Optimal Supply Networks III: Redistribution

Last updated: 2018/03/23, 20:59:06

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

A reasonable derivation

These slides are brought to you by:

COCONUTS

A reasonable derivation Public versus Private

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

COCONUTS

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

References

20 € 3 of 48

Outline

COCONUTS

Distributed Sources

Size-density law Cartograms A reasonable derivation Global redistribution Public versus Private

References

A reasonable derivation Public versus Private

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions).
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice
- Q2: Given population density is uneven, what do we do?
- We'll follow work by Stephan (1977, 1984) [4, 5], Gastner and Newman (2006) [2], Um *et al.* (2009) [6], and work cited by them.

Size-density law Cartograms

A reasonable derivat Global redistribution Public versus Private

Solidifying the basic problem

- Given a region with some population distribution ρ , most likely uneven.
- & Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?

Distributed Sources

ize-density law

A reasonable deriva

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

Approximately optimal location of 5000 facilities.

Based on 2000 Census data.

COCONUTS

Distributed Sources

Size-density law

Cartograms
A reasonable derivation

Global redistribution Public versus Private

Distributed Sources

ize-density law

A reasonable deriv

References

 \Leftrightarrow Optimal facility density $ho_{
m fac}$ vs. population density $ho_{
m pop}.$

Size-density law:

 $ho_{
m fac} \propto
ho_{
m pop}^{2/3}$

- & Why?
- Again: Different story to branching networks where there was either one source or one sink.
- Now sources & sinks are distributed throughout region.

Distributed Sources

Size-density law Cartograms

A reasonable derivation
Global redistribution
Public versus Private

"Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries"

G. Edward Stephan, Science, **196**, 523–524, 1977. [4]

Zipf-like approach: invokes principle of minimal effort.

Also known as the Homer Simpson principle.

COcoNuTS

Distributed Sources

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

- Consider a region of area A and population P with a single functional center that everyone needs to access every day.
- Build up a general cost function based on time expended to access and maintain center.
- Write average travel distance to center as \bar{d} and assume average speed of travel is \bar{v} .
- Assume isometry: average travel distance \bar{d} will be on the length scale of the region which is $\sim A^{1/2}$
- Average time expended per person in accessing facility is therefore

$$\bar{d}/\bar{v} = cA^{1/2}/\bar{v}$$

where c is an unimportant shape factor.

- Next assume facility requires regular maintenance (person-hours per day).
- & Call this quantity τ .
- If burden of mainenance is shared then average cost per person is τ/P where P = population.
- $\red{Replace} \ P \ ext{by} \
 ho_{ ext{pop}} A \ ext{where} \
 ho_{ ext{pop}} \ ext{is density}.$
- Important assumption: uniform density.
- Total average time cost per person:

$$T = \bar{d}/\bar{v} + \tau/(\rho_{\sf pop}A) = cA^{1/2}/\bar{v} + \tau/(\rho_{\sf pop}A).$$

 \aleph Now Minimize with respect to $A \dots$

Size-density law Cartograms

A reasonable derivation Global redistribution Public versus Private

Differentiating ...

$$\begin{split} \frac{\partial T}{\partial A} &= \frac{\partial}{\partial A} \left(c A^{1/2} / \bar{v} + \tau / (\rho_{\mathsf{pop}} A) \right) \\ &= \frac{c}{2 \bar{v} A^{1/2}} - \frac{\tau}{\rho_{\mathsf{pop}} A^2} = 0 \end{split}$$

Rearrange:

$$A = \left(rac{2ar{v} au}{c
ho_{\mathsf{pop}}}
ight)^{2/3} \propto
ho_{\mathsf{pop}}^{-2/3}$$

 \clubsuit # facilities per unit area ρ_{fac} :

$$ho_{
m fac} \propto A^{-1} \propto
ho_{
m pop}^{2/3}$$

Size-density law

A reasonable derivation

An issue:

- Stephan's online book "The Division of Territory in Society" is here

 ...
- The Readme
 is well worth reading (1995).

Sources

Size-density law Cartograms

A reasonable derivation

Standard world map:

COCONUTS

Sources

Cartograms

A reasonable derivation Public versus Private

Cartogram of countries 'rescaled' by population:

COcoNuTS

Cartograms

A reasonable derivation Public versus Private

Diffusion-based cartograms:

- ldea of cartograms is to distort areas to more accurately represent some local density ρ_{pop} (e.g. population).
- Many methods put forward—typically involve some kind of physical analogy to spreading or repulsion.
- Algorithm due to Gastner and Newman (2004) [1] is based on standard diffusion:

$$\nabla^2 \rho_{\mathsf{pop}} - \frac{\partial \rho_{\mathsf{pop}}}{\partial t} = 0.$$

- Allow density to diffuse and trace the movement of individual elements and boundaries.
- $\ref{Diffusion}$ is constrained by boundary condition of surrounding area having density $\bar{\rho}_{pop}$.

Cartograms
A reasonable derivation

Child mortality:

COcoNuTS *

Distributed Sources

ize-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Energy consumption:

COCONUTS

Distributed

Cartograms

A reasonable derivation Public versus Private

Gross domestic product:

COcoNuTS -

Distributed Sources

ize-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Greenhouse gas emissions:

COcoNuTS

Distributed Sources

ze-density law

Cartograms

A reasonable derivation Global redistribution Public versus Private

Spending on healthcare:

COcoNuTS

Sources

Cartograms A reasonable derivation

Public versus Private

People living with HIV:

COCONUTS

Cartograms

A reasonable derivation Public versus Private

COCONUTS

The preceding sampling of Gastner & Newman's cartograms lives here .

WORLDMAPPER The world as you've never seen it before

Sources
Size-density law
Cartograms
A reasonable derivation

A reasonable derivati Global redistribution Public versus Private

Size-density law

"Optimal design of spatial distribution networks"

Gastner and Newman, Phys. Rev. E, **74**, 016117, 2006. [2]

COCONUTS

Distribute Sources

Size-density law

Cartograms

Global redistribution Public versus Private

From Gastner and Newman (2006) [2]

Cartogram's Voronoi cells are somewhat hexagonal.

Cartograms

Deriving the optimal source distribution:

- Basic idea: Minimize the average distance from a random individual to the nearest facility. [2]
- Assume given a fixed population density ρ_{pop} defined on a spatial region $\Omega.$
- Formally, we want to find the locations of n sources $\{\vec{x}_1,\dots,\vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) \, \mathsf{min}_i ||\vec{x} - \vec{x}_i|| \mathrm{d}\vec{x} \,.$$

- Also known as the p-median problem.
- Not easy ...in fact this one is an NP-hard problem. [2]
- Approximate solution originally due to Gusein-Zade [3].

Sources
Size-density law to Cartograms
A reasonable derivation

Approximations:

- & For a given set of source placements $\{\vec{x}_1, ..., \vec{x}_n\}$, the region Ω is divided up into Voronoi cells \square , one per source.
- Define $A(\vec{x})$ as the area of the Voronoi cell containing \vec{x} .
- As per Stephan's calculation, estimate typical distance from \vec{x} to the nearest source (say i) as

$$c_i A(\vec{x})^{1/2}$$

where c_i is a shape factor for the ith Voronoi cell.

Sources
Size-density law
Cartograms
A reasonable derivation
Global redistribution

Carrying on:

The cost function is now

$$F = c \int_{\Omega} \rho_{\rm pop}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} \,. \label{eq:F_pop}$$

- We also have that the constraint that Voronoi cells divide up the overall area of Ω : $\sum_{i=1}^{n} A(\vec{x}_i) = A_{\Omega}$.
- Sneakily turn this into an integral constraint:

$$\int_{\Omega} \frac{\mathrm{d}\vec{x}}{A(\vec{x})} = n.$$

- \Longrightarrow Within each cell, $A(\vec{x})$ is constant.
- & So ...integral over each of the n cells equals 1.

Size-density law Cartograms

A reasonable derivation Global redistribution

Now a Lagrange multiplier story:

 \S By varying $\{\vec{x}_1, \dots, \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

I Can Haz Calculus of Variations ??

This gives

$$\int_{\Omega} \left[\frac{c}{2} \rho_{\mathsf{pop}}(\vec{x}) A(\vec{x})^{-1/2} - \lambda \left[A(\vec{x}) \right]^{-2} \right] \mathsf{d}\vec{x} = 0.$$

Setting the integrand to be zilch, we have:

$$\rho_{\rm pop}(\vec{x}) = 2\lambda c^{-1} A(\vec{x})^{-3/2}.$$

Size-density law

Now a Lagrange multiplier story:

Rearranging, we have

$$A(\vec{x}) = (2\lambda c^{-1})^{2/3} \rho_{\mathsf{pop}}^{-2/3}.$$

- \Leftrightarrow Finally, we indentify $1/A(\vec{x})$ as $\rho_{\rm fac}(\vec{x})$, an approximation of the local source density.
- Substituting $\rho_{\text{fac}} = 1/A$, we have

$$ho_{\mathsf{fac}}(ec{x}) = \left(rac{c}{2\lambda}
ho_{\mathsf{pop}}
ight)^{2/3}.$$

 \aleph Normalizing (or solving for λ):

$$\rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/3}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/3} {\rm d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/3}.$$

COcoNuTS -

Sources
Size-density law
Cartograms
A reasonable derivation

One more thing:

- How do we supply these facilities?
- A How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gastner and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\mathsf{maint}} + \gamma C_{\mathsf{travel}}.$$

 $\ref{Reconstruction}$ Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ij} and number of legs to journey:

$$(1-\delta)\ell_{ij} + \delta(\#\mathsf{hops}).$$

 \Leftrightarrow When $\delta = 1$, only number of hops matters.

Global redistribution networks

From Gastner and Newman (2006) [2]

COcoNuTS

A reasonable derivation Global redistribution

Beyond minimizing distances:

- "Scaling laws between population and facility densities" by Um et al., Proc. Natl. Acad. Sci., 2009. [6]
- With the connection between facility and population density

$$ho_{
m fac} \propto
ho_{
m pop}^{lpha}$$

does not universally hold with $\alpha = 2/3$.

- Two idealized limiting classes:
 - 1. For-profit, commercial facilities: $\alpha = 1$;
 - 2. Pro-social, public facilities: $\alpha = 2/3$.
- Um et al. investigate facility locations in the United States and South Korea.

Public versus Private
References

Public versus private facilities: evidence

COcoNuTS -

Distributed
Sources
Size-density law
Cartograms
A reasonable derivati
Global redistribution
Public versus Private
References

Left plot: ambulatory hospitals in the U.S.

Right plot: public schools in the U.S.

Note: break in scaling for public schools. Transition from $\alpha \simeq 2/3$ to $\alpha = 1$ around $\rho_{\rm pop} \simeq 100$.

Public versus private facilities: evidence

C	0	C	0	N	u	T	S	Š

US facility	α (SE)	R ²
Ambulatory hospital	1.13(1)	0.93
Beauty care	1.08(1)	0.86
Laundry	1.05(1)	0.90
Automotive repair	0.99(1)	0.92
Private school	0.95(1)	0.82
Restaurant	0.93(1)	0.89
Accommodation	0.89(1)	0.70
Bank	0.88(1)	0.89
Gas station	0.86(1)	0.94
Death care	0.79(1)	0.80
* Fire station	0.78(3)	0.93
* Police station	0.71(6)	0.75
Public school	0.69(1)	0.87
SK facility	α (SE)	R ²
Bank	1.18(2)	0.96
Parking place	1.13(2)	0.91
* Primary clinic	1.09(2)	1.00
* Hospital	0.96(5)	0.97
* University/college	0.93(9)	0.89
Market place	0.87(2)	0.90
* Secondary school	0.77(3)	0.98
* Primary school	0.77(3)	0.97
Social welfare org.	0.75(2)	0.84
* Police station	0.71(5)	0.94
Government office	0.70(1)	0.93
* Fire station	0.60(4)	0.93
* Public health center	0.09(5)	0.19

Rough transition between public and private at $\alpha \simeq 0.8$.

Note: * indicates analysis is at state/province level; otherwise county level.

A reasonable derivation Public versus Private

Public versus private facilities: evidence

A, C: ambulatory hospitals in the U.S.; B, D: public schools in the U.S.; A, B: data; C, D: Voronoi diagram from model simulation.

COCONUTS

A reasonable derivation Public versus Private

Public versus private facilities: the story

So what's going on?

- Social institutions seek to minimize distance of travel.
- Commercial institutions seek to maximize the number of visitors.
- \clubsuit Defns: For the ith facility and its Voronoi cell V_i , define
 - n_i = population of the ith cell;
 - $| \langle r_i \rangle |$ = the average travel distance to the ith facility.
 - A_i = area of *i*th cell (s_i in Um *et al.* [6])
- Objective function to maximize for a facility (highly constructed):

$$v_i = n_i \langle r_i \rangle^{\beta}$$
 with $0 \le \beta \le 1$.

 $\beta = 0$: purely commercial.

 $\beta = 1$: purely social.

COcoNuTS

Sources
Size-density law

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

Either proceeding as per the Gastner-Newman-Gusein-Zade calculation or, as Um et al. do, observing that the cost for each cell should be the same, we have:

$$\label{eq:rhofactor} \begin{split} & \rho_{\rm fac}(\vec{x}) = n \frac{[\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}}{\int_{\Omega} [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)} \mathrm{d}\vec{x}} \propto [\rho_{\rm pop}(\vec{x})]^{2/(\beta+2)}. \end{split}$$

A For $\beta = 0$, $\alpha = 1$: commercial scaling is linear.

 \Leftrightarrow For $\beta = 1$, $\alpha = 2/3$: social scaling is sublinear.

[1] M. T. Gastner and M. E. J. Newman.

Diffusion-based method for producing density-equalizing maps.

Proc. Natl. Acad. Sci., 101:7499–7504, 2004. pdf

[2] M. T. Gastner and M. E. J. Newman.
Optimal design of spatial distribution networks.
Phys. Rev. E, 74:016117, 2006. pdf ☑

[4] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries.

Science, 196:523–524, 1977. pdf

Sources Size-density law Cartograms

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

[5] G. E. Stephan.

Territorial subdivision.

Social Forces, 63:145–159, 1984. pdf

[6] J. Um, S.-W. Son, S.-I. Lee, H. Jeong, and B. J. Kim. Scaling laws between population and facility densities.

Proc. Natl. Acad. Sci., 106:14236–14240, 2009. pdf 2

Distributed Sources

Cartograms
A reasonable derivation
Global redistribution
Public versus Private

