝑛 3.0–5.0𝑅𝑎 3.0–6.0𝑅ℓ 1.5–3.0
 No accepted explanation for these values.
 Horton’s laws tell us how quantities vary from

level to level …
 …but they don’t explain how networks are

structured.
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Tokunaga’s law

Delving deeper into network architecture:
 Tokunaga (1968) identified a clearer picture of

network structure [8, 9, 10]

 As per Horton-Strahler, use stream ordering.
 Focus: describe how streams of different orders

connect to each other.
 Tokunaga’s law is also a law of averages.
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Network Architecture

Definition:
 𝑇𝜇,𝜈 = the average number of side streams of

order 𝜈 that enter as tributaries to streams of
order 𝜇

 𝜇, 𝜈 = 1, 2, 3, …
 𝜇 ≥ 𝜈 + 1
 Recall each stream segment of order 𝜇 is

‘generated’ by two streams of order 𝜇 − 1
 These generating streams are not considered side

streams.
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Network Architecture
Tokunaga’s law
 Property 1: Scale independence—depends only

on difference between orders:𝑇𝜇,𝜈 = 𝑇𝜇−𝜈
 Property 2: Number of side streams grows

exponentially with difference in orders:𝑇𝜇,𝜈 = 𝑇1(𝑅𝑇 )𝜇−𝜈−1
 We usually write Tokunaga’s law as:𝑇𝑘 = 𝑇1(𝑅𝑇 )𝑘−1 where 𝑅𝑇 ≃ 2

.
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Tokunaga’s law—an example:

𝑇1 ≃ 2𝑅𝑇 ≃ 4
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The Mississippi

A Tokunaga graph:
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Nutshell:
 Branching networks show remarkable self-similarity

over many scales.

 There are many interrelated scaling laws.

 Horton-Strahler Stream ordering gives one useful way
of getting at the architecture of branching networks.

 Horton’s laws reveal self-similarity.

 Horton’s laws can be misinterpreted as suggesting a
pure hierarchy.

 Tokunaga’s laws neatly describe network architecture.

 Branching networks exhibit a mixed hierarchical
structure.

 Horton and Tokunaga can be connected analytically.

 Surprisingly:𝑅𝑛 = (2 + 𝑅𝑇 + 𝑇1) + √(2 + 𝑅𝑇 + 𝑇1)2 − 8𝑅𝑇2
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Crafting landscapes—Far Lands or Bust:
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