Optimal Supply Networks III: Redistribution

Last updated: 2018/03/23, 19:15:27

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Distributed Sources

Outline

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

COcoNuTS

Distributed Sources Size-density law Cartograms

少 Q (~ 4 of 48

COcoNuTS

Distributed Sources

References

These slides are brought to you by:

COcoNuTS

Distributed Sources

UNIVERSITY VERMONT

少 Q (~ 1 of 48

References

Many sources, many sinks

How do we distribute sources?

- A Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- & Key problem: How do we cope with uneven population densities?
- & Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- & We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um et al. (2009) [6], and work cited by them.

COcoNuTS

Distributed

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett the cat

COcoNuTS

UNIVERSITY OF VERMONT •9 q (→ 2 of 48

Distributed

Solidifying the basic problem

Optimal source allocation

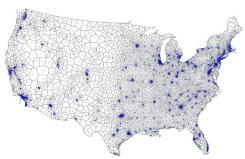
- & Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- minimize the average distance between an individual's residence and the nearest facility?

少 Q (~ 7 of 48

少 Q (~ 3 of 48

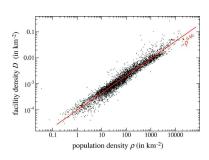
"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

Optimal source allocation



- $lap{8}$ Optimal facility density $ho_{
 m fac}$ vs. population density
- $\mbox{\&}$ Fit is $\rho_{\rm fac} \propto \rho_{\rm pop}^{0.66}$ with $r^2=0.94$.
- & Looking good for a 2/3 power ...

Optimal source allocation

Size-density law:

 $ho_{\mathsf{fac}} \propto
ho_{\mathsf{pop}}^{2/3}$

- where there was either one source or one sink.
- region.

COcoNuTS

Distributed Sources

少 Q (~ 8 of 48

COcoNuTS

Distributed Sources

References

少 Q (~ 9 of 48

COcoNuTS

Distributed Size-density law

UNIVERSITY VERMONT ൗ ര ര 11 of 48

If burden of mainenance is shared then average cost per person is τ/P where P = population.

Next assume facility requires regular maintenance

- & Replace P by $\rho_{\mathsf{pop}} A$ where ρ_{pop} is density.
- Important assumption: uniform density.
- Total average time cost per person:

Optimal source allocation

(person-hours per day).

& Call this quantity τ .

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}}A).$$

 \aleph Now Minimize with respect to $A \dots$

Optimal source allocation

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523-524, 1977. [4]

- We first examine Stephan's treatment (1977) [4, 5]
- A "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal
- Also known as the Homer Simpson principle.

COcoNuTS

Distributed

Size-density law

•9 q (~ 12 of 48

COcoNuTS

Distributed Sources Size-density lav

References

Optimal source allocation

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- \clubsuit Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- & Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

where c is an unimportant shape factor.

COcoNuTS

Distributed Sources Size-density law

♣ Why?

Again: Different story to branching networks

Now sources & sinks are distributed throughout

Optimal source allocation

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2}/\bar{v} + \tau/(\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2\bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(\frac{2\bar{v}\tau}{c\rho_{\mathsf{pop}}}\right)^{2/3} \, \propto \rho_{\mathsf{pop}}^{-2/3}$$

& # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

🚳 Groovy ...

COcoNuTS Cartograms

Distributed Sources Size-density law

UNIVERSITY VERMONT

•9 q (~ 15 of 48

COcoNuTS

Distributed Sources

References

Cartogram of countries 'rescaled' by population:

COcoNuTS

Distributed Sources Cartograms

少 Q (~ 19 of 48

COcoNuTS

Distributed Sources

References

Optimal source allocation

An issue:

- Maintenance (τ) is assumed to be independent of population and area (P and A)
- Stephan's online book "The Division of Territory in Society" is here ...
- 🙈 (It used to be here 🗹.)
- ♣ The Readme is well worth reading (1995).

Cartograms

Diffusion-based cartograms:

- & Idea of cartograms is to distort areas to more accurately represent some local density $\rho_{\rm pop}$ (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\rm pop} - \frac{\partial \rho_{\rm pop}}{\partial t} = 0. \label{eq:pop_pop}$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- Diffusion is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

- •೧ q (~ 20 of 48

COcoNuTS

Cartograms

Standard world map:

COcoNuTS

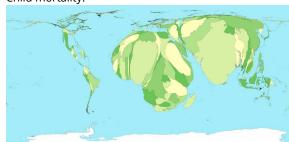
UNIVERSITY OF

少 Q (~ 16 of 48

Distributed Sources

Cartograms

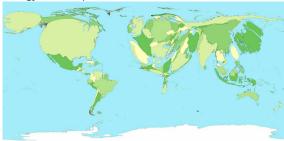
Child mortality:



少 q (~ 21 of 48

Cartograms

Energy consumption:

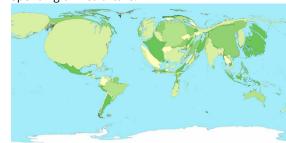


COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

Cartograms

Spending on healthcare:



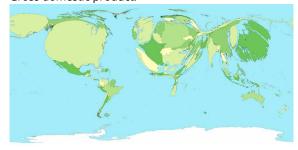
COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivati Global redistribution Public versus Private

少 q (~ 25 of 48

Cartograms

Gross domestic product:



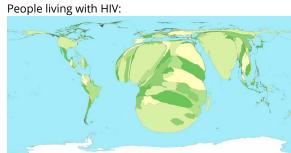
COcoNuTS

UNIVERSITY OF VERMONT

少 q (→ 22 of 48

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private References

Cartograms



COcoNuTS

Distributed
Sources
Size-density law
Cartograms
A reasonable derivatio
Global redistribution
Public versus Private
References

COcoNuTS

Distributed Sources

References

Cartograms

Greenhouse gas emissions:



COcoNuTS

UNIVERSITY OF VERMONT OF 48

Distributed Sources Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

Cartograms

The preceding sampling of Gastner & Newman's cartograms lives here □.

A larger collection can be found at worldmapper.org <a>C.

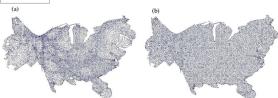
WSRLDMAPPER The world as you've never seen it be

◆) q (~ 24 of 48

Size-density law

"Optimal design of spatial distribution networks"

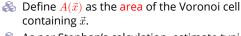
Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]



- Left: population density-equalized cartogram.
- Right: (population density)^{2/3}-equalized cartogram.
- $\mbox{\&}$ Facility density is uniform for $ho_{
 m pop}^{2/3}$ cartogram.

COcoNuTS Size-density law

Distributed Sources Approximations: Cartograms \Re For a given set of source placements $\{\vec{x}_1, \dots, \vec{x}_n\}$,



As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

the region Ω is divided up into Voronoi cells \mathbb{Z} ,

 $\begin{cases} \& \end{cases}$ Approximate c_i as a constant c.

one per source.

COcoNuTS

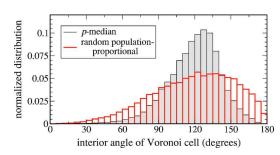
Distributed

•9 q (~ 32 of 48

COcoNuTS

References

Size-density law



From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

COcoNuTS

UNIVERSITY OF VERMONT

少 Q (~ 28 of 48

Distributed Sources Cartograms

References

Size-density law

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,.$$

- & We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \Re Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

COcoNuTS

Size-density law

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- & Assume given a fixed population density ρ_{pop} defined on a spatial region Ω .
- Formally, we want to find the locations of <math>nsources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

COcoNuTS

UNIVERSITY VERMONT •9 q (№ 29 of 48

Distributed

UNIVERSITY VERMONT

•9 a (~ 31 of 48

Now a Lagrange multiplier story:

 $\mbox{\&}$ By varying $\{\vec{x}_1,\ldots,\vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

♣ I Can Haz Calculus of Variations
☐?

- & Compute $\delta G/\delta A$, the functional derivative \Box of the functional G(A).
- This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathrm{d}\vec{x} \, = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

•> q (~ 34 of 48

Size-density law

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\text{pop}}^{-2/3}.$$

- $\ \, \& \ \,$ Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{\text{fac}} = 1/A$, we have

$$\rho_{\rm fac}(\vec{x}) = \left(\frac{c}{2\lambda}\rho_{\rm pop}\right)^{2/3}. \label{eq:rhofac}$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

COcoNuTS D.

Distributed Sources Size-density law Cartograms A reasonable derivation

References

COcoNuTS

Public versus private facilities

Beyond minimizing distances:

- Scaling laws between population and facility densities" by Um *et al.*, Proc. Natl. Acad. Sci., 2009. [6]
- With the connection between facility and population density

$$\rho_{\rm fac} \propto \rho_{\rm pop}^{\alpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha=1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Multiple of the United States and South Korea.

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable der Global redistribu

少 Q (~ 41 of 48

COcoNuTS

Global redistribution networks

One more thing:

- How do we supply these facilities?
- & How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\text{maint}} + \gamma C_{\text{travel}}$$
.

& Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

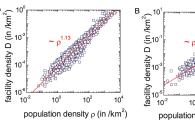
$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

& When $\delta = 1$, only number of hops matters.

Distributed Sources Size-density law Cartograms A reasonable derivatio Global redistribution Public versus Private

References

Public versus private facilities: evidence



B (EW) (10¹ (

Distributed Sources Size-density law Cartograms A reasonable derivati Global redistribution Public versus Private References

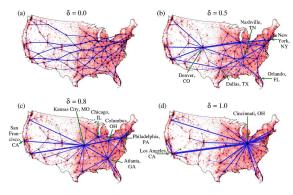
- & Left plot: ambulatory hospitals in the U.S.
- Right plot: public schools in the U.S.
- $\ref{Note: break in scaling for public schools.}$ Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop} \simeq 100.$

少∢ (~ 42 of 48

COcoNuTS

Distributed

Global redistribution networks



From Gastner and Newman (2006) [2]

COcoNuTS

VNIVERSITY SINVERMONT SINVERMONT

Distributed
Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution
Public versus Private
References

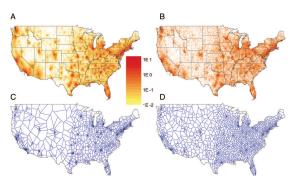
Public versus private facilities: evidence

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.9
Beauty care	1.08(1)	0.8
Laundry	1.05(1)	0.9
Automotive repair	0.99(1)	0.9
Private school	0.95(1)	0.8
Restaurant	0.93(1)	0.8
Accommodation	0.89(1)	0.7
Bank	0.88(1)	0.8
Gas station	0.86(1)	0.9
Death care	0.79(1)	0.8
* Fire station	0.78(3)	0.9
* Police station	0.71(6)	0.7
Public school	0.69(1)	0.8
SK facility	α (SE)	R ²
Bank	1.18(2)	0.9
Parking place	1.13(2)	0.9
* Primary clinic	1.09(2)	1.0
* Hospital	0.96(5)	0.9
* University/college	0.93(9)	0.8
Market place	0.87(2)	0.9
* Secondary school	0.77(3)	0.9
* Primary school	0.77(3)	0.9
Social welfare org.	0.75(2)	0.8
* Police station	0.71(5)	0.9
Government office	0.70(1)	0.9
* Fire station	0.60(4)	0.9
* Public health center	0.09(5)	0.1

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

Public versus private facilities: evidence



A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

Public versus private facilities: the story So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- & Defns: For the *i*th facility and its Voronoi cell V_i , define
 - n_i = population of the *i*th cell;
 - $\langle r_i \rangle$ = the average travel distance to the *i*th facility.
 - A_i = area of *i*th cell (s_i in Um *et al.* [6])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

- & Limits:
 - $\beta = 0$: purely commercial.
 - $\beta = 1$: purely social.

Public versus private facilities: the story

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \label{eq:rhofac}$$

- \Re For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.
- \Re For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.
- You can try this too:
 Insert question from assignment 4

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivatio Global redistribution Public versus Private

COcoNuTS

Distributed
Sources
Size-density law
Cartograms
A reasonable derivatio
Global redistribution
Public versus Private
References

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivatio Global redistribution Public versus Private References

References I

- [1] M. T. Gastner and M. E. J. Newman. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf
- [2] M. T. Gastner and M. E. J. Newman.

 Optimal design of spatial distribution networks.

 Phys. Rev. E, 74:016117, 2006. pdf ☑
- [4] G. E. Stephan.

 Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523–524, 1977. pdf ☑

COcoNuTS

Distributed Sources Size-density law Cartograms A reasonable derivati Global redistribution

References

COcoNuTS

Distributed
Sources
Size-density law
Cartograms
A reasonable derivatio
Global redistribution

References

References II

[5] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf 🖸

少 q (~ 46 of 48