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Basic idea:

Random networks with arbitrary degree
distributions cover much territory but do not
represent all networks.

Moving away from pure random networks was a
key first step.

We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
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connect to like nodes, and the network breaks into
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Requires e, = 0if u # v and ZH e =1
2. Uncorrelated networks (as we have studied so far)
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where || - ||; is the 1-norm = sum of a matrix’s
entries.

TrE is the fraction of edges that are within groups.
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1 —||E?||; is a normalization factor so 7., = 1.
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Now consider nodes defined by a scalar integer
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e, = Pr(arandomly chosen edge connects a node
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a; and b, are defined as before.
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Examples: age in years, height in inches, number
of friends, ...
e, = Pr(arandomly chosen edge connects a node
with value j to a node with value k).
a; and b, are defined as before.
Can now measure correlations between nodes

based on this scalar quantity using standard
Pearson correlation coefficient (3"
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Now consider nodes defined by a scalar integer Mixing

quantity.

Examples: age in years, height in inches, number Sk

Of friends General mixing
o Assortativity by

e;r = Pr(arandomly chosen edge connects a node  deiee

with value j to a node with value k). Sqpresion =

a; and b, are defined as before. Mgl )

Can now measure correlations between nodes tifereqices

based on this scalar quantity using standard
Pearson correlation coefficient (3"

This is the observed normalized deviation from
randomness in the product jk.
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Natural correlation is between the degrees of
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Now define e, with a slight twist:

an edge connects a degree j + 1 node
to a degree k + 1 node
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Now define e, with a slight twist: General mixing
Assortativity by
an edge connects a degree j + 1 node )

a1 ( to a degree k + 1 node

_pef @D edge runs between a node of in-degree j '\ e
i and a node of out-degree k
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- Degree-degree correlations Grcnitkis

Assortativity and

I i Mixing
Natural correlation is between the degrees of
connected nodes. g
Now define e, with a slight twist: General mixing

Assortativity by

an edge connects a degree j + 1 node dcres
2 L Pr Contagion
! to a degree k + 1 node ,

an edge runs between a node of in-degree j '\ e
=PF
and a node of out-degree k

Useful for calculations (as per R;)
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- Degree-degree correlations Grcnitkis

Assortativity and
I i Mixing
Natural correlation is between the degrees of
connected nodes.

Definition

Now define e, with a slight twist: General mixing
Assortativity by

an edge connects a degree j + 1 node dcres
€= PF
3 to a degree k + 1 node

Spreading condition

Expected size

an edge runs between a node of in-degree j '\ e
=PF
and a node of out-degree k

Useful for calculations (as per R;)
Important: Must separately define P, as the {e;; } ) CoconuTs
contain no information about isolated nodes. (| e
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COcoNuTS

- Degree-degree correlations Grcnitkis

Assortativity and
I i Mixing
Natural correlation is between the degrees of
connected nodes. st
Now define e, with a slight twist: General mixing
Assortativity by
an edge connects a degree j + 1 node
J to a degree k + 1 node

an edge runs between a node of in-degree j \"eferenes
=PF
and a node of out-degree k

Useful for calculations (as per R;)
Important: Must separately define P, as the {e;;} ) CoconuTs
contain no information about isolated nodes. (| e

Directed networks still fine but we will assume
from here on thate;; = e ;.
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Degree-degree correlations

Notation reconciliation for undirected networks:

Zj k jk<ejk: = Rij)

D)
O

where, as before, R,, is the probability that a
randomly chosen edge leads to a node of degree
k+1, and

2

k=D IR~
i

D iR,
J
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Degree-degree correlations GrenvatkoR
Assortativity and
Mixing

Definition

General mixing

5 5 A ivity b
Remove edge i and recompute 7 to obtain ;. Rkl
Repeat for all edges and compute using the Efjfji‘fjm
jackknife method (2'%!

References
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Degree-degree correlations Grcnitkis

Assortativity and
Mixing

Definition
General mixing

. : o
Remove edge i and recompute r to obtain r,. 2R

Repeat for all edges and compute using the
jackknife method ('3

References

Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...
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Measurements of degree-degree

correlations

Group Network Type Size n Assortativity r  Error o,

a Physics coauthorship undirected 52909 0.363 0.002
a Biology coauthorship undirected 1 520251 0.127 0.0004

b Mathematics coauthorship  undirected 253339 0.120 0.002
Social c Film actor collaborations undirected 449913 0.208 0.0002

d Company directors undirected 7673 0.276 0.004

e Student relationships undirected 573 —=0.029 0.037

f; Email address books directed 16 881 0.092 0.004

g Power grid undirected 4941 —0.003 0.013

Technological h Internet undirected 10 697 —0.189 0.002
i World Wide Web directed 269 504 —0.067 0.0002

j Software dependencies directed 3162 —-0.016 0.020

k Protein interactions undirected 231415 —0.156 0.010

1 Metabolic network undirected 765 —0.240 0.007

Biological m Neural network directed 307 —0.226 0016

n Marine food web directed 134 —0.263 0.037

o Freshwater food web directed 92 —0.326 0.031

Social networks tend to be assortative (homophily)

Technological and biological networks tend to be

disassortative
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- Outline

Contagion
Spreading condition
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- Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
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 Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
As before, by allowing that a node of degree & is

activated by one neighbor with probability B,
we can handle various problems:
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 Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.
As before, by allowing that a node of degree & is

activated by one neighbor with probability B,
we can handle various problems:

1. find the giant component size.
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 Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.

As before, by allowing that a node of degree & is
activated by one neighbor with probability B,
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
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 Spreading on degree-correlated networks

Next: Generalize our work for random networks
to degree-correlated networks.

As before, by allowing that a node of degree & is
activated by one neighbor with probability B,
we can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for
simple disease models.
3. find the probability of spreading for simple
threshold models.
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Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.
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 Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability By .
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 Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability By .

Define B, = [By,]-
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 Spreading on degree-correlated networks

Goal: Find f,, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

Repeat: a node of degree k is in the game with
probability By .

Define B, = [By,]-

Plan: Find the generating function

Fj(l'% B1> = ZZO:O fn,jxn'
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Assortativity and

Mixing
Recursive relationship:
Definition
el General mixi
e Sk j = eneral mixing
FJ(:U’ Bl) Al Z R. <1 Bk+1a1) Assortativity by
== | D Y degree
o0 ejk: =5 k Contagion
+2 ) 2By [FulasBy)]
k—0-1=5) «
References
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Recursive relationship:

o0
= €k
F(x; By) —0 E i (1_Bk+1,1>
k=0 Rj

o= €k e il
+xkz::0R—jBk+1,1 [E B

First term = Pr (that the first node we reach is not
in the game).
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 Spreading on degree-correlated networks

Recursive relationship:

oo
e.
Fy(z;B,) =2°> 21— B,y 1)
k=0 Rj

o= €k e il
+x};)?j3k+l,l [E B

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).

COcoNuTS
@networksvex

Assortativity and
Mixing

Definition
General mixing

Assortativity by
degree

References

R CocoNuTs

A 230f40


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Spreading on degree-correlated networks

Recursive relationship:

Fiz:B 0% Gt
i\ 1)—1’ kZ::ORiJ

o= €k A
+$I;)R7j3k+l,l [E B

(1—Bgy1,1)

First term = Pr (that the first node we reach is not
in the game).

Second term involves Pr (we hit an active node
which has k outgoing edges).
Next: find average size of active components

reached by following a link from a degree j + 1
node = F/(1; B, ).
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- Spreading on degree-correlated networks

Differentiate F(x; B,), setz = 1, and rearrange.
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Differentiate F(x; B,), setz = 1, and rearrange.

We use F,,(1; B,) = 1 which is true when no giant
component exists.
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Assortativity and
Mixing

Differentiate F(x; B,), setz = 1, and rearrange. Definition

We use F,(1; B;) = 1 which is true when no giant Ml

Assortativity by

component exists. We find: degree
Contagion
/ i3 S i | / s S rigg
RJF]<17 Bl) e Z ejkBk+1,1+Z kejkBk:+1,1Fk(17 Bl)'“\‘“‘
k=0 k=0 References
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 Spreading on degree-correlated networks

Differentiate F(x; B,), setz = 1, and rearrange.

We use F,,(1; B,) = 1 which is true when no giant
component exists. We find:

R,F/(1:B,) = ZengkJrl 1+Z ke Bri1 1 Fr(1;By).o

Rearranging and introducing a sneaky 4,

o>
Z (0;4Rg — kBy11 1€5%) Fr(1;By) = Z €5k Brt1,1-
=5
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Spreading on degree-correlated networks

In matrix form, we have
AE,31F/(1§B1) = EB,
where

A A] S R kD e.
[ E,B; G4, ket Jjk Yk k+1,1%5k>

/(1. D /
[F(1; By)] o = B)),
[E]j+1,k+1 = e, and [ 1] Bri1,1
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 Spreading on degree-correlated networks
So, in principle at least:
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Spreading on degree-correlated networks
So, in principle at least:

F/(l; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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 Spreading on degree-correlated networks
So, in principle at least:

F/<1; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.
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 Spreading on degree-correlated networks

So, in principle at least:

F/<1; Bl) = AE,]-Bl EBl'
Now: as F’(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

Right at the transition, the average component
size explodes.

Exploding inverses of matrices occur when their
determinants are 0.
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Assortativity and

. . . Mixing
So, in principle at least:
1. D = =1 = Definition
4 <1, Bl) - AE7B1 EBl General mixing
A % Assortativity by
Now: as F’(1; B,), the average size of an active G i
component reached along an edge, increases, we e
move towards a transition to a giant component. o i e
Right at the transition, the average component References

size explodes.

Exploding inverses of matrices occur when their
determinants are 0.

The condition is therefore: =7 CoconuTs

detAE’B,I =
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Assortativity and

General condition details: Mixing

detAE,Bl = det I:dijk:fl = <k A 1)Bk;’1€j71’k,1] = O Definition
General mixing
The above collapses to our standard contagion Assorttiviy by
iti + degree
condition when e, = R; R, (see next slide). !

Contagion

References

CocoNuTs

[e]STe)

DA 27 of 40


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Spreading on degree-correlated networks

General condition details:

detAg . =det [§;,Ry 1 — (k—1)By 1€;_1 1] = 0.

The above collapses to our standard contagion
condition when e, = R; R, (see next slide). !

When B, = B1, we have the condition for a simple
disease model's successful spread

det [(5JkRk_1 Fn B(k '3 1>ej—l,k:—1] = 0
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Assortativity and

General condition details: Mixing

detAE,Bl = det [6‘7kRk,1 = (k T 1)Bk71€j71’k,1] = O Definition
General mixing

The above collapses to our standard contagion Assorttiviy by

condition when e, = R; R, (see next slide). ! i

Contagion
When B, = B1, we have the condition for a simple
disease model's successful spread

References

det [5JkRk_1 Fn B(k '3 1>ej—l,k—1] = 0

When B, = 1, we have the condition for the
existence of a giant component:

CocoNuTs
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Spreading on degree-correlated networks oo
Assortativity and

General condition details: Mixing

detAE,Bl = det [5JkRk:71 = <k —F 1)Bk718j,1’k,1] = (). Definition

General mixing

The above collapses to our standard contagion ASSartavy
e i 3 2] degree

condition when e, = R, R, (see next slide). S

When B, = B1, we have the condition for a simple "0

Expected size

disease model's successful spread

References

det [5JkRk_1 Fn B(k '3 1>ej—l,k—1] = 0

When B, = 1, we have the condition for the
existence of a giant component:
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Bonusville: We'll find a much better version of this
set of conditions later...
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 Spreading on degree-correlated networks &,
| Assortativity and
Mixing .

. We'll next find two more pieces:
Definition
1. Pyig, the probability of starting a cascade PR

Assortativity by
degree

Contagion
Spreading condition
Trggeningprobability

Expected size

References

';_ ‘CocoNuTs
) lex Network

[eTTe)

“Ha > 300f 40


http://www.uvm.edu
http://www.uvm.edu/pdodds

Spreading on degree-correlated networks

vve

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.
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- Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

=

H(z;By) =2 > Py [Fo(@:By)]
k=0
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 Spreading on degree-correlated networks

1. Pyig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Generating function:

B i) — B ey
k=0

Generating function for vulnerable component
size is more complicated.
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- Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)
= i ke
S [Fk71<13B1>] :
k=0
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 Spreading on degree-correlated networks

Want probability of not reaching a finite
component.

Ptrig = Strig =1—H(L; Bl)

i 3P [Fk71<1§§1)]k :
k=0

Last piece: we have to compute F,,_,(1; B,).
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Assortativity and

Mixing
Want probability of not reaching a finite
Component. Definition
General mixing
o I = 7D ssortativity b
Ptrig —Strig _]‘_H<1’Bl) ﬁeg;ele[ o

i 3P [kal(l;él)]k :
k=0

References

Last piece: we have to compute F,,_,(1; B,).

Nastier (nonlinear)—we have to solve the

recursive expression we started with when z = 1:
2 > (]

F,(1,B1) =2 1%1; (1= Bgy1,1)+

co e - k
2 k=0 B, Br+1,1 [Fk<1; 31)] :
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Component. Definition
General mixing
7D ssortativity b
Ptrig = Strig G H<1’ Bl) ﬁegrelet T

i 3P [kal(l;él)]k :
k=0

References

Last piece: we have to compute F,,_,(1; B,).

Nastier (nonlinear)—we have to solve the
recursive expression we started with when z = 1:

B Bir=0, 1 %j(l — Bpi1,1)+

e SIS = k
2 k=0 B, Br+1,1 [Fi(1;By)] -
Iterative methods should work here.
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Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.
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 Spreading on degree-correlated networks

Truly final piece: Find final size using approach of
Gleeson “), a generalization of that used for
uncorrelated random networks.

Need to compute 6, ,, the probability that an edge
leading to a degree j node is infected at time ¢.

Evolution of edge activity probability:

i Gj(ét) = ¢g + (1 = ¢g) ¥

o €j—1,k-1 “— gl 9 (1—0 k-1-ip
;bf’%l ; )0 (1= 0y ) i
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Truly final piece: Find final size using approach of Miz¥ie
Gleeson “), a generalization of that used for

uncorrelated random networks. RGN
e General mixing
Neec_i to compute ¢, ,, the prqbablllty tha_t anedge ol oL
leading to a degree j node is infected at time ¢. degree
Evolution of edge activity probability: i
05,6001 = G;(0;) = dp + (1= o) x References
oo k-1
€1k 1 fo— 1B e
> ot 5 (0 - B
k=1 g = 1E=0
Overall active fraction’s evolution: Coconure
P11 = Po+( Pk:Z( )912 Wt B
k:o =

A 330f40


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

Spreading on degree-correlated networks oo

Assortativity and

As before, these equations give the actual Miding
evolution of ¢, for synchronous updates.

Definition
General mixing

Assortativity by
degree

Contagion

Spreading condition

ring probability
Expected size

References

@ .CocoNuTs

A 340f40


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/teaching/courses/2019-01UVM-303/docs/{2019-01UVM-303}assignment9.pdf

COcoNuTS

Spreading on degree-correlated networks oo

Assortativity and

As before, these equations give the actual Mixing
evolution of ¢, for synchronous updates.
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 Spreading on degree-correlated networks

As before, these equations give the actual
evolution of ¢, for synchronous updates.
Contagion condition follows from 6§, , = G(6,).
Expand G around 6, = 0.
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- Spreading on degree-correlated networks oo

As before, these equations give the actual R
evolution of ¢, for synchronous updates.
Contagion condition follows from 6, ,, = G(0,). Definition
EXpand é around 50 = 6 General mixing

i Assortativity by

= (£ ()G 2 82 0 degree
2
vatJrl 7 0 Z 39 Ql Z 802 Qk,tﬁ'"'{on"t‘ég@‘ =
If G;(0) # 0 for at least one j, always have some Eymel
infection.
If Gj@ = 0V j, want largest eigenvalue
aG,(0)

[F .
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As before, these equations give the actual g

evolution of ¢, for synchronous updates.

Contagion condition follows from 6§, , = G(6,). Definiion

Expand G around 6, = 5 General mixing
o1 Assortativity by

o X 0G( =, 92G;(0) degree

0j,t+1 ol 0 Z 89 2[ Z 802 Qi,t_‘_

If Gj(ﬁ) =+ 0 for at least one j, always have some HIRS.

infection.

If G (q) = 0V j, want largest eigenvalue

ac: (0
[ 50, , } > 1.

Condition for spreading is therefore dependent on
eigenvalues of this matrix:

8Gj(6) i 5

Insert guestion from assignment 9 (4 Aapaaonel
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- How the giant component changes with

© assortative
o neutral
A disassortative

assortativity:

1.0
08 [

E 06 [

T

20T

i 02 |
0.0 aedh

10

exponential parameter K

from Newman, 2002 (5]

100

More assortative
networks
percolate for
lower average
degrees

But
disassortative
networks end up
with higher
extents of
spreading.

COcoNuTS
@networksvex

Assortativity and
Mixing

Definition
General mixing

Assortativity by
degree

Contagion
Spreading condition

g probability

Expected size

References

CocoNuTs

A 350f40


http://www.uvm.edu
http://www.uvm.edu/pdodds

S i

; Toy guns don't pretend blbw l'J'p‘things

| CocoNuTs

Complex Networks
tworksvox

[r—



http://www.uvm.edu
http://www.uvm.edu/pdodds

e f 3 ' s -General mp(

Assortatlw

| CocoNuTs

Complex Networks

[r—



http://www.uvm.edu
http://www.uvm.edu/pdodds

3 A v B

Robust yet Fraglleness of the Death Star

CocoNuTs
Complex Networks
oiover

Everything s comneced



http://www.uvm.edu
http://www.uvm.edu/pdodds

- References |

[1] M. Bogufid and M. Angeles Serrano.
Generalized percolation in random directed
networks.

Phys. Rev. E, 72:016106, 2005. pdf(Z'

[2] P.S. Dodds and . L. Payne.
Analysis of a threshold model of social contagion
on degree-correlated networks.
Phys. Rev. E, 79:066115, 2009. pdf(&

[3] B. Efron and C. Stein.
The jackknife estimate of variance.
The Annals of Statistics, 9:586-596, 1981. pdf(£'

[4] J. P. Gleeson.
Cascades on correlated and modular random
networks.
Phys. Rev. E, 77:046117, 2008. pdf(Z'

COcoNuTS
@networksvex

Assortativity and
Mixing

Definition
General mixing

Assortativity by
degree

Contagion
Spr nd

Exf

References

I 3 ‘CocoNuTs

A 39of 40


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2005/boguna2005a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2009/dodds2009a.pdf
http://www.uvm.edu/pdodds/research/papers/others/1981/efron1981a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2008/gleeson2008a.pdf

e e R B et etV gl A bt~ T 2 ol o S e S L g R

; : 4 COcoNuUTS = *

| Refe rences I I @networksvex
Assortativity and
| Mixing }

Definition
General mixing

Assortativity by

[5] M. Newman. degree
Assortative mixing in networks. i
Phys. Rev. Lett., 89:208701, 2002. pdf(Z' ok

[6] M. E. ). Newman. References

Mixing patterns in networks.
Phys. Rev. E, 67:026126, 2003. pdf(%

A 40 of 40


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2002/newman2002a.pdf
http://www.uvm.edu/pdodds/research/papers/others/2003/newman2003e.pdf

	Definition
	General mixing
	Assortativity by degree
	Contagion
	Spreading condition
	Triggering probability
	Expected size

	References

