Optimal Supply Networks I: Branching

Last updated: 2018/03/23, 19:15:27

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS Outline

Optimal transportation

Optimal branching Murray's law Murray meets Tok References

Optimal transportation

Optimal branching

Murray's law Murray meets Tokunaga

References

COcoNuTS

Optimal transportation

Optimal branching

References

少 Q (~ 4 of 31

COcoNuTS

Optimal transportation

References

These slides are brought to you by:

COcoNuTS

UNIVERSITY VERMONT

夕Q № 1 of 31

Ontimal

References

UNIVERSITY OF

少∢(~ 2 of 31

COcoNuTS

Optimal transportation

Optimal branching

Murray's lav

References

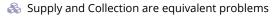
UNIVERSITY OF VERMONT

少 q (~ 3 of 31

Optimal supply networks

What's the best way to distribute stuff?

- 🗞 Stuff = medical services, energy, people, ...
- Some fundamental network problems:
 - 1. Distribute stuff from a single source to many sinks
 - 2. Distribute stuff from many sources to many sinks
 - 3. Redistribute stuff between nodes that are both sources and sinks



These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

Single source optimal supply

Basic question for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{i} I_{j}^{\gamma} Z_{j}$$

where I_i = current on link jand Z_i = link j's impedance?

 \clubsuit Example: $\gamma = 2$ for electrical networks.

Optimal transportation

COcoNuTS

Optimal branching References

•9 q (~ 7 of 31

Single source optimal supply

(a) $\gamma > 1$: Braided (bulk) flow

(b) $\gamma < 1$: Local minimum: Branching flow

(c) $\gamma < 1$: Global minimum: Branching flow

Note: This is a single source supplying a region.

From Bohn and Magnasco [3]

See also Banavar et al. [1]: "Topology of the Fittest Transportation Network"; focus is on presence or absence of loops—same story

COcoNuTS

transportation Optimal branching

References

COcoNuTS

Optimal transportation

Optimal branching Murray's law Murray meets Tok

References

α Top: $\alpha = 0.66$, $\beta = 0.38$; Bottom: $\alpha = 0.66$, $\beta = 0.70$

FIGURE 3. A maple leaf

COcoNuTS

Optimal transportation

Optimal branching References

COcoNuTS

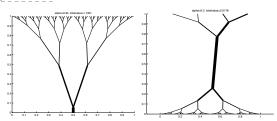
Optimal transportation

branching

References

Single source optimal supply

Optimal paths related to transport (Monge) problems 2:



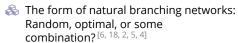
"Optimal paths related to transport problems" 2

Qinglan Xia, Communications in Contemporary Mathematics, **5**, 251–279, 2003. [19]

Single source optimal supply

Growing networks: [20]

An immensely controversial issue ...



River networks, blood networks, trees, ...

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

UNIVERSITY OF 少 Q ← 9 of 31

COcoNuTS

Optimal transportation Optimal branching References

River network models

Optimality:

Optimal channel networks [13]

Thermodynamic analogy [14]

versus ...

Randomness:

Scheidegger's directed random networks

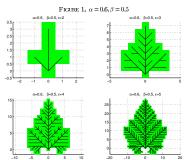
Undirected random networks

COcoNuTS

Optimal transportation Optimal branching

References

Growing networks—two parameter model: [20]



 \clubsuit Parameters control impedance ($0 \le \alpha < 1$) and angles of junctions ($0 < \beta$)

 \Re For this example: $\alpha = 0.6$ and $\beta = 0.5$

UNIVERSITY VERMONT ൗ < ॡ 10 of 31

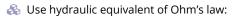
Optimization—Murray's law 🗹

Murray's law (1926) connects branch radii at forks: [11, 10, 12, 7, 16]

$$r_0^3 = r_1^3 + r_2^3$$

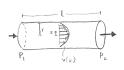
where r_0 = radius of main branch, and r_1 and r_2 are radii of sub-branches.

- Holds up well for outer branchings of blood networks.
- Also found to hold for trees [12, 8] when xylem is not a supporting structure [9].
- See D'Arcy Thompson's "On Growth and Form" for background and general inspiration [15, 16].



$$\Delta p = \Phi Z \Leftrightarrow V = IR$$

where Δp = pressure difference, Φ = flux.



Fluid mechanics: Poiseuille impedance of for smooth Poiseuille flow of in a tube of radius r and length ℓ:

$$Z = \frac{8\eta\ell}{\pi r^4}$$

- \Re η = dynamic viscosity \mathcal{C} (units: $ML^{-1}T^{-1}$).
- Power required to overcome impedance:

$$P_{\mathsf{drag}} = \Phi \Delta p = \Phi^2 Z.$$

Also have rate of energy expenditure in maintaining blood given metabolic constant c:

$$P_{\text{metabolic}} = cr^2 \ell$$

Optimization—Murray's law

Aside on P_{drag}

- $\ensuremath{ \& \& }$ Work done = $F \cdot d$ = energy transferred by force F
- Arr Power = P = rate work is done = $F \cdot v$
- Φ = Volume per unit time = cross-sectional area · velocity

COcoNuTS

Optimal transportation

Optimal branching Murrays law Murray meets Tokunage

References

少 Q (~ 16 of 31

COcoNuTS

Optimal transportation

Optimal branching Murrays law Murray meets Tokunaga

References

夕Q № 17 of 31

COcoNuTS

Optimal transportation Optimal branching

Murray s law
Murray meets Tokun
References

Optimization—Murray's law

Murray's law:

Total power (cost):

$$P = P_{\rm drag} + P_{\rm metabolic} = \Phi^2 \frac{8\eta\ell}{\pi r^4} + cr^2\ell$$

- & Observe power increases linearly with ℓ
- \clubsuit But r's effect is nonlinear:
 - increasing r makes flow easier but increases metabolic cost (as r^2)
 - for decreasing r decrease metabolic cost but impedance goes up (as r^{-4})

COcoNuTS

Optimal transportation

Optimal branching

Murray's law

References

�� 19 of 31

COcoNuTS

Optimal transportation

Optimal branching Murray neets Tokunas

References

Optimization—Murray's law

Murray's law:

 \Re Minimize P with respect to r:

$$\frac{\partial P}{\partial r} = \frac{\partial}{\partial r} \left(\Phi^2 \frac{8 \eta \ell}{\pi r^4} + c r^2 \ell \right)$$

$$= -4\Phi^2 \frac{8\eta\ell}{\pi r^5} + c2r\ell = 0$$

Rearrange/cancel/slap:

$$\Phi^2 = \frac{c\pi r^6}{16n} = k^2 r^6$$

where k = constant.

Optimization—Murray's law

Murray's law:

So we now have:

UNIVERSITY OF VERMONT OF 31

COcoNuTS

Optimal transportation Optimal branching

oranching Murray's law Murray meets Tokunaga

References

$\Phi_0 = \Phi_1 + \Phi_2$

 $\Phi = kr^3$

where again 0 refers to the main branch and 1 and 2 refers to the offspring branches

Flow rates at each branching have to add up (else our organism is in serious trouble ...):

All of this means we have a groovy cube-law:

$$r_0^3 = r_1^3 + r_2^3$$

少 q (~ 21 of 31

Optimization

Murray meets Tokunaga:

- \bigoplus_{ω} = volume rate of flow into an order ω vessel segment
- Tokunaga picture:

$$\Phi_{\omega} = 2\Phi_{\omega-1} + \sum_{k=1}^{\omega-1} T_k \Phi_{\omega-k}$$

 \Leftrightarrow Using $\phi_{\omega} = kr_{\omega}^3$

$$r_{\omega}^{3} = 2r_{\omega-1}^{3} + \sum_{k=1}^{\omega-1} T_{k} r_{\omega-k}^{3}$$

 $\mbox{\ensuremath{\&}}\mbox{\ensuremath{\&}}\mbox{\ensuremath{Find}}$ Find Horton ratio for vessel radius $R_r=r_\omega/r_{\omega-1}$...

COcoNuTS

Optimal transportation

Optimal branching Murray meets Tokunaga References

References I

- [1] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.
 - Topology of the fittest transportation network. Phys. Rev. Lett., 84:4745-4748, 2000, pdf
- [2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130-132, 1999. pdf ☑
- S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network.

Phys. Rev. Lett., 98:088702, 2007. pdf

COcoNuTS

Optimal transportation Optimal branching

References

少 Q (~ 26 of 31

Optimization

Murray meets Tokunaga:

 $\red{solution}$ Find R_r^3 satisfies same equation as R_n and R_v (v is for volume):

$$R_r^3 = R_n = R_v$$

Is there more we could do here to constrain the Horton ratios and Tokunaga constants?

COcoNuTS

Optimal transportation Ontimal

Murray meets Tokunaga

References II

[4] P. S. Dodds. Optimal form of branching supply and collection

Phys. Rev. Lett., 104(4):048702, 2010. pdf

P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. Physical Review E, 63(1):016115, 2001. pdf

[6] J. W. Kirchner. Statistical inevitability of Horton's laws and the apparent randomness of stream channel

Geology, 21:591-594, 1993. pdf

[7] P. La Barbera and R. Rosso.

COcoNuTS

Optimal transportation Ontimal branching Murray's law Murray meets Tok

References

COcoNuTS

Optimal transportation Optimal branching References

Optimization

Murray meets Tokunaga:

- & Isometry: $V_{\omega} \propto \ell_{\omega}^3$
- Gives

$$\boxed{R_\ell^3 = R_r^3 = R_n = R_v}$$

- We need one more constraint ...
- West et al. (1997) [18] achieve similar results following Horton's laws (but this work is disaster).
- So does Turcotte et al. (1998) [17] using Tokunaga (sort of).

References III

Optimal transportation Optimal branching Murray meets Tokunaga References

UNIVERSITY OF

少 Q (~ 24 of 31

COcoNuTS

1990. pdf ☑ K. A. McCulloh, J. S. Sperry, and F. R. Adler. Water transport in plants obeys Murray's law. Nature, 421:939–942, 2003. pdf ✓

Reply.

K. A. McCulloh, J. S. Sperry, and F. R. Adler. Murray's law and the hydraulic vs mechanical functioning of wood. Functional Ecology, 18:931-938, 2004. pdf

Water Resources Research, 26(9):2245-2248,

[10] C. D. Murray. The physiological principle of minimum work

applied to the angle of branching of arteries. J. Gen. Physiol., 9(9):835–841, 1926. pdf 🗗

少 q (~ 28 of 31

References IV

[11] C. D. Murray.

The physiological principle of minimum work. I. The vascular system and the cost of blood volume.

Proc. Natl. Acad. Sci., 12:207-214, 1926. pdf 2

[12] C. D. Murray.

A relationship between circumference and weight in trees and its bearing on branching angles.

J. Gen. Physiol., 10:725–729, 1927. pdf

[13] I. Rodríguez-Iturbe and A. Rinaldo.

Fractal River Basins: Chance and
Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

COcoNuTS

Optimal transportation

Optimal branching

References

少 Q (~ 29 of 31

References V

[14] A. E. Scheidegger.
<u>Theoretical Geomorphology.</u>
Springer-Verlag, New York, third edition, 1991.

[15] D. W. Thompson.
On Growth and Form.
Cambridge University Pres, Great Britain, 2nd edition, 1952.

[16] D. W. Thompson.
On Growth and Form — Abridged Edition.
Cambridge University Press, Great Britain, 1961.

[17] D. L. Turcotte, J. D. Pelletier, and W. I. Newman.

Networks with side branching in biology.

Journal of Theoretical Biology, 193:577–592, 1998.

pdf ☑

COcoNuTS

Optimal transportation Optimal branching Murray's law

References

COcoNuTS

References VI

[19] Q. Xia.

Optimal paths related to transport problems.
Communications in Contemporary Mathematics, 5:251–279, 2003. pdf 🗗

[20] Q. Xia.

The formation of a tree leaf.

ESAIM: Control, Optimisation and Calculus of Variations, 13:359–377, 2007. pdf ☑

Temperature

**Temperatu

Optimal branching Murray's law Murray meets Tokunaga References

