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“Flavor network and the principles of food
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Example of a bipartite affiliation network and the
induced networks:

QXX 9999 %%1
G

Center: A small story-trope bipartite graph. [/
Induced trope network and the induced story
network are on the left and right.

The dashed edge in the bipartite affiliation
network indicates an edge added to the system,
resulting in the dashed edges being added to the
two induced networks.

Basic story:

An example of two inter-affiliated types:
fHf = stories,
@ = tropesZ.
Stories contain tropes, tropes are in stories.
Consider a story-trope system with Ng; = # stories
and Ng = # tropes.
mgg ¢ = number of edges between i and 9.
Let's have some underlying distributions for
numbers of affiliations: P,(CH) (a story has k tropes)
and P,(f) (a trope is in k stories).
Average number of affiliations: (k)g and (k)q.
(k)gg = average number of tropes per story.

(k)g = average number of stories containing a
given trope.

Must have balance: Ng - (k)g = mgg o = N - (k)g-
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Usual helpers for understanding network'’s
structure:

Randomly select an edge connecting afHto a Q.
Probability the [ contains & other tropes:

RBP4 DR,
A np® (kg
Z (]Jr ) J+1 o

Probability the @ is in k other stories:

RO (k+1)PY,

Q
k)P,
@ _ .

Zj:()(j + 1)P]('3)1 <k>9
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Networks of [ and € within bipartite structure: COcoNuTs COcoNuTS

P,ﬁ)k probability a random i is connected to k

stories by sharing at least one Q.

Introduction Introduction
Basic story

P.ﬁ . = probability a random 9 is connected to k References @ @ :
tropes by co-occurring in at least one . Rw )

R¥® = probability a random edge leads to a i} S =
which is connected to k other stories by sharing at

least one Q.

Rﬁ : = probability a random edge leads to a @ )
which is connected to k other tropes by - @ @ !
co-occurring in at least one . e :

Goal: find these distributions (.
Another goal: find the induced distribution of

component sizes and a test for the presence or
absence of a giant component.

. UNIVERSITY () L Thavensiry )
Unrelated goal: be 10% happier/weep less. Az @ ) ]
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Generating Function Madness

( B} . Introduction Introduction

? . Basic story Yes, we're doing it: Basic story

o' P w References

References
Fra(z ):ZZO P(H) k
Q
Fpa(a) = i, P a"

_ @k _ P @
Fre(z) = Zkzo Ry, k= %

o @ k_ Fre
0 (@) =250 By 2" =
P

The usual goodness:
Normalization: Fpe (1) = Fpe (1) = 1.

Means: Fpg (1) = (k)gg and Frq (1) = (k)q.
[} et | [
A 230f45 a @ 260f45
@ 5 Ses e We strap these in as well: o
Ual . @? : Introduction FP(HJ(HJ) - Z;io Pl(n%)kﬁk Introduction
(N . !
B B Fpyg (@) = S5 Pt S

V—H)
From(z) = Zk 0 Bind 1 a®

ind
H—Q
FR}QE';—‘”(Z) Zk 0 Bind & a*

p;‘r,u‘

So how do all these things connect?

We're again performing sums of a randomly
chosen number of randomly chosen numbers.

We use one of our favorite sneaky tricks:

bip s ¢ e v
Q W:ZVM = Fy () = Fy(Fy(z)).
/) \ B B i=1 ) [
o VERMONT « VERMONT 10|
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Induced distributions are not straightforward:

o004 T T T

003 |- 4
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frequency 7,

View this as Pﬁfk (the probability a story shares tropes
with k other stories). /]

Result of purely random wiring with Poisson
distributions for affiliation numbers.

Parameters: Ng = 10, Ng = 10°,
<k>H = 1.5, and <I€>Q =15.
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Induced distribution for stories:

Randomly choose a [, find its tropes (U), and
then find how many other stories each of those
tropes are part of (V):

Fpa(2) = Fpa(2) = Fpa (Fro(2))
Find the [ at the end of a randomly chosen
affiliation edge leaving a trope, find its number of
other tropes (U), and then find how many other
stories each of those tropes are part of (V):

Frew(z)=Fre (Fro(v))

ind

Induced distribution for tropes:

Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part
of those stories (V):

FR(:J(I) = Fpifrj)(ﬂf) = Fpe (Fre(z))
Find the @ at the end of a randomly chosen
affiliation edge leaving a story, find the number of
other stories that use it (U), and then find how
many other tropes are in those stories (V):

FR(&W (I) = FR(VJ (FR[H‘ (lli))

ind

Let's do some good:

Average number of stories connected to a story
through trope-space:

(k)gg,ind = F}’,ﬁ)

(1)

d
So: <k>E,ind = EFPLHJ (FR\'Q)(J/’))

x=1

= Fllww(l)F}/:»rH) (FRNJ(I)) = Fllqm(l)F}/;rH)(l)
Similarly, the average number of tropes connected to a
random trope through stories:
(k)gind = Fra (1) Fpe (1)

In terms of the underlying distributions, we have:

k(k—1) k(k—1)
(k)gaina = L (k)gg and (kg ,ing = LB (k)g

COcoNuTS

Introduction
Basic story

References

- o]
UNIVERSITY |°|
& |/ VERMONT 10}

a 310f45
COcoNuTS

Introduction
Basic story

References

16 O]
ﬁ UNIVERSITY. |9|
37 VERVONT 0l

va 320f45
COcoNuTS

Introduction
Basic story

References

- o]
UNIVERSITY |Q|
& |/ VERMONT 1O}

v a > 330f45


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds

Spreading through bipartite networks:

View as bouncing back and forth between the two
connected populations. [/

Actual spread may be within only one population
(ideas between between people) or through both

(failures in physical and communication networks).

The gain ratio for simple contagion on a bipartite
random network = product of two gain ratios.

Unstoppable spreading: is this thing connected?

Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) g g3 ing = FR<‘7 o (1) (and

(H o (1) for the trope side of things).

We compute with joy:

COcoNuTS COcoNuTS
Simple example for finding the degree
distributions for the two induced networks in a

random bipartite affiliation structure:

Introduction Introduction

Basic story Basic story

References References

Set P — 5, , and leave P¥) arbitrary.
Each story contains exactly three tropes.
We have Fpg (z) = 2% and Fra (v) = 22
Using F' & 8 (x) = Fpa (Fre(x)) and

F (q( ) = Fpe (Fre (z)) we have

P
FPi(E)( ) = [FR(QA (l‘)] and FPifé (l‘) = Fprv) ($2) .

Even more specific: If each trope is found in
exactly two stories then Fpg = 22 and Fre =«
giving Fe (x) = 2® and F g () = 2%

ind ind

Yes for giant components O:
(k) rmind = (W) pgina =2-1=2> 1
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Boards and Directors: ")
10000 T T T T T T

2 Introduction
1000 j\il R
% Basic story

References

frequency
- 3 B
T T
//
‘\\)\ﬂ ——s
o—
I3
L
5
frequency

1

0 2 4 6 8 0 10 20 30
number of boards  number of members.

FIG. 8. Frequency distributions for the boards of directors of the

d d Fortune 1000. Left panel: the numbers of boards on which each
<k> R,B,ind = 7FR(94E§J (ZE) = *FRH‘; (FRM (:B)) director sits. Right panel: the numbers of directors on each board.
dz ™ Rindk ot dz ot
F’o(1 1
=Fro(1)Frg (Fro(1)) = Fre(1)Frg (1) = FI/D‘V (1> F}/:"H (1) Exponentialish distribution for number of boards each
po(l) Fpa (1) director sits on.
Note symmetry Boards typically have 5 to 15 directors.
$happiness++; Plan: Take these distributions, presume random .N\Hm g
PP ! bipartite structure and generate co-director network A sy
and board interlock network. Hao 380f45
COcoNuTS COcoNuTS
In terms of the underlying distributions: Boards and Directors and more: ]
Introduction Introduction
(k) R g@.ind = (k(k — 1))gg (k(k —1))g Basic story TABLE I. Summary of results of the analysis of four collabora- Basic story
i (b (k)g References tion networks. References

We have a giant component in both induced networks
when

(k) r@,ind = (k) r,Q,ina > 1

See this as the product of two gain ratios.
#excellent #physics

We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

SN kK (kK —k— k) PEPY = 0.
k=0 k’=0

Clustering C Average degree z

Network Theory Actual Theory  Actual
Company directors 0.590  0.588 14.53 14.44
Movie actors 0084  0.199 125.6 1134
Physics (arxiv.org) 0.192 0452 16.74 927
Biomedicine (MEDLINE) ~ 0.042  0.088 18.02 16.93

Random bipartite affiliation network assumption
produces decent matches for some basic quantities.
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Boards and Directors: !

frequency r,

005

0,00 deuidt! Lo I
0 10 20 30 40 50

‘number of codirectors z

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

<& Jolly good: Works very well for co-directors.

& For comparison, the dashed line is a Poisson with the
empirical average degree.

Boards and Directors: !

probability

‘number of interlocks

FIG. 10. The distribution of the number of other boards with
which each board of directors is “interlocked™ in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line s the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on onesel.

&5 Wins less bananas for the board interlock network.

&% Assortativity is the reason: Directors who sit on many
boards tend to sit on the same boards.

&> Note: The term assortativity was not used in this 2001
paper.

To come:
<% Distributions of component size.

<& Simpler computation for the giant component
condition.

<& Contagion.

& Testing real bipartite structures for departure
from randomness.

Nutshell:
<& Random bipartite networks model many real
systems well.

&% Crucial improvement over simple random
networks.

&% We can find the induced distributions and
determine connectivity/contagion condition.
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