Branching Networks I

Last updated: 2019/01/14, 23:14:28

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2019

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS @networksvox

Branching Networks I

troduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

tatoricii

References

9 a @ 1 of 56

These slides are brought to you by:

COcoNuTS @networksvox

Branching Networks I

ntroduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

References

9a @ 2 of 56

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat ☑

COcoNuTS @networksvox

Branching Networks I

ntroduction

Definitions

Allometry

Laws

Stream Ordering
Horton's Laws
Tokunaga's Law

Nutshell

References

9 a @ 3 of 56

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

COCONUTS

@networksvox

Branching
Networks I

ntroduction

Definitions
Allometry

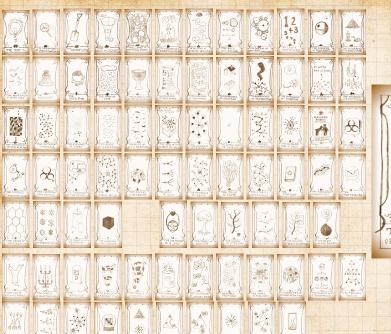
Stream Ordering

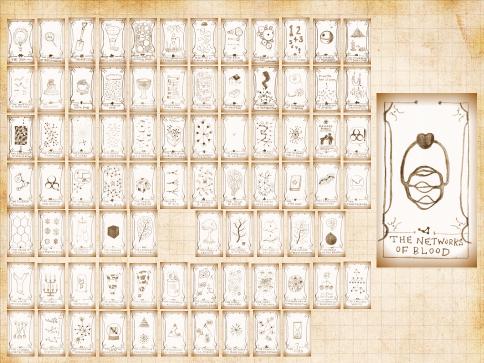
Horton's Laws Tokunaga's Law

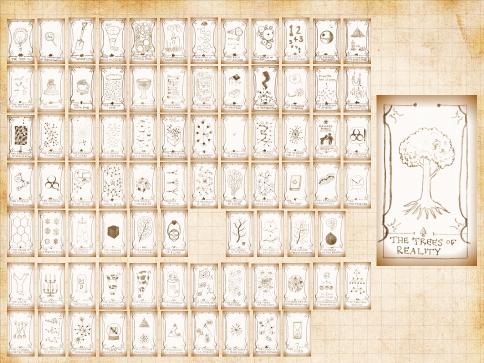
Laws

Nutshell

Vatsiicii







Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory ...)

COCONUTS @networksvox Branching Networks I

Introduction

Stream Ordering

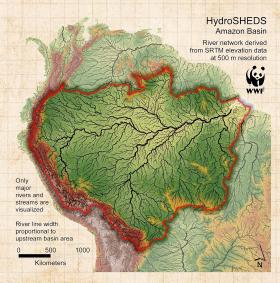
Horton's Laws Tokunaga's Law

Nutshell

References

20 8 of 56

Branching networks are everywhere ...



http://hydrosheds.cr.usgs.gov/

COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPGC

COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

20 0 10 of 56

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View"

Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. [2]

Initiation, Elongation

Elaboration, Piracy.

Abstraction, Absorption.

COcoNuTS
@networksvox
Branching
Networks I

Introduction

Allometry

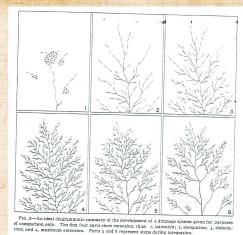
Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

References

9 a @ 11 of 56



The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

少 Q № 12 of 56

Shaw and Magnasco's beautiful erosion simulations:a

^aUnpublished!

COCONUTS @networksvox

Branching Networks I

Introduction

Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Geomorphological networks

Definitions

Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

In principle, a drainage basin is defined at every point on a landscape.

On flat hillslopes, drainage basins are effectively linear.

We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks ...

COcoNuTS
@networksvox
Branching
Networks I

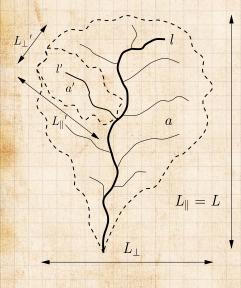
ntroduction Definitions Allometry

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

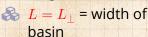
Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :



 <u>a</u> = drainage basin area

 ℓ = length of longest (main) stream (which may be fractal)

 $\&L=L_{\parallel}=$ **longitudinal** length of basin



COCONUTS @networksvox

Branching Networks I

Definitions Allometry Laws

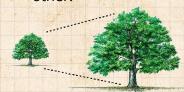
Stream Ordering

Horton's Laws Tokunaga's Law

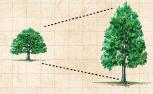
Nutshell

Allometry

dimensions scale linearly with each other.



Allometry: dimensions scale nonlinearly.



COcoNuTS @networksvox

Branching Networks I

Introduction Definitions

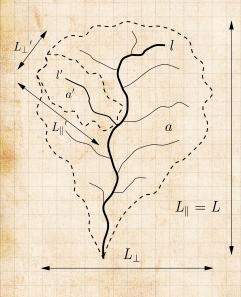
Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Basin allometry



Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

Combine above:

$$a \propto L^{d/h} \equiv L^D$$

COcoNuTS @networksvox

Branching Networks I

Definitions

Allometry

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

🚷 Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

There are a few more 'laws': [1]

COcoNuTS @networksvox Branching Networks I

duction

am Ordering on's Laws

Relation: Name or description:

$T_k = T_1(R_T)^{k-1}$	Tokunaga's law
$\ell \sim L^d$	self-affinity of single channels
$n_{\omega}/n_{\omega+1} = R_n$	Horton's law of stream numbers
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths
$L_{\perp} \sim L^H$	scaling of basin widths
$P(a) \sim a^{-\tau}$	probability of basin areas
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths
$\ell \sim a^h$	Hack's law
$a \sim L^D$	scaling of basin areas
$\Lambda \sim a^{\beta}$	Langbein's law
$\lambda \sim L^{\varphi}$	variation of Langbein's law

inaga's Law ihell rences

UVN S

Reported parameter values: [1]

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
φ	1.05 ± 0.05

COcoNuTS @networksvox Branching

Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

IVULSTICII

Kind of a mess ...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out ...

COcoNuTS
@networksvox
Branching
Networks I

ntroduction

Definitions

Allometry

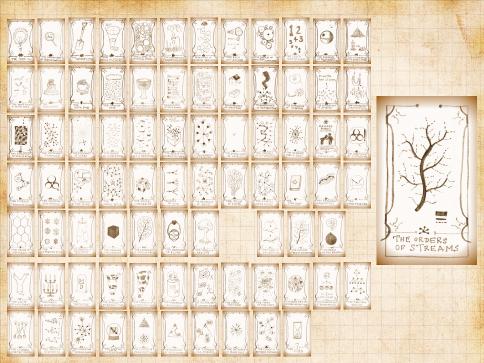
Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Trucsiteii



Method for describing network architecture:

Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

Term: Horton-Strahler Stream Ordering [5]

Can be seen as iterative trimming of a network.

COcoNuTS
@networksvox

Branching Networks I

efinitions
Illometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

COCONUTS @networksvox Branching Networks I

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- \Leftrightarrow Use symbol $\omega = 1, 2, 3, ...$ for stream order.

ntroduction

Definitions

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

COcoNuTS @networksvox

Branching Networks I

ntroduction
Definitions
Allometry

Stream Ordering

Horton's Laws

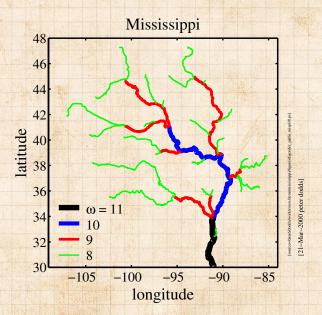
Tokunaga's Law Nutshell

ivacsiicii

References

少 a ← 28 of 56

Stream Ordering—A large example:



COcoNuTS @networksvox

Branching Networks I

Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

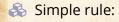
Nutshell

References

少 a ○ 29 of 56

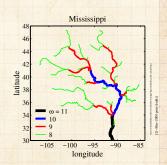
Another way to define ordering:

- \clubsuit As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).
- If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.



$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



COcoNuTS @networksvox Branching

Branching Networks I

> ntroduction Definitions

Definitions Allometry Laws

Stream Ordering

Tokunaga's Law

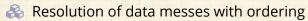
Nutshell

References

少 Q ← 30 of 56

COcoNuTS
@networksvox
Branching
Networks I

One problem:



Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes. finitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

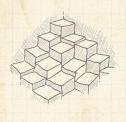
References

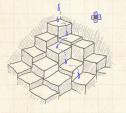
Utility:

Stream ordering helpfully discretizes a network.

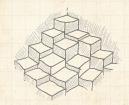
Goal: understand network architecture

Basic algorithm for extracting networks from Digital Elevation Models (DEMs):









COCONUTS @networksvox Branching

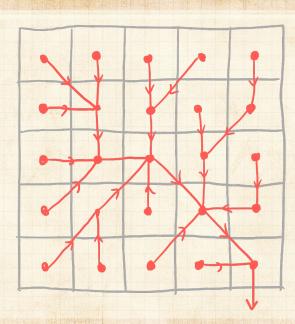
Networks I

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions Allometry Laws

Stream Ordering

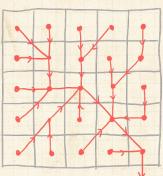
Horton's Laws

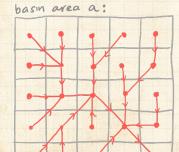
Tokunaga's Law

Nutshell

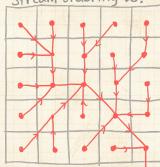
References

9 a @ 33 of 56

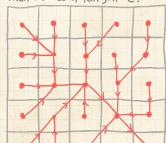




stream ordering w:



main stream length L:



COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

少 Q ← 34 of 56

COcoNuTS @networksvox Branching Networks I

Resultant definitions:

- & A basin of order Ω has $n_ω$ streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- \mathfrak{S} An order ω basin has area a_{ω} .
- $\red {\Bbb A}$ An order ω basin has a main stream length ℓ_{ω} .
- $ext{ } ext{ } ext{An order } \omega$ basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

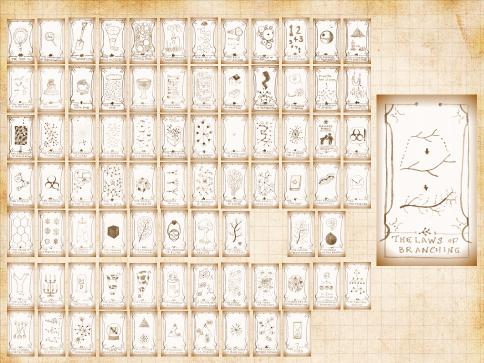
definitions Illometry aws

Stream Ordering

Tokunaga's Law

Nutshell

i de si de la constanta de la



Horton's laws

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell} > 1$$

Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a > 1$$

COCONUTS @networksvox

Branching Networks I

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Horton's laws

Horton's Ratios:

So ...laws are defined by three ratios:

$$R_n$$
, R_ℓ , and R_a .

Horton's laws describe exponential decay or growth:

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^2 \\ &\vdots \\ &= n_1/R_n^{\omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

COCONUTS @networksvox

Branching Networks I

Allometry

Stream Ordering

Horton's Laws Tokunaga's Law

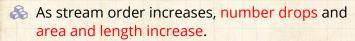
Nutshell

Horton's laws

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$



COcoNuTS
@networksvox
Branching
Networks I

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Horton's laws

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...
- But we need one other piece of information ...

COcoNuTS

@networksvox

Branching

Branching Networks I

ntroduction Definitions

Definition Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

 \mathfrak{S} Can show that $R_s = R_{\ell}$.

Insert question from assignment 1

COCONUTS @networksvox

Branching Networks I

Allometry

Stream Ordering

Horton's Laws

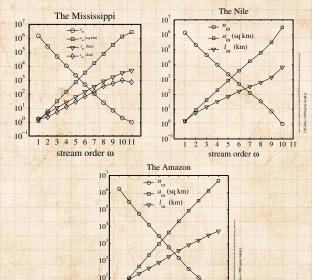
Tokunaga's Law

Nutshell

Laws

Horton's laws in the real world:

10



9 10 11

stream order ω

COcoNuTS @networksvox

Branching Networks I

ntroduction

Definitions
Allometry

Stream Ordering

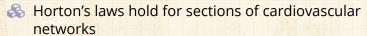
Horton's Laws
Tokunaga's Law

Nutshell

Laws

Horton's laws-at-large

Blood networks:



🙈 Measuring such networks is tricky and messy ...

🙈 Vessel diameters obey an analogous Horton's law.

COcoNuTS

@networksvox

Branching Networks I

Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

Network	R_n	R_r	R_{ℓ}	$-\frac{\ln R_r}{\ln R_n}$	$-rac{\ln\!R_\ell}{\ln\!R_n}$	α
				vn	···-•n	
West et al.	_	-	_	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) ^[11]	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

COcoNuTS @networksvox Branching Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Horton's laws

Observations:

A Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

No accepted explanation for these values.

Horton's laws tell us how quantities vary from level to level ...

...but they don't explain how networks are structured. COcoNuTS
@networksvox
Branching
Networks I

ntroduction

Definition: Allometry Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Tokunaga's law

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Secusion Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

COcoNuTS @networksvox

Branching Networks I

> Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Network Architecture

COcoNuTS @networksvox Branching Networks I

Definition:

- $T_{\mu,\nu}=$ the average number of side streams of order ν that enter as tributaries to streams of order μ

- Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$
- These generating streams are not considered side streams.

ntroduction

Definition Allometry Laws

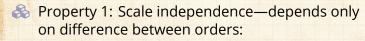
Stream Ordering

Tokunaga's Law

Nutshell

Network Architecture

Tokunaga's law



$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

We usually write Tokunaga's law as:

$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

COcoNuTS @networksvox

Branching Networks I

ntroduction

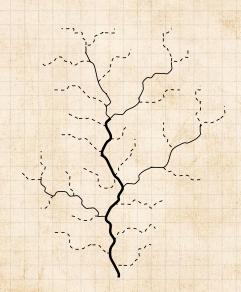
Definitions Ulometry aws

Stream Ordering

Tokunaga's Law

Tokunaga's law—an example:

 $T_1 \simeq 2$ $R_T \simeq 4$



COcoNuTS @networksvox

Branching Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

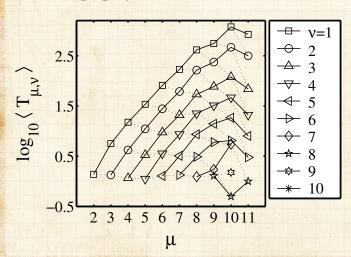
Horton's Laws

Tokunaga's Law

Nutshell References

The Mississippi

A Tokunaga graph:



COcoNuTS @networksvox

Branching Networks I

Introduction Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Nutshell:

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- & Horton and Tokunaga can be connected analytically.
- Surprisingly:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

COcoNuTS
@networksvox
Branching
Networks I

ntroduction

Definition Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

9 a ← 51 of 56

Crafting landscapes—Far Lands or Bust ☑:

@networksvox

Branching Networks I

Introduction

Definition Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References I

[1] P. S. Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865–4877, 1999. pdf

[2] W. S. Glock.

The development of drainage systems: A synoptic view.

The Geographical Review, 21:475–482, 1931. pdf 2

[3] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

COcoNuTS
@networksvox
Branching
Networks I

ntroduction Definitions

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

References II

[4] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf 2

[5] I. Rodríguez-Iturbe and A. Rinaldo.
Fractal River Basins: Chance and
Self-Organization.
Cambridge University Press, Cambrigde, UK,
1997.

[6] S. A. Schumm.
Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
Bulletin of the Geological Society of America, 67:597-646, 1956. pdf

COcoNuTS
@networksvox
Branching
Networks I

troduction efinitions llometry

Stream Ordering

Horton's Laws

Tokunaga's Law

rvacsiicii

References

2 0 0 54 of 56

References III

[7] A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography.

Bullotin of the Goological Society of America.

Bulletin of the Geological Society of America, 63:1117–1142, 1952.

[8] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf

[9] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf COCONUTS
@networksvox
Branching
Networks I

efinitions llometry aws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

References

9 a € 55 of 56

References IV

COcoNuTS @networksvox Branching Networks I

[10] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf Definitions Allometry

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

racondi

