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Figure 2| The backbone of the flavor network. Each node denotes an ingredient, the node color indicates food category, and node size reflects the

ingredient prevalence in recipes. Tywo ingredients ate connected if they share a significant number of flavor compounds, link thickness representing the e O|
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Figure 2: Ingredient complement network. Two ingredients share an edge if they occur together' more than
would be expected by chance and if their pointwise mutual information exceeds a threshold.
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- Networks and creativity: COCONGTS

Introgiiction
' . Guimera et al., Science ~ Besicstory
| M_DN 2005: ! “Team Retereriecs
Assembly Mechanisms
CHp Determine
Collaboration Network

Structure and Team
Performance”

Broadway musical
Fig. 2. Modeling the emergence of collaboration networks in creative enterprises. (A) Creation of a I n d u st ry

team with m = 3 agents, Consider, at time zero, a collaboration network comprising five agents, all

incumbents (blue circes). Along with the incurnbents, there is a lrge pool of newcomers (green ’ s *

circles) available to participate in new teams. Each agent in a team has a probability p of being f I I

drawn from the pool of incumbents and a probablty 1 — p of being drawn from the pool of new- C | e NTTI C CO a O ra | O n
comers. For the second and subsequent agents selected from the incumbents’ paol: i) with probability

g, the new agent is randomly selected from among the set of collaborators of a randomly selected K A

incumbent already in the team; (i) otherwise, he or she is selected at random among all incumbents in S I P h |

i Rl o CB e Sttt P el 1IN 50CIal FSycholiogy,

team (leftmost box). Let us also assume that the second agent is an incumbent, too (center-left box). In

this example, the second agent is a past collaborator of agent 4, specifically agent 3 (center-right box).

Lastly, the third agent is selected from the pool of newcomers; this agent becomes incumbent 6 E E I
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- Random bipartite networks: COCONTS + *
We'll follow this rather well cited paper: e
‘Random graphs with arbitrary degree i

Newman, Strogatz, and Watts,
Phys. Rev. E, 64, 026118, 2001. (7]
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Center: A small story-trope bipartite graph. */

Induced trope network and the induced story
network are on the left and right.

The dashed edge in the bipartite affiliation
network indicates an edge added to the system,
resulting in the dashed edges being added to the
two induced networks.
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An example of two inter-affiliated types:

ff = stories, .
¢ = tropes@' Basic story

,,,,, References

Introduction

Stories contain tropes, tropes are in stories.

Consider a story-trope system with Ng; = # stories
and Ny = # tropes.

mgg ¢ = Number of edges between [ and 9.
Let's have some underlying distributions for
numbers of affiliations: P,QB) (a story has k tropes)
and P,Ff) (a trope is in k stories).
Average number of affiliations: (k)g and (k). 5
(k)gg = average number of tropes per story. b B
(k)q = average number of stories containing a T
given trope.
me 10
Must have balance: Ng - (k)g = mego = Ng- (k)g. sy B
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Randomly select an edge connecting afHto a Q. Retereriecs
Probability the [ contains k other tropes:

2B _ DS B

B EE - ARy

Probability the @ is in k other stories:
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Pﬁ)k = probability a random [ is connected to &
stories by sharing at least one Q.

Introduction
Basic story
Pifc} ., = probability a random @ is connected to & Retcrelie)
troﬁes by co-occurring in at least one Hi.

Rif;;&) = probability a random edge leads to a

which is connected to k other stories by sharing at
least one 9.

Ri(fﬁ_,f) = probability a random edge leads to a @
which is connected to k other tropes by

co-occurring in at least one .
Goal: find these distributions 0.
Another goal: find the induced distribution of

component sizes and a test for the presence or
absence of a giant component.

The (o]
. UN]}'EKSI'I'). 5|
Unrelated goal: be 10% happier/weep less. bvwow 5
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- Generating Function Madness

Fpa(z)= X0 PBgk
9
Fpo () :z:OOP” :

F (Hu(x>
( ) Zk 0 k .1‘ m
&5 Q F o)
FR(W (I) = Zk;zo R5c>"ljk == F\I/Di(l)
P@

Normalization: Fpg (1) = Fpe(l) = 1.

Means: g (1) = (kg and Fpe (1) = (K)g.
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ind
co Q
Fﬂfg (-73') = Zkzo P|E’1d),kxk

—H
Fro-a (1) = 27 Rig i ©*

oo H—
FR}E_W @)= 2 Ri(nd,k ok

We're again performing sums of a randomly
chosen number of randomly chosen numbers.

We use one of our favorite sneaky tricks:

W =

i

U
V) = Fy (@) = Fy(Fy (@)

COcoNuTS

Introduction

Basic story

References

The O
i UNIVERSITY |9|
il ¥ VERMONT 1O

DA 27 of 45


http://www.uvm.edu
http://www.uvm.edu/pdodds

View this as Pnd .. (the probability a story shares tropes

frequency r,

0 20 40 60 80 100

‘number of costars z

FIG. 7. The frequency distribution of numbers of co-stars of an
actor in a bipartite graph with x#=15 and »=15. The points arc
simulation results for M= 10000 and N=100000. The line is the
exact solution, Egs. (89) and (90). The error bars on the numerical
results are smaller than the points.

with k other stories). [’

Result of purely random wiring with Poisson

distributions for affiliation numbers.

Parameters: Ng = 104, Ng = 105,

(k)ey

= 1.5, and (k)¢ = 15.
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Introduction

Randomly choose a [Hj find its tropes (U), and Basic story
then find how many other stories each of those References
tropes are part of (V):

Fpa () = Fpa(2) = Fpa (Fre(2))
Find the  at the end of a randomly chosen
affiliation edge leaving a trope, find its number of
other tropes (U), and then find how many other
stories each of those tropes are part of (V):

FRgO(j—HJ (IL‘> — FR(H‘) (FR@‘) (IE)) ‘\(“Mi
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Randomly choose a @, find the stories its part of
(U), and then find how many other tropes are part
of those stories (V):

F_o(z) = Fo9(x) = Fpo (Fre(z))

Find the @ at the end of a randomly chosen
affiliation edge leaving a story, find the number of
other stories that use it (U), and then find how
many other tropes are in those stories (V):

Froa(z) = Fre (Fre (7))

ind
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COcoNuTS

Average number of stories connected to a story
through trope-space: Introduction
Basic story

(F)gg,ind = F e (1)

ind

References

d

So: (k)gg.ind = %FP(H} (Fro(z))
r=1

= Fllyw(l)F]/:(Ha (FRW)(l)) = Fj/{@)(1>F1/D(H)<1)

Similarly, the average number of tropes connected to a
random trope through stories:

<k>9,ind T F&(E)(l)FI/D(Q)(l)

In terms of the underlying distributions, we have: P 2
K ing = Ll 1y and (kg g = S DiA (g R
( >H,|nd (R)g ( >H ( >Q,|nd o (ke CialAel
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(X;% \;:“”(3%3 jj mtrloduct\on

( W_V(}g ) Basic story

N (" 2 o ‘\j{ %2 \7{ References
S 2 N =(n
2SR ey
=\ i\\—)
SR
VS

View as bouncing back and forth between the two
connected populations. %/

Actual spread may be within only one population

(ideas between between people) or through both b o
(failures in physical and communication networks). i
The gain ratio for simple contagion ona bipartite | -
random network = product of two gain ratios. Y 2
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Always about the edges: when following a random
edge toward a [, what's the expected number of new
edges leading to other stories via tropes?

We want to determine (k) r g.ind = F;QFQJH>

(1) (and
FI’%(E_Q) (1) for the trope side of things).

ind

We compute with joy:

d d

(k) rgind = g Fre-@ (@) = g-Fra (Fre(z))
¢ =i =1
Flo(l) Fig (1)
o FI/%(V)(]')FI/%(H) (FR(Q)(l)) = FI/%(V)<]')F]/%(H)(1) o= ng@j(:l) FI/IZEHJ(l)

Note symmetry.

$happiness++;
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In terms of the underlying distributions:

Introduction

Ry dhs
(k) r,@,ind = P e v Basic story

References

We have a giant component in both induced networks

when
(k) rm@,ind = (F)R,¢,ind > 1

See this as the product of two gain ratios.
#excellentigphysicsi oo ot rmmenmes a1

We can mess with this condition to make it
mathematically pleasant and pleasantly inscrutable:

Y D kEkk kL E)REPRY o,
k=0 k’=0
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Set P,i@ = 03 and leave Pf) arbitrary.
Each story contains exactly three tropes.
We have Fpm (z) = 23 and Fre (z) = 22.
Using FP@ (z) = Fpm (Fre(z)) and
FPi(n@g <.13) — Fp(@) (FR<H) (I)> we have
FPI(E)(.%) = [FR(Q) (l‘)]B and Fpl(:d] ({E) = FP(Q) (%2) ;
Even more specific: If each trope is found in
exactly two stories then Fpo = 22 and Fre =z
giving Fo@ (¢) = 23 and F e (z) = z*.

ind ind
Yes for giant components U:
(k) r,m,ind = (F)Rr,gind =2-1=2> 1.
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FIG. 8. Frequency distributions for the boards of directors of the

Fortune 1000. Left panel: the numbers of boards on which each
director sits. Right panel: the numbers of directors on each board.

Exponentialish distribution for number of boards each
director sits on.

Boards typically have 5 to 15 directors.

Plan: Take these distributions, presume random
bipartite structure and generate co-director network
and board interlock network.
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‘:_f‘:-:_“'w., aNA | ) Irectors N( a2~k
Introduction

TABLE I. Summary of results of the analysis of four collabora- Basic story

tion networks. References

Clustering C Average degree z

Network Theory Actual Theory Actual
Company directors 0.590 0.588 14.53 14.44
Movie actors 0084 0.199 125.6 113.4
Physics (arxiv.org) 0.192 0452 16.74 9.27

Biomedicine (MEDLINE)  0.042  0.088 18.02 16.93

Random bipartite affiliation network assumption
produces decent matches for some basic quantities.
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: collaborations
g inphysics -

frequency r,

0 10 20 30 40 50
collaborators

40 50

number of codirectors z

FIG. 9. The probability distribution of numbers of co-directors
in the Fortune 1000 graph. The points are the real-world data, the
solid line is the bipartite graph model, and the dashed line is the
Poisson distribution with the same mean. Insets: the equivalent dis-
tributions for the numbers of collaborators of movie actors and
physicists.

Jolly good: Works very well for co-directors.

For comparison, the dashed line is a Poisson with the
empirical average degree.
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0.12
R B

010 4 § oo | Introduction
. 0.08 E 11 Basic story
- A A VU T T O B e i o s [ e sl e ool 2
z H 1
E 006 10 References
g boards you sit on

number of interlocks

FIG. 10. The distribution of the number of other boards with
which each board of directors is *“interlocked” in the Fortune 1000
data. An interlock between two boards means that they share one or
more common members. The points are the empirical data, the solid
line is the theoretical prediction. Inset: the number of boards on
which one’s codirectors sit, as a function of the number of boards
one sits on oneself.

Wins less bananas for the board interlock network.

Assortativity is the reason: Directors who sit on many
boards tend to sit on the same boards.

Note: The term assortativity was not used in this 2001 .
paper. 2
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Distributions of component size.

Simpler computation for the giant component
condition.

Contagion.

Testing real bipartite structures for departure
from randomness.

Random bipartite networks model many real
systems well.

Crucial improvement over simple random
networks.

We can find the induced distributions and
determine connectivity/contagion condition.
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