Optimal Supply Networks II: Blood, Water, and Truthicide

Last updated: 2018/03/23, 20:59:06

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

These slides are brought to you by:

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat ☑

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Outline

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Stories—The Fraction Assassin:

COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

20 € 5 of 126

Law and Order, Special Science Edition: Truthicide Department

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage. This is one of their stories."

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

P =basal metabolic rate M =organismal body mass

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Prefactor *c* depends on body plan and body temperature:

Birds	39– 41° <i>C</i>
Eutherian Mammals	$36 – 38^{\circ}C$
Marsupials	$34 - 36^{\circ}C$
Monotremes	30− 31° <i>C</i>

Metabolism and Truthicide

Death by fractions

COcoNuTS

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

 $\alpha = 2/3$ because ...

Dimensional analysis suggests an energy balance surface law:

$$P \propto S \propto V^{2/3} \propto M^{2/3}$$

- Assumes isometric scaling (not quite the spherical cow).
- Lognormal fluctuations: Gaussian fluctuations in $\log_{10}P$ around $\log_{10}cM^{\alpha}$.
- & Stefan-Boltzmann law for radiated energy:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma \varepsilon S T^4 \propto S$$

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

The prevailing belief of the Church of Quarterology:

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks Earlier theories

Geometric argument

References

 $P \propto M^{3/4}$

Huh?

The prevailing belief of the Church of Quarterology:

Most obvious concern:

$$3/4 - 2/3 = 1/12$$

- An exponent higher than 2/3 points suggests a fundamental inefficiency in biology.
- Organisms must somehow be running 'hotter' than they need to balance heat loss.

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Related putative scalings:

COCONUTS

Wait! There's more!:

- $\red {
 m s}$ number of capillaries $\propto M^{3/4}$
- $\red{solution}$ time to reproductive maturity $\propto M^{1/4}$
- \clubsuit heart rate $\propto M^{-1/4}$
- \sim cross-sectional area of aorta $\propto M^{3/4}$
- \triangle population density $\propto M^{-3/4}$

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

The great 'law' of heartbeats:

Assuming:

- $\red {\Bbb S}$ Average lifespan $\propto M^{eta}$
- $\red{solution}$ Average heart rate $\propto M^{-\beta}$
- $\ensuremath{\&}$ Irrelevant but perhaps $\beta=1/4$.

Then:

Average number of heart beats in a lifespan \simeq (Average lifespan) \times (Average heart rate) $\propto M^{\beta-\beta}$

 $\propto M^0$

Number of heartbeats per life time is independent of organism size!

& ≈ 1.5 billion

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"How fast do living organisms move: Maximum speeds from bacteria to elephants and whales"

Meyer-Vernet and Rospars, American Journal of Physics, **83**, 719–722, 2015. [35]

Fig. 1. Maximum relative speed versus body mass for 202 running species (157 mammals plotted in magenta and 45 non-mammals plotted in green), 127 swimming species and 91 micro-organisms (plotted in blue). The sources of the data are given in Ref. 16. The solid line is the maximum relative speed [Eq. (13]) estimated in Sec. III. The human world records are plotted as asterisks (upper for running and lower for swimming). Some examples of organisms of various masses are sketched in black (drawings by François Meyer).

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"A general scaling law reveals why the largest animals are not the fastest"

Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [23]

Figure 2 [Empirical data and time-dependent model fit for the allometric scaling of maximum speed, a. Comprision of scaling for the different recommendation of the scaling of the difference are illustrated separately for things; (in = 4.50), nonling (in = 4.50) and (in = 1.00) animats. Overall model fit $R^2 = 0.993$. The residual variation does not exhibit a signature of taxonomy (only a weak effect of themselved) and the scaling of the

COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric

Conclusion

References

9 a @ 15 of 126

"A general scaling law reveals why the largest animals are not the fastest"

Hirt et al., Nature Ecology & Evolution, **1**, 1116, 2017. [23]

Figure 1 [Concept of time-dependent and mass-dependent realized maximum speed of animals. A Acceleration of animals follows a saturation curve (social lineal appressing the theoretical maximum speed (dotted lineal) depending on skyl mass (color usods). The time available for acceleration increases with body mass (following a power law, c.4. This critical time determines the realized maximum speed (c), yielding a hump-shaped increase of maximum speed with body mass (fd). COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Figure 4 | Predicting the maximum speed of extinct species with the timedependent model. The model prediction (grey line) is fitted to data of extant species (grey circles) and extended to higher body masses. Speed data for dinosaurs (green triangles) come from detailed morphological model calculations (values in Table 1) and were not used to obtain model parameters

Maximum speed increases with size: $v_{\text{max}} = aM^b$

Takes a while to get going: $v(t) = v_{\text{max}}(1 - e^{-kt})$

Literature: $0.75 \lesssim d \lesssim 0.94$

Acceleration time = depletion time for anaerobic energy: $\tau \sim f M^g$ Literature: $0.76 \lesssim q \lesssim 1.27$

 $v_{\mathsf{max}} = aM^b \left(1 - e^{-hM^i}\right)$

3 i = d - 1 + g and h = cf

Metabolism and Truthicide

fractions Measuring

exponents River networks

Earlier theories

Geometric argument

A theory is born:

1840's: Sarrus and Rameaux [44] first suggested $\alpha = 2/3$.

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

A theory grows:

1883: Rubner [42] found $\alpha \simeq 2/3$.

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Theory meets a different 'truth':

1930's: Brody, Benedict study mammals. [6] Found $\alpha \simeq 0.73$ (standard).

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Our hero faces a shadowy cabal:

- 1932: Kleiber analyzed 13 mammals. [25]
- \implies Found $\alpha = 0.76$ and suggested $\alpha = 3/4$.
- Scaling law of Metabolism became known as Kleiber's Law (2011 Wikipedia entry is embarrassing).
- 1961 book: "The Fire of Life. An Introduction to Animal Energetics". [26]

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

When a cult becomes a religion:

1950/1960: Hemmingsen [20, 21] Extension to unicellular organisms. $\alpha = 3/4$ assumed true.

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Quarterology spreads throughout the land:

The Cabal assassinates 2/3-scaling:

1964: Troon, Scotland.

3rd Symposium on Energy Metabolism.

 $\alpha = 3/4$ made official ...

...29 to zip.

But the Cabal slipped up by publishing the conference proceedings ...

"Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964," Ed. Sir Kenneth Blaxter [4] COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

So many questions ...

- Did the truth kill a theory? Or did a theory kill the truth?
- Or was the truth killed by just a lone, lowly hypothesis?
- Does this go all the way to the top? To the National Academies of Science?
- Is 2/3-scaling really dead?
- Could 2/3-scaling have faked its own death?
- What kind of people would vote on scientific facts?

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Modern Quarterology, Post Truthicide

COCONUTS

3/4 is held by many to be the one true exponent.

In the Beat of a Heart: Life, Energy, and the Unity of Nature—by John Whitfield Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References

But: much controversy ...

See 'Re-examination of the "3/4-law" of metabolism' by the Heretical Unbelievers Dodds, Rothman, and Weitz [14], and ensuing madness ...

Some data on metabolic rates

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References

Mammals

Blue line: 2/3

Arr (B=P)

Some data on metabolic rates

Bennett and Harvey's data $(1987)^{[3]}$

398 birds

Blue line: 2/3

red line: 3/4.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories Geometric

argument

Important:

- Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i, y_i)\}$ when we know the x_i are measured without error.
- \clubsuit Here we assume that measurements of mass M have less error than measurements of metabolic rate B.
- Linear regression assumes Gaussian errors.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

More on regression:

If (a) we don't know what the errors of either variable are,

or (b) no variable can be considered independent, then we need to use Standardized Major Axis Linear Regression. [43, 41] (aka Reduced Major Axis = RMA.)

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Geometric argument

For Standardized Major Axis Linear Regression:

 $\mathsf{slope}_{\mathsf{SMA}} = \frac{\mathsf{standard} \ \mathsf{deviation} \ \mathsf{of} \ y \ \mathsf{data}}{\mathsf{standard} \ \mathsf{deviation} \ \mathsf{of} \ x \ \mathsf{data}}$

- Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.
- The only linear regression that is Scale invariant
 ∴.
- Attributed to Nobel Laureate economist Paul Samuelson , [43] but discovered independently by others.
- #somuchwin

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Relationship to ordinary least squares regression is simple:

$$\begin{aligned} \mathsf{slope}_{\mathsf{SMA}} &= r^{-1} \times \mathsf{slope}_{\mathsf{OLS}\, y \, \mathsf{on} \, x} \\ &= r \times \mathsf{slope}_{\mathsf{OLS}\, x \, \mathsf{on} \, y} \end{aligned}$$

where r = standard correlation coefficient:

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Groovy upshot: If (1) a paper uses OLS regression when RMA would be appropriate, and (2) r is reported, we can figure out the RMA slope. [41, 29]

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

LINEAR RELATIONS IN BIOMECHANICS

TABLE II

Calculated statistics of airspeed V_s and windspeed V_w in the Black-browed albatross Diomedea melanophris in gliding flight, after Pennycuick (1982)

13-35	ms-1
8.218	(ms-1)2
3	
5	
	8:218

model of speed correction: $V_a = \alpha + \beta V_w$

model	инетсері 2	gradient p	range (95%)
y(x) regression	12:30	-0-334	-0.384 to -0.284
r.m.a.	10.93	-0.769	-0.894 to -0.661
x(y) regression	7-80	-1.766	-2.076 to -1.536
s.r. $b_c = 0.5$	10-66	-0.855	-0.997 to -0.737
$b_e = 1$ or m.a.	11.59	-0.560	-0.648 to -0.479
$b_e = 2$	12.00	-0.431	-0.496 to -0.367

Solution Disparity between slopes for y on x and x on y regressions is a factor of r^2 (r^{-2})

See also: LaBarbera [29] (who resigned ...)

COcoNuTS -

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Heusner's data, 1991 (391 Mammals)

	7.7	
range of M	N	\hat{lpha}
$\leq 0.1~\mathrm{kg}$	167	0.678 ± 0.038
_ 0		_
$\leq 1 \text{ kg}$	276	0.662 ± 0.032
8		31332
$\leq 10 \text{ kg}$	357	0.668 ± 0.019
0		
$\leq 25~\mathrm{kg}$	366	0.669 ± 0.018
J		
$\leq 35~\mathrm{kg}$	371	0.675 ± 0.018
$\leq 350~\mathrm{kg}$	389	0.706 ± 0.016
J		
$\leq 3670~\mathrm{kg}$	391	0.710 ± 0.021

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Bennett and Harvey, 1987 (398 birds)

M_{max}	N	\hat{lpha}
< 0.032	162	0.626 + 0.102
≤ 0.032	162	0.636 ± 0.103
≤ 0.1	236	0.602 ± 0.060
≤ 0.32	290	0.607 ± 0.039
	224	0.050 . 0.000
≤ 1	334	0.652 ± 0.030
≤ 3.2	371	0.655 ± 0.023
≤ 10	391	0.664 ± 0.020
≤ 32	396	0.665 ± 0.019
≤ 100	398	0.664 ± 0.019

COcoNuTS *

Metabolism and Truthicide

Death by fractions

Measuring

River networks

Earlier theories

Geometric argument Conclusion

Fluctuations—Things look normal ...

$$P(B|M) = 1/M^{2/3}f(B/M^{2/3})$$

Use a Kolmogorov-Smirnov test.

COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Test to see if α' is consistent with our data $\{(M_i, B_i)\}$:

$$H_0: \alpha = \alpha'$$
 and $H_1: \alpha \neq \alpha'$.

- Assume each **B**_i (now a random variable) is normally distributed about $\alpha' \log_{10} M_i + \log_{10} c$.
- \Rightarrow Follows that the measured α for one realization obeys a t distribution with N-2 degrees of freedom.
- Calculate a p-value: probability that the measured α is as least as different to our hypothesized α' as we observe.
- See, for example, DeGroot and Scherish, "Probability and Statistics." [11]

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Revisiting the past—mammals

Full mass range:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	13	0.738	$< 10^{-6}$	0.11	
Brody	35	0.718	$< 10^{-4}$	$< 10^{-2}$	
Heusner			$< 10^{-6}$	$< 10^{-5}$	
neusrier	391	0.710	< 10		
Bennett and Harvey	398	0.664	0.69	$< 10^{-15}$	

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories Geometric

argument

Revisiting the past—mammals

 $M \leq 10 \text{ kg}$:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
Kleiber	5	0.667	0.99	0.088	
		0,007	-		
Brody	26	0.709	$< 10^{-3}$	$< 10^{-3}$	
Heusner	357	0.668	0.91	$< 10^{-15}$	

$M \ge 10 \text{ kg}$:

	N	\hat{lpha}	$p_{2/3}$	$p_{3/4}$	
171 11		0.754	1	0.66	
Kleiber	8	0.754	$< 10^{-4}$	0.66	
Brody	Ω	0.760	$< 10^{-3}$	0.56	
Бгоцу	9	0.760	< 10	0.56	
Heusner	34	0.877	$< 10^{-12}$	$< 10^{-7}$	

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents River networks

Earlier theories

Geometric

argument

- 1. Presume an exponent of your choice: 2/3 or 3/4.
- 2. Fit the prefactor ($log_{10}c$) and then examine the residuals:

$$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$$

- 3. H_0 : residuals are uncorrelated H_1 : residuals are correlated.
- 4. Measure the correlations in the residuals and compute a *p*-value.

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Onclusion

We use the spiffing Spearman Rank-Order Correlation Coefficient

Basic idea:

Given $\{(x_i,y_i)\}$, rank the $\{x_i\}$ and $\{y_i\}$ separately from smallest to largest. Call these ranks R_i and S_i .

 \aleph Now calculate correlation coefficient for ranks, r_s :

8

$$r_s = \frac{\sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^n (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^n (S_i - \bar{S})^2}}$$

 $\ref{eq:special_point}$ Perfect correlation: x_i 's and y_i 's both increase monotonically.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

.....

We assume all rank orderings are equally likely:

- R_s is distributed according to a Student's t-distribution \mathcal{C} with N-2 degrees of freedom.
- Excellent feature: Non-parametric—real distribution of x's and y's doesn't matter.
- Bonus: works for non-linear monotonic relationships as well.
- See Numerical Recipes in C/Fortran which contains many good things. [39]

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Analysis of residuals—mammals

- (a) M < 3.2 kg,
- (b) M < 10 kg,
- (c) M < 32 kg
- (d) all mammals.

COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Analysis of residuals—birds

- (a) M < 0.1 kg,
- (b) $M < 1 \, \text{kg}$
- (c) M < 10 kg
- (d) all birds.

COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Other approaches to measuring exponents:

- 🙈 Clauset, Shalizi, Newman: "Power-law distributions in empirical data" [10] SIAM Review, 2009.
- See Clauset's page on measuring power law exponents (code, other goodies).
- See this collection of tweets for related amusement.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

- 3 So: The exponent $\alpha = 2/3$ works for all birds and mammals up to 10-30 kg
- For mammals > 10-30 kg, maybe we have a new scaling regime
- Possible connection?: Economos (1983)—limb length break in scaling around 20 kg [15]
- But see later: non-isometric growth leads to lower metabolic scaling. Oops.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

The widening gyre:

Now we're really confused (empirically):

- White and Seymour, 2005: unhappy with large herbivore measurements [56]. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.
- Glazier, BioScience (2006) [18]: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."
- S Glazier, Biol. Rev. (2005)[17]: "Beyond the 3/4-power law: variation in the intra- and interspecific scaling of metabolic rate in animals."
- Savage et al., PLoS Biology (2008) [45] "Sizing up allometric scaling theory" Pro 3/4: problems claimed to be finite-size scaling.

Metabolism and Truthicide

fractions Measuring

exponents

River networks

Earlier theories

Geometric argument

Somehow, optimal river networks are connected:

 a = drainage basin area

♣ ℓ = length of longest (main) stream

& $L=L_{\parallel}$ = **longitudinal** length of basin COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories Geometric

argument

Mysterious allometric scaling in river networks

3 1957: J. T. Hack [19] "Studies of Longitudinal Stream Profiles in Virginia and Maryland"

 $\ell \sim a^h$

 $h \sim 0.6$

Anomalous scaling: we would expect $h = 1/2 \dots$

Subsequent studies: $0.5 \lesssim h \lesssim 0.6$

Another quest to find universality/god ...

A catch: studies done on small scales.

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Large-scale networks:

(1992) Montgomery and Dietrich [36]:

 $L \simeq 1.78a^{0.49}$

Mixture of basin and main stream lengths.

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

World's largest rivers only:

Data from Leopold (1994) [31, 13]

 \Leftrightarrow Estimate of Hack exponent: $h = 0.50 \pm 0.06$

COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Building on the surface area idea:

- McMahon (70's, 80's): Elastic Similarity [32, 34]
- Idea is that organismal shapes scale allometrically with 1/4 powers (like trees ...)
- Disastrously, cites Hemmingsen [21] for surface area data.
- Appears to be true for ungulate legs ... [33]
- Metabolism and shape never properly connected.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"Size and shape in biology"

T. McMahon, Science, **179**, 1201–1204, 1973. [32]

Fig. 3. (a) Chest circumference, d_{c_i} plotted against body weight, W_i for five species of primates. The broken lines represent the standard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, l_i increases as the $\frac{1}{2}$ 6 power of diameter, d_i is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for vertebrates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (81)].

COcoNuTS -

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Coriciusion

surrounded by a circle represent beech trees. The nuthorities of the data are in approximate order of hody sizes of organisms: Fishes (Tinca, Esax, Salaro, Pleuronectes Resus, Annuilla, Creniinbrus, Lu-Srue: 9.84 p-2 kg), Jan Bokrius (unpublished). Frogs (3.5-32 g), lisards (3-13 g), Fay, 1914, p. 191. Ross excalente (25 and 50 g), Krosss, 1904, p. 404. Lizzeds (Lecerta assertis and viridis, August fragiliz: 5-26 g) and Ringed Snake (47-100 g), Isano, 1911, pp. 7-8. Teuch (Times: 211 g), frog (44 g), rabbit (3.6 kg), Very, 1930, no. 239, 244, 245, Dogs (7 and 30 kg), pigs, (3 and 100 kg), horses (175 and 900 kg), monkeys (2.5 and 5.5 kg), man (6 and 65 kg), Bacer, Convers and Marrietws, 1928, pp. 8, 30, 33 and 51. Snakes (rattle-snake, small and large python, box: 8.5-32 kg), Busineers, 1932, p. 146. Rate (20 and 250 g), cattle (20 and 460 kg), Becov, 1945, pp. 360, 361. Giant shark (2.75 I), rhinoseres (1 I), Hassensesses, 1950, pp. 30 and 43. Beech trees without leaves and roots (30 kg-1.3 t), Maller, Nittlsess and Mileage, 1954, tables 2-4 on pp. 277-281.

assuming a specific gravity of 1.8. Nuturally, the inclination of this line curresponds to a proportionality power of 0.97. Of the unicelular organism represented in fig. 1 and 1 few market gapt; and must of the either have surfaces exceeding those of spheres of equal volume by rarely more than what curregrams in 1.0 decessed in the long-contains experime (Photoderlerium 1.5. 0.1.1 decade, the ciliates Colpidium and Paramacelium; 18-2.5%, i.e. along 1.368—0.00 decade; calcataled on the basic

phasphorocerus: 12 %, i.e. 8.05 diezade, Escherchian cuir: 34, p. 6, 13 decade, inc. 6, 13 decade decade, inc. 6, 10 decade decade,

It will be seen from fig. 10 that the points representing the holy ourfaces of the mediane similar is negotiate are ground promised in the agolver fine: that is, also corresponding to a pre-world fail should also place fine: that is, also corresponding to a pre-world fail should also placepithinel decode above the sphere fine, meaning that on the average the body surface is roughly 2 families, 0.201 times higher in the animal moder they'd bank of the contrast of the contrast is a fine of the contrast in the property of the contrast in the property of the contrast is the property of the contrast in the property of the contrast is the contrast in the property of the contrast in the property of the contrast is the contrast in the property of the contrast in the property of the contrast is the contrast in t

body surface in $em^2 \equiv k \cdot body$ weight^{0,67}

as fabularized by Bisonice (1938, p. 176) for various birds and manimals weighing 8 g—14 kg; because this is about double the value of k for sphere surface (4.85). The value of k (13.95) found by Kisokar (1910) for Arcariz is 2.0 times 5.85, and this corresponds well with the above nentioned figure 3 for the much larger retition of similar shape.

Hemmingsen's "fit" is for a 2/3 power, notes possible 10 kg transition.

COCONUTS

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

Earlier theories (1977):

Building on the surface area idea ...

Blum (1977) [5] speculates on four-dimensional biology:

$$P \propto M^{(d-1)/d}$$

$$d = 3$$
 gives $\alpha = 2/3$

$$d = 4$$
 gives $\alpha = 3/4$

So we need another dimension ...

Obviously, a bit silly... [46]

COcoNuTS *

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Nutrient delivering networks:

- 1960's: Rashevsky considers blood networks and finds a 2/3 scaling.
- 3/4 scaling. 1997: West *et al.* [53] use a network story to find

COcoNuTS =

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

West et al.'s assumptions:

- 1. hierarchical network
- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:

 $P \propto M^{3/4}$

quarter powers everywhere

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Impedance measures:

COCONUTS

Poiseuille flow (outer branches):

$$Z = \frac{8\mu}{\pi} \sum_{k=0}^{N} \frac{\ell_k}{r_k^4 N_k}$$

Pulsatile flow (main branches):

$$Z \propto \sum_{k=0}^N \frac{h_k^{1/2}}{r_k^{5/2} N_k}$$

- Wheel out Lagrange multipliers ...
- \red Poiseuille gives $P \propto M^1$ with a logarithmic correction.
- Pulsatile calculation explodes into flames.

Metabolism and Truthicide

fractions Measuring

exponents

River networks

Earlier theories

Geometric argument

Actually, model shows:

- $Rrightarrow P \propto M^{3/4}$ does not follow for pulsatile flow
- networks are not necessarily fractal.

Do find:

Murray's cube law (1927) for outer branches: [37]

$$r_0^3 = r_1^3 + r_2^3$$

- Impedance is distributed evenly.
- Can still assume networks are fractal.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Connecting network structure to α

1. Ratios of network parameters:

$$R_n = \frac{n_{k+1}}{n_k}, \ R_\ell = \frac{\ell_{k+1}}{\ell_k}, \ R_r = \frac{r_{k+1}}{r_k}$$

2. Number of capillaries $\propto P \propto M^{\alpha}$.

$$\Rightarrow \boxed{\alpha = -\frac{\ln\!R_n}{\ln\!R_r^2 R_\ell}}$$

(also problematic due to prefactor issues)

Obliviously soldiering on, we could assert:

$$n_r \equiv R_n$$

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References

 $\Rightarrow \alpha = 3/4$

Data from real networks:

Network	R_n	R_r	R_{ℓ}	$-rac{\ln\!R_r}{\ln\!R_n}$	$-\frac{\ln\!R_\ell}{\ln\!R_n}$	α
West <i>et al</i> .	-	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) (Turcotte <i>et al.</i> ^[50])	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX) pig (RCA) pig (LAD)	3.57 3.50 3.51	1.89 1.81 1.84	2.20 2.12 2.02	0.50 0.47 0.49	0.62 0.60 0.56	0.62 0.65 0.65
human (PAT) human (PAT)	3.03	1.60	1.49 1.49	0.42 0.37	0.36 0.33	0.83

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories
Geometric

argument

Attempts to look at actual networks:

"Testing foundations of biological scaling theory using automated measurements of vascular networks"

Newberry, Newberry, and Newberry, PLoS Comput Biol, **11**, e1004455, 2015. [38]

"<u>"</u>"

Newberry et al., PLoS Comput Biol, **11**, e1004455, . [?] Metabolism and Truthicide

fractions

Measuring

exponents

River networks

Earlier theories

Geometric argument

Conclusion

Some people understand it's truly a disaster:

"Power, Sex, Suicide: Mitochondria and the Meaning of Life" 3, 12 by Nick Lane (2005). [30]

"As so often happens in science, the apparently solid foundations of a field turned to rubble on closer inspection."

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Let's never talk about this again:

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science Magazine, 284, 1677-1679, 1999 [54]

- No networks: Scaling argument for energy exchange area a.
- Distinguish between biological and physical length scales (distance between mitochondria versus cell radius).
- \triangle Buckingham π action. [9]
- Arrive at $a \propto M^{D/D+1}$ and $\ell \propto M^{1/D}$.
- New disaster: after going on about fractality of a, then state $v \propto a\ell$ in general.

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"A General Model for the Origin of Allometric Scaling Laws in Biology" West, Brown, and Brown, Science, **276**, 122–126, 1997. [53]

"Nature" 2

West, Brown, and Enquist, Nature, **400**, 664–667, 1999. [55]

"The fourth dimension of life: Fractal geometry and allometric scaling of organisms"

West, Brown, and Enquist, Science Magazine, **284**, 1677–1679, 1999. [54] Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

- J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283–9, 2004. [28]
- J. H. Brown, G. B. West, and B. J. Enquist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735–738, 2005. [7]
- J. Kozlowski, M. Konarzewski. "West, Brown and Enquist's model of allometric scaling again: the same questions remain." Functional Ecology 19: 739–743, 2005.

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"Curvature in metabolic scaling" (Constitution of the Kolokotrones, Savage, Savage, and

Fontana.

Nature, **464**, 753, 2010. [27]

Let's try a quadratic:

$$\log_{10}P\sim\log_{10}c+\alpha_1\log_{10}M+\alpha_2\log_{10}M^2$$

COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Yah:

Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic (blue) fits (not including temperature) of log10B versus log10M. The orca (green square) and Asian elephant (ref. 4: turquoise square at larger mass) are not included in the fit, but are predicted well. Differences in the quality of fit are best seen in terms of the conditional mean of the error, estimated by the lowess (locally-weighted scatterplot smoothing) fit of the residuals (Supplementary Information). See Table 1 for the values of the coefficients obtained from the fit, b. Slope of the quadratic fit (including temperature) with pointwise 95% confidence intervals (blue). The slope of the power-law fit (red) and models with fixed 2/3 and 3/4 exponents (black) are included for comparison. This panel suggests that exponents estimated by assuming a power law will be highly sensitive to the mass range of the data set used, as shown in Fig. 2.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"This raises the question of whether the theory can be adapted to agree with the data"1

Figure 2 | Scaling exponent depends on mass range. a, Slope estimated by linear regression within a three log-unit mass range (smaller near the boundaries). Values on the abscissa denote mean logo M within the range. When the 95% confidence regions (dashed lines) include the 2/3 or 3/4 lines. the local slope is consistent with a 2/3 or 3/4 exponent, respectively. These cases are indicated by the shaded regions (2/3 on the left and 3/4 on the right), b. Slope estimated by using all data points with $M \le x$. The shaded region is consistent with 2/3 slope estimates, c. Slope estimated by using all data points with M > x. The shaded region is consistent with 3/4 slope

estimates. d, Exponents estimated for eight historical data sets using linear regression (black filled circles): Lovegrove13, Lovegrove14, White18, White28, Sieg16, McNab8, and Savage6 using species average data ('Savage6') and binned data ('Savage' bin'). Exponents predicted using coefficients from quadratic fits to McNab's (red), Sieg's (green), or Savage's (blue) data and the first three moments of loganM (Supplementary Information). Thick lines represent uncorrected 95% confidence intervals. Thin lines are multiplicity corrected intervals

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Evolution has generally made things bigger¹

"The Phantom Tollbooth" 3 2 by Norton Juster (1961). [24]

Regression starting at low M makes sense

Regression starting at high M makes ...no sense

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Still going:

"A general model for metabolic scaling in self-similar asymmetric networks" Brummer, Brummer, and Enquist, PLoS Comput Biol, **13**, e1005394, 2017. [8]

Wut?:

"Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks."

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

"Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" **3**, by Geoffrey B. West (2017). [52]

Amazon reviews excerpts (so, so not fair but ...):

"Full of intriguing, big ideas but amazingly sloppy both in details and exposition, especially considering the author is a theoretical physicist."

"The beginning is terrible. He shows four graphs to illustrate scaling relationships, none of which have intelligible scales"

"(he actually repeats several times that businesses can die but are not really an animal - O RLY?)"

COcoNuTS -

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Banavar et al., Nature, $(1999)^{[1]}$.

- Flow rate argument.
- Ignore impedance.
- Very general attempt to find most efficient transportation networks.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Simple supply networks

Banavar et al. find 'most efficient' networks with

$$P \propto M^{d/(d+1)}$$

🚵 ...but also find

$$V_{
m network} \propto M^{\,(d+1)/d}$$

$$d = 3$$
:

$$V_{\rm blood} \propto M^{4/3}$$

 \Leftrightarrow Consider a 3 g shrew with $V_{\text{blood}} = 0.1 V_{\text{body}}$

$$\Leftrightarrow$$
 3000 kg elephant with $V_{\rm blood}$ = $10V_{\rm body}$

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

"Optimal Form of Branching Supply and Collection Networks"

Peter Sheridan Dodds, Phys. Rev. Lett., **104**, 048702, 2010. [12]

- Assume sinks are invariant.
- Assume sink density $\rho = \rho(V)$.
- Assume some cap on flow speed of material.
- See network as a bundle of virtual vessels:

COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

COcoNuTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

Q: how does the number of sustainable sinks N_{sinks} scale with volume V for the most efficient network design?

 \mathfrak{S} Or: what is the highest α for $N_{\text{sinks}} \propto V^{\alpha}$?

Allometrically growing regions:

$$L_i \propto V^{\gamma_i}$$
 where $\gamma_1 + \gamma_2 + ... + \gamma_d = 1$.

For allometric growth, we must have at least two of the $\{\gamma_i\}$ being different

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories Geometric

argument

Spherical cows and pancake cows:

Assume an isometrically Scaling family of cows:

Extremes of allometry: The pancake cows-

COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Spherical cows and pancake cows:

Question: How does the surface area S_{cow} of our two types of cows scale with cow volume V_{cow} ? Insert question from assignment 4 \square

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

COcoNuTS

Best and worst configurations (Banavar et al.)

Rather obviously:

 $minV_{net} \propto \sum$ distances from source to sinks.

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Real supply networks are close to optimal:

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" [16]

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

"Rules for Biologically Inspired Adaptive Network Design" Tero et al.,
Science, **327**, 439-442, 2010. [49]

Urban deslime in action:

https://www.youtube.com/watch?v=GwKuFREOgmo@

COcoNuTS -

Metabolism and

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References

20 0 86 of 126

We add one more element:

- Vessel cross-sectional area may vary with distance from the source.
- Flow rate increases as cross-sectional area decreases.
- e.g., a collection network may have vessels tapering as they approach the central sink.
- Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric

Conclusion

Effecting scaling:

& Consider vessel radius $r \propto (\ell+1)^{-\epsilon}$, tapering from $r = r_{\text{max}}$ where $\epsilon \geq 0$.

 \Leftrightarrow Gives $v \propto 1 - \ell^{-(2\epsilon - 1)} \to 1$ for large ℓ if $\epsilon > 1/2$

 \red Previously, we looked at $\epsilon = 0$ only.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Minimal network volume:

For $0 \le \epsilon < 1/2$, approximate network volume by integral over region:

$$\mathrm{min} V_{\mathrm{net}} \propto \int_{\Omega_{d,D}(V)} \rho \, ||\vec{x}||^{1-2\epsilon} \, \mathrm{d}\vec{x}$$

Insert question , assignment 4 🗹 <2->

$$\propto
ho V^{1+\gamma_{\max}(1-2\epsilon)}$$
 where $\gamma_{\max}=\max_i \gamma_i.$

For $\epsilon > 1/2$, find simply that

$$minV_{net} \propto \rho V$$

So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible. COCONUTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

$$extstyle \min V_{ extstyle extstyle$$

 \mathfrak{R} If scaling is isometric, we have $\gamma_{\mathsf{max}} = 1/d$:

$${\sf min}V_{\sf net/iso} \propto
ho V^{1+(1-2\epsilon)/d}$$

\$ If scaling is allometric, we have $\gamma_{\text{max}} = \gamma_{\text{allo}} > 1/d$: and

$$ext{min}V_{ ext{net/allo}} \propto
ho V^{1+(1-2\epsilon)\gamma_{ ext{allo}}}$$

Isometrically growing volumes require less network volume than allometrically growing volumes:

$$\frac{\mathrm{min}V_{\mathrm{net/iso}}}{\mathrm{min}V_{\mathrm{net/allo}}} \rightarrow 0 \text{ as } V \rightarrow \infty$$

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

For $\epsilon > 1/2$:

$${\sf min}V_{\sf net} \propto
ho V$$

Network volume scaling is now independent of overall shape scaling.

Limits to scaling

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

onclusion

References

This is a really clean slide

- Velocity at capillaries and aorta approximately constant across body size [51]: $\epsilon = 0$.
- Material costly ⇒ expect lower optimal bound of $V_{\mathsf{net}} \propto \rho V^{(d+1)/d}$ to be followed closely.
- A For cardiovascular networks, d = D = 3.
 - Blood volume scales linearly with body volume [47], $V_{\rm net} \propto V$.
- Sink density must : decrease as volume increases:

$$\rho \propto V^{-1/d}$$
.

Density of suppliable sinks decreases with organism size.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Blood networks

COCONUTS

& Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$P \propto \rho V \propto \rho M \propto M^{(d-1)/d}$$

3 For d=3 dimensional organisms, we have

$$P \propto M^{2/3}$$

Including other constraints may raise scaling exponent to a higher, less efficient value. Metabolism and Truthicide

Death by fractions

Measuring

exponents

River networks

Earlier theories
Geometric

argument

References

Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes. Insert question from assignment 4 2

The surface area-supply network mismatch for allometrically growing shapes: POCNsinks OCVI-BMAX

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

- mammals up to 10-30 kg
- For mammals > 10-30 kg, maybe we have a new scaling regime
- Economos: limb length break in scaling around 20 kg
- Nhite and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 + 0.014$

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Geometric argument

Stefan-Boltzmann law:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \sigma S T^4$$

where S is surface and T is temperature.

Very rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S:

$$B \simeq 10^5 M^{2/3}$$
erg/sec.

& Measured for $M \leq 10$ kg:

$$B = 2.57 \times 10^5 M^{2/3}$$
erg/sec.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

River networks

Many sources and one sink.

& ϵ ?

 \clubsuit Assume ρ is constant over time and $\epsilon = 0$:

$$V_{
m net} \propto
ho V^{(d+1)/d} = {
m constant} imes V^{\,3/2}$$

Network volume grows faster than basin 'volume' (really area).

🙈 It's all okay:

Landscapes are d=2 surfaces living in D=3 dimensions.

Streams can grow not just in width but in depth ...

& If $\epsilon > 0$, V_{net} will grow more slowly but 3/2 appears to be confirmed from real data.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Hack's law

Flows sum in such a way that

$$V_{\mathsf{net}} = \sum_{\mathsf{all \ pixels}} a_{\mathsf{pixel} \ i}$$

A Hack's law again:

$$\ell \sim a^h$$

🙈 Can argue

$$V_{\rm net} \propto V_{\rm basin}^{1+h} = a_{\rm basin}^{1+h}$$

where h is Hack's exponent.

$$h = 1/2$$

COcoNuTS -

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

- & Banavar et al.'s approach [1] is okay because ρ really is constant.
- The irony: shows optimal basins are isometric
- $lap{a}$ Optimal Hack's law: $\ell \sim a^h$ with h=1/2
- 🙈 (Zzzzz)

From Banavar et al. (1999)^[1]

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

Even better—prefactors match up:

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Banavar et al., 2010, PNAS: "A general basis for quarter-power scaling in animals." [2]

"It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always < 1, > 2/3, and often very close to 3/4."

Cough, cough, hack, wheeze, cough.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Stories—Darth Quarter:

COcoNuTS

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Peter Sheridan Dodds, Theoretical Biology's Buzzkill

By Mark Changizi | February 9th 2010 03:24 PM | 1 comment | ← Print | ← Femail | Track Comments

There is an apocryphal story about a graduate mathematics student at the University of Virginia studying the properties of certain mathematical objects. In his fifth year some killjoy bastard elsewhere published a paper proving that there are no such mathematical objects. He dropped out of the program, and I never did hear where

he is today. He's probably making my cappuccino right now.

This week, a professor named Peter Sheridan Dodds published a new paper in Physical Review Letters further fleshing out a theory concerning why a 2/3 power law may apply for metabolic rate. The 2/3 law says that metabolic rate in animals rises as the 2/3 power of body mass. It was in a 2001 Journal of Theoretical Biology paper that he first argued that perhaps a 2/3 law applies, and that paper -- along with others such as the one that just appeared -- is what has put him in the Killiov Hall of Fame. The University of Virginia's killjoy was a mere amateur.

Mark Changizi

MORE ARTICLES

- . The Ravenous Color-Blind: New Developments For Color-Deficients
- · Don't Hold Your Breath Waiting For Artificial Brains
- · Welcome To Humans. Version 3.0

AROUT MARK

Mark Changizi is Director of Human Cognition at 2AL and the author of The Vision Revolution (Benbella 2009) and Harnessed How

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

The unnecessary bafflement continues:

"Testing the metabolic theory of ecology" [40]

C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson Ecology Letters, 15, 1465-1474, 2012.

COCONUTS

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Artisanal, handcrafted

"Critical truths about pow Stumpf and Porter, Scien

How good is your power law? The chart reflects the level of statistical support—as measured in (16. 21)—and our opinion about the mechanistic sophistication underlying hypothetical generative models for various reported power laws. Some relationships are identified by name; the others reflect the general characteristics of a wide range of reported power laws. Allometric scaling stands out from the other power laws reported for complex systems.

Call generalization of Central Limit Theorem, stable distributions. Also: PLIPLO action.

Summary: Wow.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories Geometric

argument

References

20 € 107 of 126

- Supply network story consistent with dimensional analysis.
- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter (D=d versus D>d).
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.
- 2/3-scaling lives on, largely in hiding.
- 3/4-scaling? Jury ruled a mistrial.
- The truth will out. Maybe.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Geometric argument

Conclusion

[1] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks.

Nature, 399:130-132, 1999. pdf

[2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, and A. Maritan. A general basis for quarter-power scaling in animals.
Proc. Natl. Acad. Sci., 107:15816, 15820, 2010.

Proc. Natl. Acad. Sci., 107:15816–15820, 2010. pdf 2

[3] P. Bennett and P. Harvey.
Active and resting metabolism in
birds—allometry, phylogeny and ecology.
J. Zool., 213:327–363, 1987. pdf

Metabolism and Truthicide

fractions

exponents

River networks

Earlier theories

Geometric argument

- [4] K. L. Blaxter, editor.

 Energy Metabolism; Proceedings of the 3rd
 symposium held at Troon, Scotland, May 1964.

 Academic Press, New York, 1965.
- [5] J. J. Blum.

 On the geometry of four-dimensions and the relationship between metabolism and body mass.

J. Theor. Biol., 64:599-601, 1977. pdf

[6] S. Brody.

Bioenergetics and Growth.

Reinhold, New York, 1945.

reprint, pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

[7] J. H. Brown, G. B. West, and B. J. Enquist. Yes, West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology, 19:735--738, 2005. pdf 2

A. B. Brummer, S. V. M., and B. J. Enquist. [8] A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput Biol, 13, 2017. pdf

E. Buckingham. [9] On physically similar systems: Illustrations of the use of dimensional equations. Phys. Rev., 4:345-376, 1914, pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51:661–703, 2009. pdf

[11] M. H. DeGroot.
Probability and Statistics.
Addison-Wesley, Reading, Massachusetts, 1975.

[12] P. S. Dodds.

Optimal form of branching supply and collection networks.

Phys. Rev. Lett., 104(4):048702, 2010. pdf

[13] P. S. Dodds and D. H. Rothman.
Scaling, universality, and geomorphology.
Annu. Rev. Earth Planet. Sci., 28:571–610, 2000.
pdf

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

[14] P. S. Dodds, D. H. Rothman, and J. S. Weitz.

Re-examination of the "3/4-law" of metabolism.

Journal of Theoretical Biology, 209:9–27, 2001.

pdf

[15] A. E. Economos.
Elastic and/or geometric similarity in mammalian design.

Journal of Theoretical Biology, 103:167–172, 1983. pdf 🗹

[16] M. T. Gastner and M. E. J. Newman. Shape and efficiency in spatial distribution networks.

J. Stat. Mech.: Theor. & Exp., 1:P01015, 2006. pdf 2

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[17] D. S. Glazier.

Beyond the '3/4-power law': variation in the intraand interspecific scaling of metabolic rate in animals.

Biol. Rev., 80:611-662, 2005. pdf

[18] D. S. Glazier.

The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals.

BioScience, 56:325-332, 2006. pdf

[19] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References

[20] A. Hemmingsen.

The relation of standard (basal) energy metabolism to total fresh weight of living organisms.

Rep. Steno Mem. Hosp., 4:1-58, 1950. pdf

[21] A. Hemmingsen.

Energy metabolism as related to body size and respiratory surfaces, and its evolution.

Rep. Steno Mem. Hosp., 9:1-110, 1960. pdf

[22] A. A. Heusner.

Size and power in mammals.

Journal of Experimental Biology, 160:25–54, 1991. pdf ☑

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[23] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose.
A general scaling law reveals why the largest animals are not the fastest.
Nature Ecology & Evolution, 1:1116, 2017. pdf

[24] N. Juster.

The Phantom Tollbooth.

Random House, 1961.

[25] M. Kleiber.

Body size and metabolism.

Hilgardia, 6:315–353, 1932. pdf

[26] M. Kleiber.

The Fire of Life. An Introduction to Animal
Energetics.

Wiley, New York, 1961.

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Coriciusion

[27] T. Kolokotrones, V. Savage, E. J. Deeds, and W. Fontana. Curvature in metabolic scaling. Nature, 464:753, 2010. pdf ☑

[28] J. Kozłowski and M. Konarzewski.
Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?

Functional Ecology, 18:283--289, 2004. pdf

[29] P. La Barbera and R. Rosso.
On the fractal dimension of stream networks.
Water Resources Research, 25(4):735–741, 1989.
pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[30] N. Lane.

Power, Sex, Suicide: Mitochondria and the Meaning of Life.

Oxford University Press, Oxford, UK, 2005.

[31] L. B. Leopold.

A View of the River.

A View of the River.

Harvard University Press, Cambridge, MA, 1994.

[32] T. McMahon.

Size and shape in biology.

Science, 179:1201–1204, 1973. pdf

[33] T. A. McMahon.

Allometry and biomechanics: Limb bones in adult ungulates.

The American Naturalist, 109:547–563, 1975.

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[34] T. A. McMahon and J. T. Bonner. On Size and Life. Scientific American Library, New York, 1983.

[35] N. Meyer-Vernet and J.-P. Rospars. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. American Journal of Physics, pages 719-722, 2015. pdf

[36] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape scale.

Science, 255:826-30, 1992. pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[37] C. D. Murray.

A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725-729, 1927. pdf 2

[38] M. G. Newberry, E. D. B., and S. V. M. Testing foundations of biological scaling theory using automated measurements of vascular networks.

PLoS Comput Biol, 11:e1004455, 2015. pdf

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C.

Cambridge University Press, second edition, 1992.

Metabolism and Truthicide

fractions Measuring

exponents

River networks

Earlier theories

Geometric argument

[40] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15:1465-1474, 2012. pdf

[41] J. M. V. Rayner.

Linear relations in biomechanics: the statistics of scaling functions.

J. Zool. Lond. (A), 206:415-439, 1985. pdf

[42] M. Rubner.

Ueber den einfluss der körpergrösse auf stoffund kraftwechsel.

Z. Biol., 19:535-562, 1883. pdf

Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References XIV

COcoNuTS

[43] P. A. Samuelson.
A note on alternative regressions.
Econometrica, 10:80–83, 1942. pdf

[44] Sarrus and Rameaux.

Rapport sur une mémoire adressé à l'Académie de Médecine.

Bull, Acad. R. Méd. (Paris), 3:1094-1100, 1838-39.

[45] V. M. Savage, E. J. Deeds, and W. Fontana.
Sizing up allometric scaling theory.
PLoS Computational Biology, 4:e1000171, 2008.
pdf

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

Conclusion

References XV

COCONUTS

[46] I. Speakman.

On Blum's four-dimensional geometric explanation for the 0.75 exponent in metabolic allometry.

J. Theor. Biol., 144(1):139-141, 1990. pdf

[47] W. R. Stahl. Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22:453-460, 1967.

[48] M. P. H. Stumpf and M. A. Porter. Critical truths about power laws. Science, 335:665-666, 2012. pdf Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki.

Rules for biologically inspired adaptive network design.

Science, 327(5964):439-442, 2010. pdf

[50] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998. pdf

[51] P. D. Weinberg and C. R. Ethier.

Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas.

Journal of Biomechanics, 40(7):1594–1598, 2007.

pdf

Metabolism and Truthicide

Death by fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

[52] G. B. West.

Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies. Penguin Press, New York, 2017.

[53] G. B. West, J. H. Brown, and B. J. Enguist. A general model for the origin of allometric scaling laws in biology. Science, 276:122-126, 1997. pdf

[54] G. B. West, J. H. Brown, and J. Enquist. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science Magazine, 284:1677-1679, 1999. pdf Metabolism and Truthicide

fractions

Measuring exponents

River networks

Earlier theories

Geometric argument

References XVIII

Metabolism and

fractions

COCONUTS

Measuring exponents

River networks

Earlier theories

Geometric argument

References

[55] G. B. West, J. H. Brown, and J. Enquist.
Nature.

Nature, 400:664-667, 1999. pdf

[56] C. R. White and R. S. Seymour.

Allometric scaling of mammalian metabolism.

J. Exp. Biol., 208:1611–1619, 2005. pdf