Optimal Supply Networks II: Blood, Water, and Truthicide

Last updated: 2018/03/23, 20:59:06
Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics \& Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

 of VERMONT

These slides are brought to you by:

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 $\begin{array}{lllllll}0 & 7,0 & 8,0 & 9,0 & 100\end{array}$

$10 \quad 50 \quad 6107$

6	1.5	1.4	1.3	1.2

These slides are also brought to you by:

Special Guest Executive Producer

웅 On Instagram at pratchett_the_cat[

Metabolismand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

| 0 | 7,0 | 80 | 9,0 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$ | | | | |
| $\|\mid$ | | | | |
| 10 | 50 | 610 | 70 | |

6	1.5	1.4	1.3
	i	1	1

n

Outline

Metabolism and Truthicide

Death by fractions
Measuring exponents
River networks
Earlier theories

Geometric argument

Conclusion

References

Stories-The Fraction Assassin:

Metabolismand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 $0 \quad 7,080,0,0100$

Law and Order, Special Science Edition: Truthicide Department

"In the scientific integrity system known as peer review, the people are represented by two highly overlapping yet equally important groups: the independent scientists who review papers and the scientists who punish those who publish garbage. This is one of their stories."

Animal power

Fundamental biological and ecological constraint:

$$
\begin{gathered}
P=c M^{\alpha} \\
P=\text { basal metabolic rate } \\
M=\text { organismal body mass }
\end{gathered}
$$

Metabolism and Trūthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSTIY IV VERMONT

$$
P=c M^{\alpha}
$$

Prefactor c depends on body plan and body temperature:

Birds	$39-41^{\circ} \mathrm{C}$
Eutherian Mammals	$36-38^{\circ} \mathrm{C}$
Marsupials	$34-36^{\circ} \mathrm{C}$
Monotremes	$30-31^{\circ} \mathrm{C}$

Metabolism and Trựthicióde

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

Zhn
UNIVERSTITY UVERMONT

What one might expect:

$\alpha=2 / 3$ because \ldots
Dimensional analysis suggests an energy balance surface law:

$$
P \propto S \propto V^{2 / 3} \propto M^{2 / 3}
$$

Assumes isometric scaling (not quite the spherical cow).

- Lognormal fluctuations:

Gaussian fluctuations in $\log _{10} P$ around $\log _{10} c M^{\alpha}$.

- Stefan-Boltzmann law [\rceil for radiated energy:

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sigma \varepsilon S T^{4} \propto S
$$

Metabolism and Trūthīide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY VIVRMONT

The prevailing belief of the Church of Quarterology:

	Metabolism and Trüthicide - Death by fractions		
$\alpha=3 / 4$	Measuring exponents		
$P \propto M^{3 / 4}$	River networks		
	Earlier theories		Geometric
:---			
argument			

Huh?

๑ac 10 of 126

The prevailing belief of the Church of Quarterology:

Most obvious concern:

$$
3 / 4-2 / 3=1 / 12
$$

An exponent higher than $2 / 3$ points suggests a fundamental inefficiency in biology.
\& Organisms must somehow be running 'hotter' than they need to balance heat loss.

Related putative scalings:

Wait! There's more!:

number of capillaries $\propto M^{3 / 4}$
R time to reproductive maturity $\propto M^{1 / 4}$
heart rate $\propto M^{-1 / 4}$
cross-sectional area of aorta $\propto M^{3 / 4}$
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
population density $\propto M^{-3 / 4}$

The great 'law' of heartbeats:

Assuming:

Average lifespan $\propto M^{\beta}$
Average heart rate $\propto M^{-\beta}$
Irrelevant but perhaps $\beta=1 / 4$.

Then:

- Average number of heart beats in a lifespan \simeq (Average lifespan $) \times$ (Average heart rate)

$$
\begin{aligned}
& \propto M^{\beta-\beta} \\
& \propto M^{0}
\end{aligned}
$$

Number of heartbeats per life time is independent of organism size!
R ≈ 1.5 billion

Metabolism and Trüthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIIERSITY VERMONT

From PoCS，the Prequel to CocoNuTs：

＂How fast do living organisms move： Maximum speeds from bacteria to elephants and whales＂© Meyer－Vernet and Rospars， American Journal of Physics，83，719－722， 2015．${ }^{[35]}$

Fig．1．Maximum relative speed versus body mass for 202 running species（ 157 mammals plotted in magenta and 45 non－mammals plotted in green）， 127 swimming species and 91 micro－organisms（plotted in blue）．The sources of the data are given in Ref．16．The solid line is the maximum relative speed ［Eq．（13）］estimated in Sec．III．The human world records are plotted as asterisks（upper for running and lower for swimming）．Some examples of organisms of various masses are sketched in black（drawings by François Meyer）．

Metabolism and Trūthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A animals are not the fastest"
Hirt et al.,

Nature Ecology \& Evolution, 1, 1116, 2017. [23]
Metabolism and Truūthicioide

Death by
fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 g VERMONT

"A general scaling law reveals why the largest animals are not the fastest" [
 Hirt et al.,
 Nature Ecology \& Evolution, 1, 1116, 2017. [23]

Metabolism and Trūuthicide

Death by fractions

Measuring
exponents
River networks

Earlier theories
Geometric
argument
Conclusion
References

Figure 4 ｜Predicting the maximum speed of extinct species with the time－
dependent model．The model prediction（grey line）is fitted to data of extant
species（grey circles）and extended to higher body masses．Speed data for dinosaurs（green triangles）come from detailed morphological model calculations（values in Table 1）and were not used to obtain model parameters．

Maximum speed increases with size：$v_{\max }=a M^{b}$
8
Takes a while to get going：
$v(t)=v_{\max }\left(1-e^{-k t}\right)$
$k \sim F_{\max } / M \sim c M^{d-1}$
Literature： $0.75 \lesssim d \lesssim 0.94$
Acceleration time＝ depletion time for anaerobic energy：$\tau \sim f M^{g}$ Literature： $0.76 \lesssim g \lesssim 1.27$
\＆$v_{\text {max }}=a M^{b}\left(1-e^{-h M^{i}}\right)$
组 $i=d-1+g$ and $h=c f$

Metabolism and Trựthiciole

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY of VERMONT

A theory is born:

Metabolismand Truthicide

Death by
1840's: Sarrus and Rameaux ${ }^{[44]}$ first suggested $\alpha=2 / 3$. frāc̄iōns

Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References

僉 UNVERSITY
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$
つa@ 19 of 126

A theory grows:

1883: Rubner ${ }^{[42]}$ found $\alpha \simeq 2 / 3$.

Metabolismiand
Truthicide
Death by
fractions
Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References

 | 0 | 7,0 | 80 | 9,0 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$ | | | | |
| $\|\mid$ | | | | |
| 10 | 50 | 50 | 610 | 76 |
| 6 | 1.5 | 1.4 | 1.3 | 1.2 |

UNIVERSTIY UVERMONT

っa^ 20 of 126

Theory meets a different 'truth':

1930's: Brody, Benedict study mammals. ${ }^{[6]}$ Found $\alpha \simeq 0.73$ (standard).

Our hero faces a shadowy cabal：

Metabolismand
Truthicide
Death by
fräctions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 っのく 22 of 126

When a cult becomes a religion:

1950/1960: Hemmingsen ${ }^{[20,21]}$
Extension to unicellular organisms.
$\alpha=3 / 4$ assumed true.

Metabolismand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References

ZM UNVERSITY $\left.\right|_{0} ^{O}$

Quarterology spreads throughout the land:

The Cabal assassinates 2/3-scaling:
1964: Troon, Scotland.
3rd Symposium on Energy Metabolism.

- $\alpha=3 / 4$ made official ...

Metabolismiand
Truthicide
Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY UVERMONT

An unsolved truthicide:

So many questions ...

Did the truth kill a theory? Or did a theory kill the truth?
Or was the truth killed by just a lone, lowly hypothesis?
Does this go all the way to the top? To the National Academies of Science?

Metabolismand Truthicide

Death by frāciṑ̄

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
Is 2/3-scaling really dead?
Could 2/3-scaling have faked its own death?
What kind of people would vote on scientific facts?

Modern Quarterology, Post Truthicide

$3 / 4$ is held by many to be the one true exponent.
Metabolismiand
Truthicide
Death by fractions
Measuring
exponents
In the Beat of a Heart: Life, Energy, and the Unity of Nature-by John Whitfield

River networks
Earlier theories
Geometric

argument
Conclusion
References
\& But: much controversy ...
\& See 'Re-examination of the "3/4-law" of metabolism'
by the Heretical Unbelievers Dodds, Rothman, and Weitz ${ }^{[14]}$, and ensuing madness ...

Some data on metabolic rates

8 Heusner's data
$(1991)^{[22]}$

- 391

Mammals
R blue line: $2 / 3$
s red line: $3 / 4$.
R $(B=P)$

Metabolismiand Truthicide

Death by fractions
Measuring exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つのल 28 of 126

Some data on metabolic rates

- Bennett and Harvey's data (1987) ${ }^{[3]}$
- 398 birds
blue line: $2 / 3$
red line: $3 / 4$.

R Passerine vs. non-passerine issue ...

Metabolismand
Truthicide
Death by frāc̄iōns

Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References

Linear regression

Important:

\& Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\left\{\left(x_{i}, y_{i}\right)\right\}$ when we know the x_{i} are measured without error.

- Here we assume that measurements of mass M have less error than measurements of metabolic
rate B.
R Linear regression assumes Gaussian errors.

Measuring exponents

Metabolismiand Truthicide

Death by fractions

More on regression:

If (a) we don't know what the errors of either variable are,
or (b) no variable can be considered independent,
then we need to use
Standardized Major Axis Linear Regression. [43, 41]
(aka Reduced Major Axis = RMA.)

Measuring
ēx̄p̄ōēn̄t̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

صac 31 of 126

Measuring exponents

For Standardized Major Axis Linear Regression:

$$
\text { slope }_{\text {SMA }}=\frac{\text { standard deviation of } y \text { data }}{\text { standard deviation of } x \text { data }}
$$

- Very simple!

Minimization of sum of areas of triangles induced by vertical and horizontal residuals with best fit line.
\& The only linear regression that is Scale invariant [].
Attributed to Nobel Laureate economist Paul Samuelson [$3,{ }^{[43]}$ but discovered independently by others.
\#somuchwin

Metabolismiand
Truthicide
Death by
fractions
Measuring
ēx̄p̄ōēn̄t̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

つa@ 32 of 126

Measuring exponents

Relationship to ordinary least squares regression is simple:

$$
\begin{aligned}
\text { slope }_{\text {SMA }} & =r^{-1} \times \text { slope }_{\text {OLL } y \text { on } x} \\
& =r \times \text { slope }_{\text {oLs } x \text { on } y}
\end{aligned}
$$

where $r=$ standard correlation coefficient:

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

Groovy upshot: If (1) a paper uses OLS regression when RMA would be appropriate, and (2) r is reported, we can figure out the RMA slope. ${ }^{[41, ~ 29]}$

Metabolismiand Truthicide

Death by fractions

Measuring
ēx̄p̄ōn̄ēt̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY VERMONT

FIG. 4. Observed correiation of calculued windspeed and airspeed in girid
regression and r.m.a. Lines. Figure atiered from Pennycuick (1982), figure 9 .

LINEAR RELATIONS IN BIOMECHANICS
Table II
Calculatedsiatistics of airspeed V_{a} and windspeed V_{w} in the Black-browed alhatross Diomedea melanophris in gliding fight, after Pennycuick (1982)

number of data n 737 means \bar{x}, \bar{y} -3.14 13.35	$\mathrm{~ms}^{-1}$		
variances $S_{x x} . S_{y \bar{y}}$	13.91	8.218	$\left(\mathrm{~ms}^{-1}\right)^{2}$
covariance $S_{x y}$	-4.653		
correlation ρ	-0.435		
model of speed correction: $V_{\mathrm{a}}=x+\beta$			

model	intercept α	gradient β	range $\left(95^{\circ}\right)$
$y(x)$ regression	12.30	-0.334	-0.384 to -0.284
r.m.a.	10.93	-0.769	-0.894 to -0.661
$x(y)$ regression	7.80	-1.766	-2.076 to -1.536
S.r. $b_{\mathrm{c}}=0.5$	10.66	-0.855	-0.997 to -0.737
$b_{\mathrm{e}}=1$ or m.a.	11.59	-0.560	-0.648 to -0.479
$b_{\mathrm{e}}=2$	12.00	-0.431	-0.496 to -0.367

Metabolismiand Truthicide

Death by
fractions
Measuring
èxpōōē̄̄̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY g VERMONT

Heusner's data, 1991 (391 Mammals)

range of M	N	$\hat{\alpha}$
$\leq 0.1 \mathrm{~kg}$	167	0.678 ± 0.038
$\leq 1 \mathrm{~kg}$	276	0.662 ± 0.032
$\leq 10 \mathrm{~kg}$	357	0.668 ± 0.019
$\leq 25 \mathrm{~kg}$	366	0.669 ± 0.018
$\leq 35 \mathrm{~kg}$	371	0.675 ± 0.018
$\leq 350 \mathrm{~kg}$	389	0.706 ± 0.016
	397	0.710 ± 0.021

Metabolismiand Truthicide

Death by fractions

Measuring ēx̄p̄ōn̄̄̄̄̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

๑ac 35 of 126

Bennett and Harvey, 1987 (398 birds)

$M_{\max }$	N	$\hat{\alpha}$
≤ 0.032	162	0.636 ± 0.103
≤ 0.1	236	0.602 ± 0.060
≤ 0.32	290	0.607 ± 0.039
≤ 1	334	0.652 ± 0.030
3.2	371	0.655 ± 0.023
≤ 10	391	0.664 ± 0.020
≤ 32	396	0.665 ± 0.019
≤ 100	398	0.664 ± 0.019

Metabolismiand Truthicide

Death by fractions

Measuring
ēx̄p̄n̄ēt̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References

University
VERMONT
صac 36 of 126

Fluctuations-Things look normal ...

- $P(B \mid M)=1 / M^{2 / 3} f\left(B / M^{2 / 3}\right)$
\& Use a Kolmogorov-Smirnov test.

Metabolismiand Truthicide

Death by fractions

Measuring
ēx̄p̄ōēn̄t̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

 のaल 37 of 126

Hypothesis testing

Test to see if α^{\prime} is consistent with our data $\left\{\left(M_{i}, B_{i}\right)\right\}$:

$$
H_{0}: \alpha=\alpha^{\prime} \text { and } H_{1}: \alpha \neq \alpha^{\prime}
$$

Assume each \mathbf{B}_{i} (now a random variable) is normally distributed about $\alpha^{\prime} \log _{10} M_{i}+\log _{10} c$.
R Follows that the measured α for one realization obeys a t distribution with $N-2$ degrees of freedom.
\& Calculate a p-value: probability that the measured α is as least as different to our hypothesized α^{\prime} as we observe.
R See, for example, DeGroot and Scherish, "Probability and Statistics." ${ }^{[11]}$

Metabolismiand Truthicide

Death by
fractions
Measuring
ēx̄p̄ōn̄ēt̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References

Revisiting the past-mammals

Full mass range:

N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$

Kleiber
13
$0.738<10^{-6}$
0.11

Brody $350.718<10^{-4}<10^{-2}$
Heusner $3910.710<10^{-6}<10^{-5}$
Bennett $3980.6640 .69<10^{-15}$ and Harvey

Revisiting the past-mammals

$M \leq 10 \mathrm{~kg}$:

	N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$
Kleiber	5	0.667	0.99	0.088
Brody	26	0.709	$<10^{-3}$	$<10^{-3}$
Heusner	357	0.668	0.91	$<10^{-15}$

$M \geq 10 \mathrm{~kg}:$

N	$\hat{\alpha}$	$p_{2 / 3}$	$p_{3 / 4}$

Kleiber	8	0.754	$<10^{-4}$	0.66
Brody	9	0.760	$<10^{-3}$	0.56

Heusner $340.877<10^{-12}<10^{-7}$

Metabolismand Truthicide

Death by fractions

Measuring
èxpōn̄̄̄̄̄̄̄̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

つаल 40 of 126

Analysis of residuals

1. Presume an exponent of your choice: $2 / 3$ or $3 / 4$.
2. Fit the prefactor $\left(\log _{10} c\right)$ and then examine the residuals:

$$
r_{i}=\log _{10} B_{i}-\left(\alpha^{\prime} \log _{10} M_{i}-\log _{10} c\right)
$$

3. H_{0} : residuals are uncorrelated H_{1} : residuals are correlated.
4. Measure the correlations in the residuals and compute a p-value.

Analysis of residuals

We use the spiffing Spearman Rank-Order Correlation Coefficient $\sqrt{\top}$

Basic idea:
R Given $\left\{\left(x_{i}, y_{i}\right)\right\}$, rank the $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ separately from smallest to largest. Call these ranks R_{i} and S_{i}.
Now calculate correlation coefficient for ranks, r_{s} :

$$
r_{s}=\frac{\sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)\left(S_{i}-\bar{S}\right)}{\sqrt{\sum_{i=1}^{n}\left(R_{i}-\bar{R}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(S_{i}-\bar{S}\right)^{2}}}
$$

R Perfect correlation: x_{i} 's and y_{i} 's both increase monotonically.

Metabolismiand Truthicide

Death by fractions

Measuring
ēx̄p̄ōn̄̄̄̄̄
River networks
Earlier theories
Geometric
argument
Conclusion
References

UN IVIVERSTIY UVERMONT

Analysis of residuals

We assume all rank orderings are equally likely:
\& r_{s} is distributed according to a Student's t-distribution [3 with $N-2$ degrees of freedom.
Excellent feature: Non-parametric-real distribution of x 's and y^{\prime} s doesn't matter.
Bonus: works for non-linear monotonic relationships as well.
See Numerical Recipes in C/Fortran [J which contains many good things.

Analysis of residuals-mammals

Metabolismand

(a) $M<3.2 \mathrm{~kg}$,
(b) $M<10 \mathrm{~kg}$,
(c) $M<32 \mathrm{~kg}$,
(d) all
mammals.

Truthicide
Death by
fractions
Measuring
èxpōn̄̄̄̄̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY UVERMONT

Analysis of residuals-birds

Metabolismand

Truthicide
Death by fractions

Measuring
èxpōn̄̄̄̄̄s
River networks
Earlier theories
(a) $M<0.1 \mathrm{~kg}$,
(b) $M<1 \mathrm{~kg}$,
(c) $M<10 \mathrm{~kg}$, (d) all birds.

Geometric
argument
Conclusion
References

UNIVERSITY UVERMONT

Other approaches to measuring exponents:

Clauset, Shalizi, Newman: "Power-law distributions in empirical data" [10] SIAM Review, 2009.
See Clauset's page on measuring power law exponents $\bar{\epsilon}$ (code, other goodies).
See this collection of tweets C for related amusement.

Metabolismiand Truthicide

Death by fractions

Measuring
ēxpōn̄̄̄̄̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References

Impure scaling?:

So: The exponent $\alpha=2 / 3$ works for all birds and mammals up to $10-30 \mathrm{~kg}$
For mammals $>10-30 \mathrm{~kg}$, maybe we have a new scaling regime
R Possible connection?: Economos (1983)—limb length break in scaling around $20 \mathrm{~kg}{ }^{\text {[15] }}$
But see later: non-isometric growth leads to lower metabolic scaling. Oops.

つの® 47 of 126

The widening gyre:

Now we're really confused (empirically):

White and Seymour, 2005: unhappy with large herbivore measurements ${ }^{[56]}$. Pro 2/3: Find $\alpha \simeq 0.686 \pm 0.014$.
R Glazier, BioScience (2006) ${ }^{[18]}$: "The 3/4-Power Law Is Not Universal: Evolution of Isometric, Ontogenetic Metabolic Scaling in Pelagic Animals."

Metabolismiand Truthicide

Death by
fractions
Measuring
ēx̄p̄ōn̄ēt̄s
River networks
Earlier theories
Geometric
argument
Conclusion
References
 claimed to be finite-size scaling.

Somehow, optimal river networks are

 connected:
\& $a=$ drainage basin area

- $\ell=$ length of longest (main) stream
\& $L=L_{\|}=$ longitudinal length of basin

Metabolismiand Truthicide

Death by

 fractionsMeasuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References

ZW
UNIVERSITY
VERMONT $\left|\begin{array}{l}\text { O } \\ 0\end{array}\right|$
つa^ 49 of 126

Mysterious allometric scaling in river networks

R 1957: J. T. Hack ${ }^{\text {[19] }}$
"Studies of Longitudinal Stream Profiles in Virginia and Maryland"

$$
\begin{aligned}
& \ell \sim a^{h} \\
& h \sim 0.6
\end{aligned}
$$

Large-scale networks:

(1992) Montgomery and Dietrich ${ }^{[36]}$:

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

$$
L \simeq 1.78 a^{0.49}
$$

Mixture of basin and main stream lengths.

World's largest rivers only:

Data from Leopold (1994) ${ }^{[31,13]}$
Estimate of Hack exponent: $h=0.50 \pm 0.06$
Metabolismand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つの^52 of 126

Earlier theories (1973-):

Building on the surface area idea:

R McMahon (70's, 80's): Elastic Similarity ${ }^{[32,34]}$
R Idea is that organismal shapes scale allometrically with $1 / 4$ powers (like trees ...)
\& Disastrously, cites Hemmingsen ${ }^{[21]}$ for surface area data.
Appears to be true for ungulate legs ... ${ }^{\text {[33] }}$
Metabolism and shape never properly connected.

Fig. 3. (a) Chest circumference, $\boldsymbol{d}_{\mathrm{c}}$, plotted against body weight, \boldsymbol{W}, for five species of primates. The broken lines represent the standard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, l, increases as the $2 / 3$ power of diameter, d, is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for vertebrates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (8)].

Metabolismand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY of VERMONT
 this line corresponuds to a propurtionality power of 0.67 . of the unicellular organisms represented in fig. 1 not a few are spherienl in shaupe (the haeterium Sarcella, Saccharomyces, (ens egs) : and most of the others have surfaces exceeding those of sulheres of equal volume by rarely more than what corresponds to 0.1 decate in the hog. ardinute system (Photabacierium phosphorescens: 12 \%. I. e. 0.05 decade, Escherichita coli: 34% 22%, i. c- about 0.08 - 0.09 decade; calculated on the hasis of data of PÖrrin, 1924, talle 7 mn p. 108, and Hanvey, 1928, table 1). Similur figures probably hold for other ciliates. Only the llagellates represented (Trypamosomidne, Astasia klebsii) and certain ambelsae are likely to deviate hy higher figures. The surface values of the unicellular organisms represented in fig. vill, therefore, full either on, or in most other cases less than 1 decale alove, a line rep It will the seen from muty surfiness of the metazaic animals in question are grouped parallel to the splere line: that is, also correspending to a proportionality jower of 10.67 . An average line through the points would fall ubsumt 0.30 lugarithmic decade alkove the sphere line meaning that on the average the hody surface is roughly 2 (anti-
log. U.3n) times higher in the animals under study than in log. O.33) times higher in the animals under study than in shapes as the python ($10^{4.5} \mathrm{~g}$) and the beech trees (especially marhedi in fige - ay the surface ia nhest 3 and 10 times, roeppoctivoly, greater than in a splere of equal wright and volume. These facts agree well with the values $1-11.8$ for the constant k in the Cormula

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
8. Hemmingsen's "fit" is for a $2 / 3$ power, notes possible 10 kg transition.
p 46: "The energy metabolism thus definitely varies interspecifically over similar wide weight ranges with a higher power of the body weight than the body surface."

Earlier theories (1977):

Metabolismand Truthicide

Death by

Building on the surface area idea ...

Blum (1977) ${ }^{[5]}$ speculates on four-dimensional biology:

$$
P \propto M^{(d-1) / d}
$$

s. $d=3$ gives $\alpha=2 / 3$
\& $d=4$ gives $\alpha=3 / 4$
So we need another dimension ...
Obviously, a bit silly...

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

Nutrient delivering networks:

1960's: Rashevsky considers blood networks and finds a $2 / 3$ scaling.
s 1997: West et al. ${ }^{[53]}$ use a network story to find $3 / 4$ scaling.

Metabolismand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

Nutrient delivering networks:

West et al.'s assumptions:

1. hierarchical network
2. capillaries (delivery units) invariant
3. network impedance is minimized via evolution

Claims:

. $P \propto M^{3 / 4}$
networks are fractal
\& quarter powers everywhere

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

っのल 58 of 126

Impedance measures：

R Poiseuille flow（outer branches）：

$$
Z=\frac{8 \mu}{\pi} \sum_{k=0}^{N} \frac{\ell_{k}}{r_{k}^{4} N_{k}}
$$

R Pulsatile flow（main branches）：

$$
Z \propto \sum_{k=0}^{N} \frac{h_{k}^{1 / 2}}{r_{k}^{5 / 2} N_{k}}
$$

Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

Not so fast ...

Actually, model shows:

\& $P \propto M^{3 / 4}$ does not follow for pulsatile flow
networks are not necessarily fractal.

Do find:
Murray's cube law (1927) for outer branches: ${ }^{[37]}$

$$
r_{0}^{3}=r_{1}^{3}+r_{2}^{3}
$$

\& Impedance is distributed evenly.
Can still assume networks are fractal.
 P- VERMONT

Connecting network structure to α

1. Ratios of network parameters:

$$
R_{n}=\frac{n_{k+1}}{n_{k}}, R_{\ell}=\frac{\ell_{k+1}}{\ell_{k}}, R_{r}=\frac{r_{k+1}}{r_{k}}
$$

2. Number of capillaries $\propto P \propto M^{\alpha}$.

$$
\Rightarrow \alpha=-\frac{\ln R_{n}}{\ln R_{r}^{2} R_{\ell}}
$$

(also problematic due to prefactor issues)
Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

area-preservingness:
$R_{r}=R_{n}^{-1 / 2}$

$$
\Rightarrow \alpha=3 / 4
$$

space-fillingness: $R_{\ell}=R_{n}^{-1 / 3}$

Data from real networks:

Network	R_{n}	R_{r}	R_{ℓ}	$-\frac{\ln R_{r}}{\ln R_{n}}$	$-\frac{\ln R_{\ell}}{\ln R_{n}}$	α
West et al.	-	-	-	$1 / 2$	$1 / 3$	$3 / 4$
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
(Turotte etal.[50])						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つの® 62 of 126

Attempts to look at actual networks:

"Testing foundations of biological scaling theory using automated measurements of vascular networks"̄
Newberry, Newberry, and Newberry, PLoS Comput Biol, 11, e1004455, 2015.

Newberry et al., PLoS Comput Biol, 11, e1004455, . [?]

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

Conclusion
References

Some people understand it's truly a disaster:

"Power, Sex, Suicide: Mitochondria and the Meaning of Life" âe by Nick Lane (2005). ${ }^{[30]}$

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

UNIVERSITY v/ VERMONT
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Let's never talk about this again:

"The fourth dimension of life: Fractal

geometry and allometric scaling of organisms"

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

A MN MIVERSTY VERMONT
"It was the epoch of belief, it was the epoch of incredulity"

> "A General Model for the Origin of ĀĪlometric S̄cāling Lāws in Biōōgy" \mathbb{C} West, Brown, and Brown, Science, 276, 122-126, 1997. ${ }^{[53]}$

"Nature" ${ }^{\text {® }}$
West, Brown, and Enquist, Nature, 400, 664-667, 1999. ${ }^{[55]}$
"The fourth dimension of life: Fractal geometry and allometric scaling of organisms" ${ }^{\text {C/ }}$
West, Brown, and Enquist, Science Magazine, 284, 1677-1679, 1999. ${ }^{[54]}$

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

Conclusion
References

Really, quite confused:

Whole 2004 issue of Functional Ecology addresses the problem:

\& J. Kozlowski, M. Konrzewski. "Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?" Functional Ecology 18: 283-9, 2004.

- J. H. Brown, G. B. West, and B. J. Enquist. "Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant." Functional Ecology 19: 735-738, 2005.
. J. Kozlowski, M. Konarzewski. "West, Brown and Enquist's model of allometric scaling again: the same questions remain." Functional Ecology 19: 739-743, 2005.

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

"Curvature in metabolic scaling" ${ }^{[3}$ Kolokotrones, Savage, Savage, and Fontana.
 Nature, 464, 753, 2010. ${ }^{[27]}$

Let's try a quadratic:

$$
\log _{10} P \sim \log _{10} c+\alpha_{1} \log _{10} M+\alpha_{2} \log _{10} M^{2}
$$

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

Conclusion
References

UNIVERSITY UVERMONT

Yah:

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents

River networks

Earlier theories

Geometric
argument

Conclusion

References 8

Figure 1 | Curvature in metabolic scaling. a, Linear (red) and quadratic (blue) fits (not including temperature) of $\log _{10} B$ versus $\log _{10} M$. The orca (green square) and Asian elephant (ref. 4; turquoise square at larger mass) are not included in the fit, but are predicted well. Differences in the quality of fit are best seen in terms of the conditional mean of the error, estimated by the lowess (locally-weighted scatterplot smoothing) fit of the residuals (Supplementary Information). See Table 1 for the values of the coefficients obtained from the fit. \mathbf{b}, Slope of the quadratic fit (including temperature) with pointwise 95% confidence intervals (blue). The slope of the power-law fit (red) and models with fixed $2 / 3$ and $3 / 4$ exponents (black) are included for comparison. This panel suggests that exponents estimated by assuming a power law will be highly sensitive to the mass range of the data set used, as shown in Fig. 2.
b

4 3

a

"This raises the question of whether the theory can be adapted to agree with the data" ${ }^{1}$

Figure 2 |Scaling exponent depends on mass range. a, Slope estimated by linear regression within a three log-unit mass range (smaller near the boundaries). Values on the abscissa denote mean $\log _{10} M$ within the range. When the 95% confidence regions (dashed lines) include the $2 / 3$ or $3 / 4$ lines, the local slope is consistent with a $2 / 3$ or $3 / 4$ exponent, respectively. These cases are indicated by the shaded regions ($2 / 3$ on the left and $3 / 4$ on the right). \mathbf{b}, Slope estimated by using all data points with $M<x$. The shaded region is consistent with $2 / 3$ slope estimates. c, Slope estimated by using all data points with $M>x$. The shaded region is consistent with $3 / 4$ slope

estimates. d, Exponents estimated for eight historical data sets using linear regression (black filled circles): Lovegrove ${ }^{13}$, Lovegrove ${ }^{i 4}$, White ${ }^{10}$, White ${ }^{23}$, Sieg $^{16}, \mathrm{McNab}^{\mathrm{k}}$, and Savage ${ }^{4}$ using species average data ('Savage ${ }^{4}$) and binned data ('Savage ${ }^{4}$ bin'). Exponents predicted using coefficients from quadratic fits to McNab's (red), Sieg's (green), or Savage's (blue) data and the first three moments of $\log _{10} M$ (Supplementary Information). Thick lines represent uncorrected 95% confidence intervals. Thin lines are multiplicity corrected intervals.

Metabolismand Truthicide

Death by
fractions
Measuring
exponents
River networks

Earlier theories

Geometric
argument
Conclusion
References
 of VERMONT
${ }^{1}$ Already raised and fully established 9 years earlier. [14]

Evolution has generally made things bigger ${ }^{1}$

NORION JUSTER
Regression starting at low M makes sense
Regression starting at high M makes ...no sense

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 VERMONT

Still going:

"A general model for metabolic scaling in self-similar asymmetric networks" ${ }^{\circ}$ " Brummer, Brummer, and Enquist, PLoS Comput Biol, 13, e1005394, 2017.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 UVERMONT

> "Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies" a, c by Geoffrey B. West (2017). ${ }^{[52]}$

Amazon reviews excerpts (so, so not fair but ...):

"Full of intriguing, big ideas but amazingly sloppy both in details and exposition, especially considering the author is a theoretical physicist."

8"The beginning is terrible. He shows four graphs to illustrate scaling relationships, none of which have intelligible scales"
8
"(he actually repeats several times that businesses can die but are not really an animal - O RLY?)"

Metabolismand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References
 of VERMONT

Simple supply networks:

Metabolismiand Truthicide

- Banavar et al., Nature, (1999) ${ }^{[1]}$.
- Flow rate argument.
- Ignore impedance.
\& Very general attempt to find most efficient transportation networks.

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

Conclusion
References

Simple supply networks

R Banavar et al．find＇most efficient＇networks with

$$
P \propto M^{d /(d+1)}
$$

\＆．．．but also find

$$
V_{\text {network }} \propto M^{(d+1) / d}
$$

蹋 $d=3$ ：

$$
V_{\text {blood }} \propto M^{4 / 3}
$$

8 Consider a 3 g shrew with $V_{\text {blood }}=0.1 V_{\text {body }}$ \＆$\Rightarrow 3000 \mathrm{~kg}$ elephant with $V_{\text {blood }}=10 V_{\text {body }}$

Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

つの® 75 of 126

Geometric argument

> "Optimal Form of Branching Supply and Collection Networks" Peter Sheridan Dodds, Phys. Rev. Lett., 104, 048702, 2010. ${ }^{[12]}$
. Consider one source supplying many sinks in a d-dim. volume in a D-dim. ambient space.
R Assume sinks are invariant.
R Assume sink density $\rho=\rho(V)$.
Assume some cap on flow speed of material.
, See network as a bundle of virtual vessels:

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric àrgūment

Conclusion
References

Geometric argument

Q Q : how does the number of sustainable sinks $N_{\text {sinks }}$ scale with volume V for the most efficient network design?
Or: what is the highest α for $N_{\text {sinks }} \propto V^{\alpha}$?
River networks
Earlier theories
Geometric àgūment

のaल 78 of 126

Geometric argument

Allometrically growing regions:

Have d length scales which scale as

$$
L_{i} \propto V^{\gamma_{i}} \text { where } \gamma_{1}+\gamma_{2}+\ldots+\gamma_{d}=1
$$

For isometric growth, $\gamma_{i}=1 / d$.
(8) For allometric growth, we must have at least two of the $\left\{\gamma_{i}\right\}$ being different

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric ārgūment

Conclusion
References

Spherical cows and pancake cows:
Assume an isometrically scaling family of cows:

Extremes of allometry:
The pancake cows-

Spherical cows and pancake cows:

Question: How does the surface area $S_{\text {cow }}$ of our two types of cows scale with cow volume $V_{\text {cow }}$? Insert question from assignment 4[3]

Metabolismand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories
Geometric argūment
 U VERMONT

Geometric argument

Best and worst configurations (Banavar et al.)

R Rather obviously: $\min V_{\text {net }} \propto \sum$ distances from source to sinks.

Metabolismand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argūment
Conclusion
References

つаल 84 of 126

Minimal network volume:

Real supply networks are close to optimal:

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph. (c) Minimum spanning tree. (d) The model of equation (3) applied to the same set of stations.

Gastner and Newman (2006): "Shape and efficiency in spatial distribution networks" ${ }^{[16]}$

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric āgūment

Conclusion
References

A
墨
Zo
UNIVERSITY
UNVRMONT

"Rules for Biologically Inspired Adaptive Network Design" [̄]
Tero et al.,
Science, 327, 439-442, 2010. ${ }^{\text {[49] }}$
Metabolismand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories
Geometric argüment

Conclusion
References

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo $\sqrt{3}$

Minimal network volume:

We add one more element:

- Vessel cross-sectional area may vary with distance from the source.
B
Flow rate increases as cross-sectional area decreases.
8 e.g., a collection network may have vessels tapering as they approach the central sink.
Find that vessel volume v must scale with vessel length ℓ to affect overall system scalings.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric āgüment

Conclusion
References

Minimal network volume:

Effecting scaling:

Consider vessel radius $r \propto(\ell+1)^{-\epsilon}$, tapering from $r=r_{\text {max }}$ where $\epsilon \geq 0$.
Gives $v \propto \ell^{1-2 \epsilon}$ if $\epsilon<1 / 2$
Gives $v \propto 1-\ell^{-(2 \epsilon-1)} \rightarrow 1$ for large ℓ if $\epsilon>1 / 2$
Previously, we looked at $\epsilon=0$ only.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric āgūment

Conclusion
References

UNIVERSTIY UVERMONT

Minimal network volume:

For $0 \leq \epsilon<1 / 2$, approximate network volume by integral over region:

$$
\min V_{\text {net }} \propto \int_{\Omega_{d, D}(V)} \rho\|\vec{x}\|^{1-2 \epsilon} \mathrm{~d} \vec{x}
$$

Insert question, assignment 4 © $<2->$

$$
\propto \rho V^{1+\gamma_{\max }(1-2 \epsilon)} \text { where } \gamma_{\max }=\max _{i} \gamma_{i}
$$

For $\epsilon>1 / 2$, find simply that

$$
\min V_{\text {net }} \propto \rho V
$$

So if supply lines can taper fast enough and without limit, minimum network volume can be made negligible.

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric ārgūment

Conclusion
References

10

If scaling is isometric, we have $\gamma_{\max }=1 / d$:

$$
\min V_{\text {net } / \text { iso }} \propto \rho V^{1+(1-2 \epsilon) / d}
$$

? If scaling is allometric, we have $\gamma_{\max }=\gamma_{\text {allo }}>1 / d$: and

$$
\min V_{\text {net/allo }} \propto \rho V^{1+(1-2 \epsilon) \gamma_{\text {allo }}}
$$

\& Isometrically growing volumes require less network volume than allometrically growing volumes:

$$
\frac{\min V_{\text {net/iso }}}{\min V_{\text {net/allo }}} \rightarrow 0 \text { as } V \rightarrow \infty
$$

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
āgüment
Conclusion
References

Zho
UNIVERSITY U- VERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argüment
Conclusion
References

๑ac 91 of 126

This is a
really clean slide

Measuring
exponents
River networks
Earlier theories
Geometric
argūment
Conclusion
References

Blood networks

- Velocity at capillaries and aorta approximately constant across body size ${ }^{[51]}: \epsilon=0$.
, Material costly \Rightarrow expect lower optimal bound of $V_{\text {net }} \propto \rho V^{(d+1) / d}$ to be followed closely.
\& For cardiovascular networks, $d=D=3$.
R Blood volume scales linearly with body volume ${ }^{[47]}$, $V_{\text {net }} \propto V$.
Sink density must \therefore decrease as volume increases:

$$
\rho \propto V^{-1 / d}
$$

Density of suppliable sinks decreases with organism size.
 - VERMONT

Blood networks

R Then P, the rate of overall energy use in Ω, can at most scale with volume as

$$
P \propto \rho V \propto \rho M \propto M^{(d-1) / d}
$$

R For $d=3$ dimensional organisms, we have

$$
P \propto M^{2 / 3}
$$

. Including other constraints may raise scaling exponent to a higher, less efficient value.

Exciting bonus: Scaling obtained by the supply network story and the surface-area law only match for isometrically growing shapes.
Insert question from assignment 4

Recall:

R The exponent $\alpha=2 / 3$ works for all birds and mammals up to $10-30 \mathrm{~kg}$
\& For mammals $>10-30 \mathrm{~kg}$, maybe we have a new scaling regime
Economos: limb length break in scaling around 20 kg
White and Seymour, 2005: unhappy with large herbivore measurements. Find $\alpha \simeq 0.686 \pm 0.014$

Prefactor:

Stefan-Boltzmann law: $\mathbb{}$

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sigma S T^{4}
$$

where S is surface and T is temperature.
Very rough estimate of prefactor based on scaling of normal mammalian body temperature and surface area S :

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
àrgument

$$
B \simeq 10^{5} M^{2 / 3} \mathrm{erg} / \mathrm{sec}
$$

Measured for $M \leq 10 \mathrm{~kg}$:

$$
B=2.57 \times 10^{5} M^{2 / 3} \mathrm{erg} / \mathrm{sec}
$$

River networks

. View river networks as collection networks.
R Many sources and one sink.
\&?
Assume ρ is constant over time and $\epsilon=0$:

$$
V_{\text {net }} \propto \rho V^{(d+1) / d}=\text { constant } \times V^{3 / 2}
$$

. . Network volume grows faster than basin 'volume' (really area).
\& It's all okay:
Landscapes are $d=2$ surfaces living in $D=3$ dimensions.
Streams can grow not just in width but in depth ...
If $\epsilon>0, V_{\text {net }}$ will grow more slowly but $3 / 2$ appears to be confirmed from real data.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
ārgūment
Conclusion
References

. Volume of water in river network can be calculated by adding up basin areas
8
Flows sum in such a way that

$$
V_{\text {net }}=\sum_{\text {all pixels }} a_{\text {pixel } i}
$$

- Hack's law again:

$$
\ell \sim a^{h}
$$

Can argue

$$
V_{\text {net }} \propto V_{\text {basin }}^{1+h}=a_{\text {basin }}^{1+h}
$$

where h is Hack's exponent.
\therefore minimal volume calculations gives

$$
h=1 / 2
$$

Metabolismand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argūment
Conclusion
References

Real data:

Banavar et al.'s approach ${ }^{[1]}$ is okay because ρ really is constant.
The irony: shows optimal basins are isometric

- Optimal Hack's
law: $\ell \sim a^{h}$ with
$h=1 / 2$

(Zzzzz)

From Banavar et al. (1999) ${ }^{[1]}$

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
āgüment
Conclusion
References
 U/ VERMONT

Even better-prefactors match up:

Metabolismand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric argüment

Conclusion
References

The Cabal strikes back:

\& Banavar et al., 2010, PNAS:
"It has been known for decades that the metabolic rate of animals scales with body mass with an exponent that is almost always $<1,>2 / 3$, and often very close to $3 / 4$."
Cough, cough, cough, hack, wheeze, cough.

Earlier theories
Geometric àgüment

つaल 103 of 126

Stories—Darth Quarter:

Metabolismiand Truthicide

Death by fractions

Measuring exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

1

Some people understand it's truly a disaster:

Peter Sheridan Dodds, Theoretical Biology's Buzzkill
By Mark Changizi | February 9th 2010 03:24 PM | 1 comment | 盈 Print | 区 E-mail | Track Comments

Mark Changizi

Search This Blog

There is an apocryphal story about a graduate mathematics student at the University of Virginia studying the properties of certain mathematical objects. In his fifth year some killjoy bastard elsewhere published a paper proving that there are no such mathematical objects. He dropped out of the program, and I never did hear where he is today. He's probably making my cappuccino right now.

This week, a professor named Peter Sheridan Dodds published a new paper in Physical Review Letters further fleshing out a theory concerning why a $2 / 3$ power law may apply for metabolic rate. The $2 / 3$ law says that metabolic rate in animals rises as the $2 / 3$ power of body mass. It was in a 2001 Journal of Theoretical Biology paper that he first argued that perhaps a $2 / 3$ law applies, and that paper -- along with others such as the one that just appeared -- is what has put him in the Killjoy Hall of Fame. The University of Virginia's killjoy was a mere amateur.

Mark Changizi

MORE ARTICLES

- The Ravenous Color-Blind: New Developments For Color-Deficients
- Don't Hold Your Breath Waiting For Artificial Brains
- Welcome To Humans, Version 3.0

All Articles

ABOUT MARK

Mark Changizi is Director of Human Cognition at 2AI, and the author of The Vision Revolution (Benbella 2009) and Harnessed: How..

View Mark's Profile

Metabolismiand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories

Geometric àrgūment

Conclusion
References

The unnecessary bafflement continues:

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
"Testing the metabolic theory of ecology" [40]
River networks
C. Price, J. S. Weitz, V. Savage, J. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson Ecology Letters, 15, 1465-1474, 2012.

Earlier theories
Geometric āgüment

Artisanal, handcrafted silliness:

"Critical truths about power laws" [48] Stumpf and Porter, Science, 2012

Mechanistic sophistication

How good is your power law? The chart reflects the level of statistical support-as measured in (16, 21) -and our opinion about the mechanistic sophistication underlying hypothetical generative models for various reported power laws. Some relationships are identified by name; the others reflect the general characteristics of a wide range of reported power laws. Allometric scaling stands out from the other power laws reported for complex systems.

R Call generalization of Central Limit Theorem, stable distributions. Also: PLIPLO action.

Summary: Wow.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
àrgüment
Conclusion
References
 of VERMONT

Conclusion

Supply network story consistent with dimensional analysis.
Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
\& Ambient and region dimensions matter ($D=d$ versus $D>d$).
R Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).

Actual details of branching networks not that important.
Exact nature of self-similarity varies.
2/3-scaling lives on, largely in hiding.
3/4-scaling? Jury ruled a mistrial.
The truth will out. Maybe.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 of VERMONT
$\left|\begin{array}{c}0 \\ 6\end{array}\right|$

References I

［1］J．R．Banavar，A．Maritan，and A．Rinaldo． Size and form in efficient transportation networks．
Nature，399：130－132，1999．pdf［天
［2］J．R．Banavar，M．E．Moses，J．H．Brown，J．Damuth， A．Rinaldo，R．M．Sibly，and A．Maritan．
A general basis for quarter－power scaling in animals．
Proc．Natl．Acad．Sci．，107：15816－15820， 2010. pdf（
［3］P．Bennett and P．Harvey．
Active and resting metabolism in birds－allometry，phylogeny and ecology． J．Zool．，213：327－363，1987．pdf［＾

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 ver VERONT

References II

[4] K. L. Blaxter, editor. Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964. Academic Press, New York, 1965.
[5] J. J. Blum.
On the geometry of four-dimensions and the relationship between metabolism and body mass.
J. Theor. Biol., 64:599-601, 1977. pdf[7
[6] S. Brody.
Bioenergetics and Growth.
Reinhold, New York, 1945.
reprint, . pdfE

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 VERMONT
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}\right.$

References III

[7] J. H. Brown, G. B. West, and B. J. Enquist. Yes, West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Functional Ecology, 19:735--738, 2005. pdf[7
[8] A. B. Brummer, S. V. M., and B. J. Enquist. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput Biol, 13, 2017. pdf[
[9] E. Buckingham.
On physically similar systems: Illustrations of the use of dimensional equations.
Phys. Rev., 4:345-376, 1914. pdf[3

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

部 UNVIVERSTY UVERMONT

References IV

［10］A．Clauset，C．R．Shalizi，and M．E．J．Newman． Power－law distributions in empirical data． SIAM Review，51：661－703，2009．pdf［天
［11］M．H．DeGroot．
Probability and Statistics．
Addison－Wesley，Reading，Massachusetts， 1975.
［12］P．S．Dodds．
Optimal form of branching supply and collection networks．
Phys．Rev．Lett．，104（4）：048702，2010．pdf［天
［13］P．S．Dodds and D．H．Rothman．
Scaling，universality，and geomorphology． Annu．Rev．Earth Planet．Sci．，28：571－610， 2000. pdf［

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric argument

Conclusion
References
 of VERMONT

References V

[14] P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9-27, 2001. pdf(

Metabolismiand Truthicide

Death by fractions

Measuring
exponents
River networks
[15] A. E. Economos.
Elastic and/or geometric similarity in mammalian design.
Journal of Theoretical Biology, 103:167-172, 1983. pdf[
[16] M. T. Gastner and M. E. J. Newman.
Shape and efficiency in spatial distribution networks.
J. Stat. Mech.: Theor. \& Exp., 1:P01015, 2006. pdf[

Earlier theories
Geometric argument

References VI

[17] D. S. Glazier.
Beyond the '3/4-power law': variation in the intraand interspecific scaling of metabolic rate in animals.

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
[18] D. S. Glazier.
The 3/4-power law is not universal: Evolution of isometric, ontogenetic metabolic scaling in pelagic animals. BioScience, 56:325-332, 2006. pdf[
[19] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.
United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf[3

References VII

[20] A. Hemmingsen.
The relation of standard (basal) energy metabolism to total fresh weight of living organisms.
Rep. Steno Mem. Hosp., 4:1-58, 1950. pdf[T
[21] A. Hemmingsen.
Energy metabolism as related to body size and respiratory surfaces, and its evolution.
Rep. Steno Mem. Hosp., 9:1-110, 1960. pdf[^
[22] A. A. Heusner.
Size and power in mammals.
Journal of Experimental Biology, 160:25-54, 1991. pdfé

Metabolismand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

References VIII

[23] M. R. Hirt, W. Jetz, B. C. Rall, and U. Brose. A general scaling law reveals why the largest animals are not the fastest.
Nature Ecology \& Evolution, 1:1116, 2017. pdf[天
[24] N. Juster.
The Phantom Tollbooth.
Random House, 1961.
[25] M. Kleiber.
Body size and metabolism.
Hilgardia, 6:315-353, 1932. pdf■
[26] M. Kleiber.
The Fire of Life. An Introduction to Animal
Energetics.
Wiley, New York, 1961.

Metabolismiand
Truthicide
Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 - VERMONT

References IX

[27] T. Kolokotrones, V. Savage, E. J. Deeds, and W. Fontana.

Curvature in metabolic scaling. Nature, 464:753, 2010. pdf[‘]
[28] J. Kozłowski and M. Konarzewski.
Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?
Functional Ecology, 18:283--289, 2004. pdf[त
[29] P. La Barbera and R. Rosso.
On the fractal dimension of stream networks. Water Resources Research, 25(4):735-741, 1989. pdf[

Metabolismand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

References X

[30] N. Lane.
Power, Sex, Suicide: Mitochondria and the Meaning of Life.
Oxford University Press, Oxford, UK, 2005.
[31] L. B. Leopold.
A View of the River.
Harvard University Press, Cambridge, MA, 1994.
[32] T. McMahon.
Size and shape in biology.
Metabolismand Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

```
Science, 179:1201-1204, 1973. pdf[^
```

[33] T. A. McMahon.
Allometry and biomechanics: Limb bones in adult ungulates.
The American Naturalist, 109:547-563, 1975. pdf[

References XI

[34] T. A. McMahon and J. T. Bonner.
On Size and Life.
Scientific American Library, New York, 1983.
[35] N. Meyer-Vernet and J.-P. Rospars.
How fast do living organisms move: Maximum speeds from bacteria to elephants and whales.
American Journal of Physics, pages 719-722, 2015. pdfes

Truthicide

Death by fractions

Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
[36] D. R. Montgomery and W. E. Dietrich.
Channel initiation and the problem of landscape scale.
Science, 255:826-30, 1992. pdf[‘
$\left|\begin{array}{l}0 \\ 0\end{array}\right|$

References XII

[37] C. D. Murray.
A relationship between circumference and weight in trees and its bearing on branching angles.
J. Gen. Physiol., 10:725-729, 1927. pdfC
[38] M. G. Newberry, E. D. B., and S. V. M.
Testing foundations of biological scaling theory using automated measurements of vascular networks.
PLoS Comput Biol, 11:e1004455, 2015. pdf[厄
[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.

Numerical Recipes in C.
Cambridge University Press, second edition, 1992.

Metabolismiand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

References XIII

[40] C. Price, J. S. Weitz, V. Savage, S. Stegen, A. Clarke, D. Coomes, P. S. Dodds, R. Etienne, A. Kerkhoff, K. McCulloh, K. Niklas, H. Olff, and N. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15:1465-1474, 2012. pdf[
[41] J. M. V. Rayner.
Linear relations in biomechanics: the statistics of scaling functions.

Metabolismand
Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
J. Zool. Lond. (A), 206:415-439, 1985. pdf[^
[42] M. Rubner.
Ueber den einfluss der körpergrösse auf stoffund kraftwechsel.
Z. Biol., 19:535-562, 1883. pdf[त

UNIVERSITY VIVRMONT

References XIV

[43] P. A. Samuelson.
A note on alternative regressions. Econometrica, 10:80-83, 1942. pdf[3

Metabolismiand Truthicide

Death by
fractions
Measuring
exponents
River networks
[44] Sarrus and Rameaux. Rapport sur une mémoire adressé à l'Académie de Médecine.
Bull. Acad. R. Méd. (Paris), 3:1094-1100, 1838-39.
[45] V. M. Savage, E. J. Deeds, and W. Fontana.
Sizing up allometric scaling theory.
PLoS Computational Biology, 4:e1000171, 2008. pdf■
 e VERMONT

References XV

[46] J. Speakman.
On Blum's four-dimensional geometric explanation for the 0.75 exponent in metabolic allometry.
J. Theor. Biol., 144(1):139-141, 1990. pdfč
[47] W. R. Stahl.
Scaling of respiratory variables in mammals. Journal of Applied Physiology, 22:453-460, 1967.
[48] M. P. H. Stumpf and M. A. Porter. Critical truths about power laws. Science, 335:665-666, 2012. pdf®

Truthicide
Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References

UNIVERSITY of VERMONT

References XVI

[49] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki.

Rules for biologically inspired adaptive network design.
Science, 327(5964):439-442, 2010. pdf[
[50] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf(
[51] P. D. Weinberg and C. R. Ethier.
Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas. Journal of Biomechanics, 40(7):1594-1598, 2007. pdf[

Metabolismiand Truthicide

Death by fractions

Measuring exponents

River networks
Earlier theories
Geometric
argument
Conclusion
References
 of VERMONT

References XVII

[52] G. B. West.
Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies.
Penguin Press, New York, 2017.
[53] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276:122-126, 1997. pdfC’
[54] G. B. West, J. H. Brown, and J. Enquist. The fourth dimension of life: Fractal geometry and allometric scaling of organisms.
Science Magazine, 284:1677-1679, 1999. pdf[T

Metabolismiand

Truthicide

Death by
fractions
Measuring
exponents
River networks
Earlier theories
Geometric
argument
Conclusion
References
 OV VERMONT

References XVIII

Metabolismand Truthicide

Death by fractions

Measuring
[55] G. B. West, J. H. Brown, and J. Enquist. Nature.
Nature, 400:664-667, 1999. pdf[^
[56] C. R. White and R. S. Seymour. Allometric scaling of mammalian metabolism. exponents

River networks
Earlier theories
Geometric
argument

References
J. Exp. Biol., 208:1611-1619, 2005. pdf[〕

