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These slides are also brought to you by:

Special Guest Executive Producer

 On Instagram at pratchett_the_cat
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Random network generator for 𝑁 = 3:

 Get your own exciting generator here.
 As 𝑁 ↗, polyhedral die rapidly becomes a ball...
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Random networks

Pure, abstract random networks:
 Consider set of all networks with 𝑁 labelled nodes

and 𝑚 edges.
 Standard random network =

one randomly chosen network from this set.
 To be clear: each network is equally probable.
 Sometimes equiprobability is a good assumption,

but it is always an assumption.
 Known as Erdős-Rényi random networks or ER

graphs.
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Random networks—basic features:
 Number of possible edges:0 ≤ 𝑚 ≤ (𝑁2 ) = 𝑁(𝑁 − 1)2
 Limit of 𝑚 = 0: empty graph.
 Limit of 𝑚 = (𝑁2 ): complete or fully-connected

graph.
 Number of possible networks with 𝑁 labelled

nodes: 2(𝑁2 ) ∼ 𝑒 ln22 𝑁2 .
 Given 𝑚 edges, there are ((𝑁2 )𝑚 ) different possible

networks.
 Crazy factorial explosion for 1 ≪ 𝑚 ≪ (𝑁2 ).
 Real world: links are usually costly so real

networks are almost always sparse.
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Random networks

How to build standard random networks:
 Given 𝑁 and 𝑚.
 Two probablistic methods (we’ll see a third later

on)

1. Connect each of the (𝑁2 ) pairs with appropriate
probability 𝑝.
 Useful for theoretical work.

2. Take 𝑁 nodes and add exactly 𝑚 links by selecting
edges without replacement.
 Algorithm: Randomly choose a pair of nodes and

, ≠ , and connect if unconnected; repeat until
all 𝑚 edges are allocated.

 Best for adding relatively small numbers of links
(most cases).

 1 and 2 are effectively equivalent for large 𝑁 .
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Random networks
A few more things:
 For method 1, # links is probablistic:⟨𝑚⟩ = 𝑝(𝑁2 ) = 𝑝12𝑁(𝑁 − 1)
 So the expected or average degree is⟨ ⟩ = 2 ⟨𝑚⟩𝑁= 2𝑁 𝑝12𝑁(𝑁 − 1) = ✁2

✚✚𝑁 𝑝1
✁2✚✚𝑁(𝑁 − 1) = 𝑝(𝑁 − 1).

 Which is what it should be...
 If we keep ⟨ ⟩ constant then 𝑝 ∝ 1/𝑁 → 0 as𝑁 → ∞.
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Random networks: examples for 𝑁=500

𝑚 = 100⟨ ⟩ = 0.4

𝑚 = 260⟨ ⟩ = 1.04

𝑚 = 200⟨ ⟩ = 0.8

𝑚 = 280⟨ ⟩ = 1.12

𝑚 = 230⟨ ⟩ = 0.92

𝑚 = 300⟨ ⟩ = 1.2

𝑚 = 240⟨ ⟩ = 0.96

𝑚 = 500⟨ ⟩ = 2

𝑚 = 250⟨ ⟩ = 1

𝑚 = 1000⟨ ⟩ = 4
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Random networks: largest components

𝑚 = 100⟨ ⟩ = 0.4

𝑚 = 260⟨ ⟩ = 1.04

𝑚 = 200⟨ ⟩ = 0.8

𝑚 = 280⟨ ⟩ = 1.12

𝑚 = 230⟨ ⟩ = 0.92

𝑚 = 300⟨ ⟩ = 1.2

𝑚 = 240⟨ ⟩ = 0.96

𝑚 = 500⟨ ⟩ = 2

𝑚 = 250⟨ ⟩ = 1

𝑚 = 1000⟨ ⟩ = 4
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Random networks: examples for 𝑁=500

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1
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Random networks: largest components

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1

𝑚 = 250⟨ ⟩ = 1
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Giant component
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Clustering in random networks:
 For construction method 1, what is the clustering

coefficient for a finite network?
 Consider triangle/triple clustering coefficient: [6]𝐶2 = 3 × #triangles

#triples

 Recall: 𝐶2 = probability that
two friends of a node are
also friends.

 Or: 𝐶2 = probability that a
triple is part of a triangle.

 For standard random
networks, we have simply
that 𝐶2 = 𝑝.
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Clustering in random networks:

 So for large random
networks (𝑁 → ∞),
clustering drops to zero.

 Key structural feature of
random networks is that
they locally look like
pure branching networks

 No small loops.
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Degree distribution:
 Recall = probability that a randomly selected

node has degree .
 Consider method 1 for constructing random

networks: each possible link is realized with
probability 𝑝.

 Now consider one node: there are ‘𝑁 − 1 choose ’
ways the node can be connected to of the other𝑁 − 1 nodes.

 Each connection occurs with probability 𝑝, each
non-connection with probability (1 − 𝑝).

 Therefore have a binomial distribution:( ; 𝑝, 𝑁) = (𝑁 − 1)𝑝 (1 − 𝑝)𝑁−1− .
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Limiting form of ( ; 𝑝, 𝑁):
 Our degree distribution:( ; 𝑝, 𝑁) = (𝑁−1)𝑝 (1 − 𝑝)𝑁−1− .
 What happens as 𝑁 → ∞?
 We must end up with the normal distribution

right?
 If 𝑝 is fixed, then we would end up with a Gaussian

with average degree ⟨ ⟩ ≃ 𝑝𝑁 → ∞.
 But we want to keep ⟨ ⟩ fixed...
 So examine limit of ( ; 𝑝, 𝑁) when 𝑝 → 0 and𝑁 → ∞ with ⟨ ⟩ = 𝑝(𝑁 − 1) = constant.( ; 𝑝, 𝑁) ≃ ⟨ ⟩! (1 − ⟨ ⟩𝑁 − 1)𝑁−1− → ⟨ ⟩! 𝑒−⟨ ⟩
 This is a Poisson distribution with mean ⟨ ⟩.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
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http://en.wikipedia.org/wiki/Poisson_distribution


COcoNuTS

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
26 of 74

Poisson basics:

( ; 𝜆) = 𝜆! 𝑒−𝜆  𝜆 > 0
 = 0, 1, 2, 3, …
 Classic use: probability

that an event occurs
times in a given time
period, given an
average rate of
occurrence.

 e.g.:
phone calls/minute,
horse-kick deaths.

 ‘Law of small numbers’
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Poisson basics:

 The variance of degree distributions for random
networks turns out to be very important.

 Using calculation similar to one for finding ⟨ ⟩ we
find the second moment to be:⟨ 2⟩ = ⟨ ⟩2 + ⟨ ⟩.

 Variance is then𝜎2 = ⟨ 2⟩ − ⟨ ⟩2 = ⟨ ⟩2 + ⟨ ⟩ − ⟨ ⟩2 = ⟨ ⟩.
 So standard deviation 𝜎 is equal to √⟨ ⟩.
 Note: This is a special property of Poisson

distribution and can trip us up...
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General random networks

 So... standard random networks have a Poisson
degree distribution

 Generalize to arbitrary degree distribution .
 Also known as the configuration model. [6]

 Can generalize construction method from ER
random networks.

 Assign each node a weight 𝑤 from some
distribution 𝑤 and form links with probability(link between and ) ∝ 𝑤 𝑤 .

 But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing

nodes with fixed degrees.
2. Examining mechanisms that lead to networks with

certain degree distributions.
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Random networks: examples for 𝑁=1000

𝛾 = 2.1⟨ ⟩ = 3.448

𝛾 = 2.55⟨ ⟩ = 1.712

𝛾 = 2.19⟨ ⟩ = 2.986

𝛾 = 2.64⟨ ⟩ = 1.6

𝛾 = 2.28⟨ ⟩ = 2.306

𝛾 = 2.73⟨ ⟩ = 1.862

𝛾 = 2.37⟨ ⟩ = 2.504

𝛾 = 2.82⟨ ⟩ = 1.386

𝛾 = 2.46⟨ ⟩ = 1.856

𝛾 = 2.91⟨ ⟩ = 1.49
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Random networks: largest components

𝛾 = 2.1⟨ ⟩ = 3.448

𝛾 = 2.55⟨ ⟩ = 1.712

𝛾 = 2.19⟨ ⟩ = 2.986

𝛾 = 2.64⟨ ⟩ = 1.6

𝛾 = 2.28⟨ ⟩ = 2.306

𝛾 = 2.73⟨ ⟩ = 1.862

𝛾 = 2.37⟨ ⟩ = 2.504

𝛾 = 2.82⟨ ⟩ = 1.386

𝛾 = 2.46⟨ ⟩ = 1.856

𝛾 = 2.91⟨ ⟩ = 1.49
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Models

Generalized random networks:
 Arbitrary degree distribution .
 Create (unconnected) nodes with degrees

sampled from .
 Wire nodes together randomly.
 Create ensemble to test deviations from

randomness.
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Building random networks: Stubs

Phase 1:
 Idea: start with a soup of unconnected nodes with

stubs (half-edges):

 Randomly select stubs
(not nodes!) and
connect them.

 Must have an even
number of stubs.

 Initially allow self- and
repeat connections.
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Building random networks: First rewiring

Phase 2:
 Now find any (A) self-loops and (B) repeat edges

and randomly rewire them.

(A) (B)
 Being careful: we can’t change the degree of any

node, so we can’t simply move links around.
 Simplest solution: randomly rewire two edges at a

time.
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General random rewiring algorithm
1

1

i
3

i
4

i
2

e
2

e
i

 Randomly choose two edges.
(Or choose problem edge and
a random edge)

 Check to make sure edges are
disjoint.

i
3

i
4

i
2

1

e’
2

i

e’

1  Rewire one end of each edge.

 Node degrees do not change.

 Works if 𝑒1 is a self-loop or
repeated edge.

 Same as finding on/off/on/off
4-cycles. and rotating them.
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Sampling random networks

Phase 2:
 Use rewiring algorithm to remove all self and

repeat loops.

Phase 3:
 Randomize network wiring by applying rewiring

algorithm liberally.
 Rule of thumb: # Rewirings ≃ 10 × # edges [4].
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Random sampling

 Problem with only joining up stubs is failure to
randomly sample from all possible networks.

 Example from Milo et al. (2003) [4]:

1 configuration 90 configurations

(a) (b)

0

0.5

1

0

0.5

1

%
 f

re
q
u
en

cy
 o

f 
o
cc

u
rr

en
ce

0

0.5

1

switching algorithm

go with the winners

matching algorithm

(c)

COcoNuTS

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
40 of 74

Sampling random networks

 What if we have instead of 𝑁 ?
 Must now create nodes before start of the

construction algorithm.
 Generate 𝑁 nodes by sampling from degree

distribution .
 Easy to do exactly numerically since is discrete.
 Note: not all will always give nodes that can be

wired together.
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Network motifs

 Idea of motifs [7] introduced by Shen-Orr, Alon et
al. in 2002.

 Looked at gene expression within full context of
transcriptional regulation networks.

 Specific example of Escherichia coli.
 Directed network with 577 interactions (edges)

and 424 operons (nodes).
 Used network randomization to produce

ensemble of alternate networks with same degree
frequency 𝑁 .

 Looked for certain subnetworks (motifs) that
appeared more or less often than expected
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Network motifs

feedforward loop

Z

X

Y

X

n

Y

crp

araC

araBAD

a

b

a

 𝑍 only turns on in response to sustained activity in𝑋.
 Turning off 𝑋 rapidly turns off 𝑍.
 Analogy to elevator doors.
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Network motifs

single input module (SIM)

X

n

X

Z1 Z2 ...  Zn

argR

a
rg
C
B
H

a
rg
D

a
rg
E

a
rg
F

a
rg
I

c

d

e

 Master switch.
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Network motifs

dense overlapping regulons (DOR)
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Network motifs

 Note: selection of motifs to test is reasonable but
nevertheless ad-hoc.

 For more, see work carried out by Wiggins et al. at
Columbia.
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The edge-degree distribution:
 The degree distribution is fundamental for our

description of many complex networks

 Again: is the degree of randomly chosen node.

 A second very important distribution arises from
choosing randomly on edges rather than on nodes.

 Define to be the probability the node at a random
end of a randomly chosen edge has degree .

 Now choosing nodes based on their degree (i.e., size):∝
 Normalized form: = ∑∞′=0 ′ ′ = ⟨ ⟩ .
 Big deal: Rich-get-richer mechanism is built into this

selection process.
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 Probability of randomly
selecting a node of degree
by choosing from nodes:1 = 3/7, 2 = 2/7, 3 = 1/7,6 = 1/7.

 Probability of landing on a
node of degree after
randomly selecting an edge
and then randomly choosing
one direction to travel:1 = 3/16, 2 = 4/16,3 = 3/16, 6 = 6/16.

 Probability of finding #
outgoing edges = after
randomly selecting an edge
and then randomly choosing
one direction to travel:0 = 3/16 1 = 4/16,2 = 3/16, 5 = 6/16.
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The edge-degree distribution:

 For random networks, is also the probability
that a friend (neighbor) of a random node has
friends.

 Useful variant on :

= probability that a friend of a random node
has other friends.

 = ( + 1) +1∑ ′=0( ′ + 1) ′+1 = ( + 1) +1⟨ ⟩
 Equivalent to friend having degree + 1.
 Natural question: what’s the expected number of

other friends that one friend has?
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The edge-degree distribution:
 Given is the probability that a friend has other

friends, then the average number of friends’ other
friends is ⟨ ⟩𝑅 = ∞∑=0 = ∞∑=0 ( + 1) +1⟨ ⟩= 1⟨ ⟩ ∞∑=1 ( + 1) +1= 1⟨ ⟩ ∞∑=1 (( + 1)2 − ( + 1)) +1
(where we have sneakily matched up indices)= 1⟨ ⟩ ∞∑=0( 2 − ) (using j = k+1)

= 1⟨ ⟩ (⟨ 2⟩ − ⟨ ⟩)
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The edge-degree distribution:

 Note: our result, ⟨ ⟩𝑅 = 1⟨ ⟩ (⟨ 2⟩ − ⟨ ⟩), is true for
all random networks, independent of degree
distribution.

 For standard random networks, recall⟨ 2⟩ = ⟨ ⟩2 + ⟨ ⟩.
 Therefore:⟨ ⟩𝑅 = 1⟨ ⟩ (⟨ ⟩2 + ⟨ ⟩ − ⟨ ⟩) = ⟨ ⟩
 Again, neatness of results is a special property of

the Poisson distribution.
 So friends on average have ⟨ ⟩ other friends, and⟨ ⟩ + 1 total friends...
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The edge-degree distribution:
 In fact, is rather special for pure random

networks …
 Substituting = ⟨ ⟩! 𝑒−⟨ ⟩

into = ( + 1) +1⟨ ⟩
we have= ( + 1)⟨ ⟩ ⟨ ⟩( +1)( + 1)! 𝑒−⟨ ⟩ = ✘✘✘✘( + 1)

✚✚⟨ ⟩ ⟨ ⟩( +✁1)
✘✘✘✘( + 1) !𝑒−⟨ ⟩

= ⟨ ⟩! 𝑒−⟨ ⟩ ≡ .
 #samesies.
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Two reasons why this matters
Reason #1:
 Average # friends of friends per node is⟨ 2⟩ = ⟨ ⟩ × ⟨ ⟩𝑅 = ⟨ ⟩ 1⟨ ⟩ (⟨ 2⟩ − ⟨ ⟩) = ⟨ 2⟩ − ⟨ ⟩.
 Key: Average depends on the 1st and 2nd moments of

and not just the 1st moment.

 Three peculiarities:

1. We might guess ⟨ 2⟩ = ⟨ ⟩(⟨ ⟩ − 1) but it’s actually⟨ ( − 1)⟩.
2. If has a large second moment,

then ⟨ 2⟩ will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... [3, 5]
4. See also: class size paradoxes (nod to: Gelman)
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Two reasons why this matters

More on peculiarity #3:
 A node’s average # of friends: ⟨ ⟩
 Friend’s average # of friends: ⟨ 2⟩⟨ ⟩
 Comparison:⟨ 2⟩⟨ ⟩ = ⟨ ⟩⟨ 2⟩⟨ ⟩2 = ⟨ ⟩𝜎2 + ⟨ ⟩2⟨ ⟩2 = ⟨ ⟩ (1 + 𝜎2⟨ ⟩2 ) ≥ ⟨ ⟩
 So only if everyone has the same degree

(variance= 𝜎2 = 0) can a node be the same as its
friends.

 Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend.
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Figure 1 | The paradox holding probability h(k, x) as a function of degree k and node characteristic x. For the Physical Review (PR) coauthorship

network, we use (a) the number of coauthors, i.e., x 5 k, (b) the number of citations, (c) the number of publication, and (d) the average number of

citations per publication, while for the Google Scholar (GS) coauthorship network, we use (e) the number of coauthors, i.e., x5 k, and (f) the number of

citations.

Table I | Empirical results for the generalized friendship paradox in two coauthorship networks from Physical Review (PR) journals and from
Google Scholar (GS) profiles. For each node characteristic x, we measure the Pearson correlation coefficient with degree rkx, the
characteristic assortativity rxx, the average paradox holding probabilityH, and average characteristics of nodes Æxæ and their neighbors
Æxænn

characteristic x rkx rxx H Æxæ Æxænn

The number of coauthors (PR) 1.00 0.47 0.934 58.3 , 771.7
The number of citations (PR) 0.69 0.21 0.921 110.1 , 1135.7
The number of publications (PR) 0.79 0.25 0.912 10.2 , 102.1
The average number of citations per
publication (PR)

0.07 0.34 0.720 7.8 , 12.4

The number of coauthors (GS) 1.00 20.02 0.863 6.9 , 16.1
The number of citations (GS) 0.44 0.14 0.792 3089.8 , 5401.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4603 | DOI: 10.1038/srep04603 3

“Generalized friendship paradox in
complex networks: The case of scientific
collaboration”
Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014. [2]

Your friends really are monsters #winners:1

 Go on, hurt me: Friends have more coauthors,
citations, and publications.

 Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, …

 The hope: Maybe they have more enemies and
diseases too.

1Some press here [MIT Tech Review].
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Two reasons why this matters
(Big) Reason #2:
 ⟨ ⟩𝑅 is key to understanding how well random

networks are connected together.
 e.g., we’d like to know what’s the size of the largest

component within a network.
 As 𝑁 → ∞, does our network have a giant

component?
 Defn: Component = connected subnetwork of

nodes such that ∃ path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

 Defn: Giant component = component that
comprises a non-zero fraction of a network as𝑁 → ∞.

 Note: Component = Cluster

COcoNuTS

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
59 of 74

Giant component
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Structure of random networks
Giant component:
 A giant component exists if when we follow a

random edge, we are likely to hit a node with at
least 1 other outgoing edge.

 Equivalently, expect exponential growth in node
number as we move out from a random node.

 All of this is the same as requiring ⟨ ⟩𝑅 > 1.
 Giant component condition (or percolation

condition): ⟨ ⟩𝑅 = ⟨ 2⟩ − ⟨ ⟩⟨ ⟩ > 1
 Again, see that the second moment is an essential

part of the story.
 Equivalent statement: ⟨ 2⟩ > 2⟨ ⟩
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Spreading on Random Networks

 For random networks, we know local structure is
pure branching.

 Successful spreading is ∴ contingent on single
edges infecting nodes.
Success Failure:

 Focus on binary case with edges and nodes either
infected or not.

 First big question: for a given network and
contagion process, can global spreading from a
single seed occur?
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Global spreading condition
 We need to find: [1]

R = the average # of infected edges that one
random infected edge brings about.

 Call R the gain ratio.
 Define 𝐵 1 as the probability that a node of

degree is infected by a single infected edge.


R = ∞∑=0 ⟨ ⟩⏟
prob. of
connecting to
a degree node

• ( − 1)⏟
# outgoing
infected
edges

• 𝐵 1⏟
Prob. of
infection

+ ∞∑=0 ⏞⟨ ⟩ • 0⏟
# outgoing
infected
edges

• (1 − 𝐵 1)⏟⏟⏟⏟⏟
Prob. of
no infection
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Global spreading condition

 Our global spreading condition is then:

R = ∞∑=0 ⟨ ⟩ • ( − 1) • 𝐵 1 > 1.
 Case 1–Rampant spreading: If 𝐵 1 = 1 then

R = ∞∑=0 ⟨ ⟩ • ( − 1) = ⟨ ( − 1)⟩⟨ ⟩ > 1.
 Good: This is just our giant component condition

again.
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Global spreading condition

 Case 2—Simple disease-like: If 𝐵 1 = < 1 then

R = ∞∑=0 ⟨ ⟩ • ( − 1) • > 1.
 A fraction (1- ) of edges do not transmit infection.
 Analogous phase transition to giant component

case but critical value of ⟨ ⟩ is increased.
 Aka bond percolation.

 Resulting degree distribution ̃ :̃ = ∞∑= ( )(1 − ) − .
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Giant component for standard random networks:
 Recall ⟨ 2⟩ = ⟨ ⟩2 + ⟨ ⟩.
 Determine condition for giant component:⟨ ⟩𝑅 = ⟨ 2⟩ − ⟨ ⟩⟨ ⟩ = ⟨ ⟩2 + ⟨ ⟩ − ⟨ ⟩⟨ ⟩ = ⟨ ⟩
 Therefore when ⟨ ⟩ > 1, standard random

networks have a giant component.
 When ⟨ ⟩ < 1, all components are finite.
 Fine example of a continuous phase transition.
 We say ⟨ ⟩ = 1 marks the critical point of the

system.
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Random networks with skewed :
 e.g, if = 𝑐 −𝛾 with 2 < < 3, ≥ 1, then⟨ 2⟩ = 𝑐 ∞∑=1 2 −𝛾

∼ ∫∞𝑥=1 𝑥2−𝛾d𝑥∝ 𝑥3−𝛾∣∞𝑥=1 = ∞ (≫ ⟨ ⟩).
 So giant component always exists for these kinds

of networks.
 Cutoff scaling is −3: if > 3 then we have to look

harder at ⟨ ⟩𝑅.
 How about = 0?
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Giant component
And how big is the largest component?

 Define 1 as the size of the largest component.

 Consider an infinite ER random network with average
degree ⟨ ⟩.

 Let’s find 1 with a back-of-the-envelope argument.

 Define 𝛿 as the probability that a randomly chosen
node does not belong to the largest component.

 Simple connection: 𝛿 = 1 − 1.
 Dirty trick: If a randomly chosen node is not part of the

largest component, then none of its neighbors are.

 So 𝛿 = ∞∑=0 𝛿
 Substitute in Poisson distribution...
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Giant component

 Carrying on:= ∞∑=0 = ∞∑=0 ⟨ ⟩! 𝑒−⟨ ⟩
= 𝑒−⟨ ⟩ ∞∑=0 (⟨ ⟩ )!= 𝑒−⟨ ⟩𝑒⟨ ⟩𝛿 = 𝑒−⟨ ⟩(1−𝛿).

 Now substitute in = 1 − 1 and rearrange to
obtain: 1 = 1 − 𝑒−⟨ ⟩𝑆1 .
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Giant component

 We can figure out some limits and details for1 = 1 − 𝑒−⟨ ⟩𝑆1 .
 First, we can write ⟨ ⟩ in terms of 1:⟨ ⟩ = 11 ln 11 − 1 .
 As ⟨ ⟩ → 0, 1 → 0.
 As ⟨ ⟩ → ∞, 1 → 1.
 Notice that at ⟨ ⟩ = 1, the critical point, 1 = 0.
 Only solvable for 1 > 0 when ⟨ ⟩ > 1.
 Really a transcritical bifurcation. [8]

COcoNuTS

Pure random
networks
Definitions

How to build theoretically

Some visual examples

Clustering

Degree distributions

Generalized
Random
Networks
Configuration model

How to build in practice

Motifs

Random friends are
strange

Largest component

References

.
.
.
.
.

.
70 of 74

Giant component
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Giant component
Turns out we were lucky...
 Our dirty trick only works for ER random networks.
 The problem: We assumed that neighbors have

the same probability of belonging to the largest
component.

 But we know our friends are different from us...
 Works for ER random networks because⟨ ⟩ = ⟨ ⟩𝑅.
 We need a separate probability ′ for the chance

that an edge leads to the giant (infinite)
component.

 We can sort many things out with sensible
probabilistic arguments...

 More detailed investigations will profit from a spot
of Generatingfunctionology. [9]
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