

These slides are brought to you by：

These slides are also brought to you by：

\checkmark On Instagram at pratchett the＿cat $\mathbb{} 1$

COcoNuTS

COcoNuTs

Pure random networks	
	Deffinitions
How to build theoretically Some visual examples	
Clustering	
	Degree distributions
	Generalized Random
	Networks
	Configuration model
	How to build in practice
	Motifs
	Random friends are
	Largest component
	References
EN	
	のロく 3 of 74

Outline
Pure random networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions

Generalized Random Networks
Configuration model
How to build in practice
Motifs
Random friends are strange
Largest component
References

Random network generator for $N=3$ ：

Get your own exciting generator here［ 3 ．
As $N \nearrow$ ，polyhedral die rapidly becomes a ball．．．

Random networks

Pure，abstract random networks：
Consider set of all networks with N labelled nodes and m edges．
\＆Standard random network＝ one randomly chosen network from this set．
To be clear：each network is equally probable．
\＆Sometimes equiprobability is a good assumption， but it is always an assumption．
Known as Erdős－Rényi random networks or ER graphs．

Random networks—basic features：
Number of possible edges：

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

．Limit of $m=0$ ：empty graph．
\＆Limit of $m=\binom{N}{2}$ ：complete or fully－connected graph．
，Number of possible networks with N labelled nodes：

$$
2^{\binom{N}{2}} \sim e^{\frac{\ln 2}{2} N^{2}}
$$

\＆Given m edges，there are $\left(\begin{array}{c}\left(\begin{array}{c}N \\ 2 \\ m\end{array}\right)\end{array}\right)$ different possible networks．
R Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$ ．
R Real world：links are usually costly so real networks are almost always sparse．

Random networks

How to build standard random networks：
的 Given N and m ．
Two probablistic methods（we＇ll see a third later on）

1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．
－Useful for theoretical work．
2．Take N nodes and add exactly m links by selecting edges without replacement．
－Algorithm：Randomly choose a pair of nodes i and $j, i \neq j$ ，and connect if unconnected；repeat until all m edges are allocated．
－Best for adding relatively small numbers of links （most cases）．
－ 1 and 2 are effectively equivalent for large N ．

Random networks

A few more things：
\＆For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{\not 2}{\not 2} p \frac{1}{\not 2} \not \subset(N-1)=p(N-1) .
\end{gathered}
$$

．Which is what it should be．．．
的 If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as $N \rightarrow \infty$ ．

๑ดく 9 of 74

COcoNuTS

のดく 11 of 74

COcoNuTS

Random networks：examples for $N=500$

Pure random
networks

（
صดc 15 of 74

COcoNuTs

のดc 16 of 74

COcoNuTs

Random networks：examples for $N=500$

$m=250$
$\langle k\rangle=1$
Random networks：largest components

Pure random
networks
How to buld theoretically Some visual examples
Clustering
Degree distributions
Generalized
Random
Networks Networks
Configuration model
How to bulld in practice How to bulld in practice
Mootfs
Random friends are
strange
Largest component References

悬
つaल 17 of 74

Giant component

Clustering in random networks：
For construction method 1，what is the clustering coefficient for a finite network？
．Consider triangle／triple clustering coefficient：${ }^{[6]}$

$$
C_{2}=\frac{3 \times \text { \#triangles }}{\text { \#triples }}
$$

Recall：$C_{2}=$ probability that two friends of a node are also friends．
Or：$C_{2}=$ probability that a triple is part of a triangle．
－For standard random networks，we have simply that

$$
C_{2}=p .
$$

COcoNuTs

つのく 19 of 74

COcoNuTS

Pure random
networks
Definitions
Definitions
How to build theoretically
Some visual examples
Cegree distributio
Generalized
Random
Networks
How to builid in practice
How to build in practil
Matif
Rando
Strange friends are

Random friends are
strange

References

Clustering in random networks：
COcoNuTS

Pure random
networks
Definitions
How to build theorerticalt
Some visual examples
Clustering
Cobstee distributions
Generalized
Random
Network
Networks
Configuration model
How to build in practice

How to bulld in pratice
$\begin{array}{l}\text { Mouts } \\ \text { Random friends are } \\ \text { strange }\end{array}$

strange
Largest component
References

A
のac 22 of 74

Degree distribution：
Recall $P_{k}=$ probability that a randomly selected node has degree k ．
．Consider method 1 for constructing random networks：each possible link is realized with probability p ．
（ Now consider one node：there are＇$N-1$ choose k＇ ways the node can be connected to k of the other $N-1$ nodes．
的 Each connection occurs with probability p ，each non－connection with probability $(1-p)$ ．

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k} .
$$

Limiting form of $P(k ; p, N)$ ：
－Our degree distribution：
$P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
What happens as $N \rightarrow \infty$ ？
We must end up with the normal distribution right？
．If p is fixed，then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$ ．
But we want to keep $\langle k\rangle$ fixed．．．
So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \rightarrow \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

解 This is a Poisson distribution $[\bar{\lambda}$ with mean $\langle k\rangle$ ．

COcoNuTS

Pure random

networks
Definitions
How to buld theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Generalized
Random
Random
Networks
Configuration model
How to buld in practice
Howto build in practice
Mootis
Random friends are
strange
strange
Largest component
References

COcoNuTs

Pure random
networks
Definitions
How to buld theoretcically
How To buida theoreticaly
Some visual examples
Clustering
Generalized
Random
Rendworks
Configuration model
How to build in practice
How to bulld in practic
Motifs
Random friends are
strange
Random friends are
Strange
Largest component
References

Anwer

Poisson basics：

COcoNuTS

つのく 26 of 74

COcoNuTs

つのく 27 of 74

COcoNuTS

Pure random
networks
Definitions
Definitions
How to buid theoretically
sol
How to buidd heorercically
Some visual eeamples
Cumevering
Degree disrribut
Generalized
Random
Networks
Configuration model
How to build in practie
Motits
Random friends are
strange
Largest component．
References

1．Randomly wiring up（and rewiring）already existing nodes with fixed degrees．
2．Examining mechanisms that lead to networks with certain degree distributions．

Poisson basics：

R The variance of degree distributions for random networks turns out to be very important．
．Using calculation similar to one for finding $\langle k\rangle$ we find the second moment to be：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
Note：This is a special property of Poisson distribution and can trip us up．．．

General random networks

So．．．standard random networks have a Poisson degree distribution
Generalize to arbitrary degree distribution P_{k} ．
．Also known as the configuration model．${ }^{[6]}$
，Can generalize construction method from ER random networks．
Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

But we＇ll be more interested in

国

Pure random
networks
Deffintions
How to buld theoretically
somevind
Some visual examples
Custering
Degree distributions
Generalized
Generalized Random
Networks Confifuration model
How to build in practice
Motifs
Random friends are
strane
Largest component
References

A
صac 31 of 74

Random networks：largest components

Pure random
networks
Definitions
How to build theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Generalized
Random Random
Networks Configuration model
How to buid id in practice
Motif
Random friends are
strange
Largest component
References

のQく 32 of 74
cOcoNuTs

Pure random
networks
Definitions
Howto bulld theoretically
Some visual examples
Custering
Some visual exam
Clustering
Degree istrribution
Degree distributions
Generalized
Networks
Configuration model
Howtobuld inpratice
Howto build in practice
MMotis
Random friends are
strange
Largest component
References

Generalized random networks：
Arbitrary degree distribution P_{k} ．
－Create（unconnected）nodes with degrees sampled from P_{k} ．
．Wire nodes together randomly．
－Create ensemble to test deviations from randomness．

Building random networks：Stubs

Phase 1：
沓 Idea：start with a soup of unconnected nodes with stubs（half－edges）：

R Randomly select stubs （not nodes！）and connect them．
－Must have an even number of stubs． Initially allow self－and repeat connections．

Building random networks：First rewiring

Phase 2：
Now find any（A）self－loops and（B）repeat edges and randomly rewire them．
（A）

（B）

Being careful：we can＇t change the degree of any node，so we can＇t simply move links around．
Simplest solution：randomly rewire two edges at a time．

General random rewiring algorithm

R Randomly choose two edges． （Or choose problem edge and a random edge）

\＆Check to make sure edges are disjoint．

Rewire one end of each edge．
R Node degrees do not change．
R Works if e_{1} is a self－loop or repeated edge．
绝 Same as finding on／off／on／off 4－cycles．and rotating them．

COcoNuTS

Pure random
networks
Definitions
How to buid theorectcally
Some visual examples
Custering
Clustering
Degree distributions
Generalized
Random
Cotworks
Configuration model
How to build in practice
Moutis
Random friends are

strange
Largest component

References
$\left\{\begin{array}{c}x, y \\ x \\ x \\ x\end{array}\right.$

つのc 35 of 74

COcoNuTS

COcoNuTS

Pure random
networks
Definitions
How to build theoretically
How to buid theorectically
Some evisul examples
Clustering
Clusterng
Degree distributions
Generalized
Random
Networks
Configuration model
Howto build inpractice
How to build in practice
Motirs
Random firends are
Random friends are
strange
Largest component
References

Sampling random networks

Phase 2：
\＆Use rewiring algorithm to remove all self and repeat loops．

Phase 3：
Randomize network wiring by applying rewiring algorithm liberally．
R Rule of thumb：\＃Rewirings $\simeq 10 \times$ \＃edges ${ }^{[4]}$ ．

Random sampling

．Problem with only joining up stubs is failure to randomly sample from all possible networks．
Example from Milo et al．（2003）${ }^{[4]}$ ：

صดc 39 of 74

COcoNuTS

Pure random
networks
Definitions
How to buld theoretically
Some visual examples
Clustering
Degree distributions
Generalized
Random
Random
Networks
Configuration model
Howtobuild in pratice
Motifs
Random friends are
strange
Largest component
References
Pure random
networks
networks
Deffintions
How to build theoretically
Some visual examples
${ }^{\text {Clustering }}$ Degree distributions
Generalized
Random
Networks
How to build mopratice
Motifs
Random friends are
strange
${ }_{\text {strange }}^{\text {Largest component }}$
References

A
๑のく 38 of 74

COcoNuTs

Pure random
networks
Defnititons
How to buid theoretically
Some vivual examples
Clustering
Cegree distributions
Generalized
Generalized
Random
Network
Configuration model
Howtob buid in praticice
Motits
Random friends are
strange
References

Sampling random networks
\＆What if we have P_{k} instead of N_{k} ？
Must now create nodes before start of the construction algorithm．
\＆Generate N nodes by sampling from degree distribution P_{k} ．
Easy to do exactly numerically since k is discrete．
\＆Note：not all P_{k} will always give nodes that can be wired together．

Network motifs

s．Idea of motifs ${ }^{[7]}$ introduced by Shen－Orr，Alon et al．in 2002.
\＆Looked at gene expression within full context of transcriptional regulation networks．
Specific example of Escherichia coli．
Directed network with 577 interactions（edges） and 424 operons（nodes）．
－Used network randomization to produce ensemble of alternate networks with same degree frequency N_{k} ．
\＆Looked for certain subnetworks（motifs）that appeared more or less often than expected

Network motifs

8 Z only turns on in response to sustained activity in X ．
\＆Turning off X rapidly turns off Z ．
Analogy to elevator doors．

COcoNuTS

 ๑のく 42 of 74

COcoNuTs

$$
\text { つact } 43 \text { of } 74
$$

COcoNuTS

Network motifs

Network motifs

绝 Note：selection of motifs to test is reasonable but nevertheless ad－hoc．
\＆For more，see work carried out by Wiggins et al．at Columbia．

The edge－degree distribution：

The degree distribution P_{k} is fundamental for our description of many complex networks
Again：P_{k} is the degree of randomly chosen node．
A second very important distribution arises from choosing randomly on edges rather than on nodes．
Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
Now choosing nodes based on their degree（i．e．，size）：

$$
Q_{k} \propto k P_{k}
$$

，Normalized form：

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}=\frac{k P_{k}}{\langle k\rangle}
$$

Big deal：Rich－get－richer mechanism is built into this selection process．

Pure random
networks
Definitions
How to bulld theoretically
Some visual examples
Some visual examples
Clustering
${ }^{\text {Clustering }}$ Degree distributions
Generalized
Random
Networks
Confifuration model
How to buld in practice
Mootifs
Random friends are
strange
Strange
Largest component
References

ののく 45 of 74

COcoNuTs

Pure random
networks
networks
Definitions
How to build theoretically Some visual examples Clustering
Degree distributions Generalized
Generalized
Random
Random
Networks
Configuration model
How to buid I in practice
Motifs
Random
Motis
Random friends are
strange
Largest component
References

のQく 46 of 74

COcoNuTS

Pure random
 networks

Definitions
How to buld theoretically
Some visual examples
Clustering
Clustering
Generalized
Generalized
Random
Networks
Configuration model
Howto build in practice

References

Probability of randomly selecting a node of degree k by choosing from nodes： $P_{1}=3 / 7, P_{2}=2 / 7, P_{3}=1 / 7$ ， $P_{6}=1 / 7$.
－Probability of landing on a node of degree k after randomly selecting an edge and then randomly choosing one direction to travel： $Q_{1}=3 / 16, Q_{2}=4 / 16$ ， $Q_{3}=3 / 16, Q_{6}=6 / 16$.
\＆ Probability of finding \＃ outgoing edges $=k$ after randomly selecting an edge and then randomly choosing one direction to travel： $R_{0}=3 / 16 R_{1}=4 / 16$ ， $R_{2}=3 / 16, R_{5}=6 / 16$ ．

The edge－degree distribution：

Ror random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
的 Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．
8

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Equivalent to friend having degree $k+1$ ．
Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

\＆Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}= \sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

$$
\begin{gathered}
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } \mathrm{j}=\mathrm{k}+1) \\
=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
\end{gathered}
$$

The edge－degree distribution：

Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

，Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

Again，neatness of results is a special property of the Poisson distribution．
So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．．．

The edge－degree distribution：

In fact，R_{k} is rather special for pure random networks ．．．
Substituting

$$
P_{k}=\frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

into

$$
R_{k}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

we have

$$
R_{k}=\frac{(k+1)}{\langle k\rangle} \frac{\langle k\rangle^{(k+1)}}{(k+1)!} e^{-\langle k\rangle}=\frac{(k+1)}{\langle k\rangle} \frac{\langle k\rangle^{(k+\nsim)}}{(k+1) k!} e^{-\langle k\rangle}
$$

$$
=\frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \equiv P_{k}
$$

的 \＃samesies．

Two reasons why this matters

Reason \＃1：
Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
R Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．
（e．g．，in the case of a power－law distribution）
3．Your friends really are different from you．．．${ }^{[3,5]}$
4．See also：class size paradoxes（nod to：Gelman）

Two reasons why this matters

More on peculiarity \＃3：
－A node＇s average \＃of friends：$\langle k\rangle$
Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：
$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle$

So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
的 Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

＂Generalized friendship paradox in complex networks：The case of scientific collaboration＂
Eom and Jo，
Nature Scientific Reports，4，4603，2014．${ }^{\text {［2］}}$
Your friends really are monsters \＃winners：${ }^{1}$
\＆Go on，hurt me：Friends have more coauthors， citations，and publications．
On Other horrific studies：your connections on Twitter have more followers than you，your sexual partners more partners than you，．．．
The hope：Maybe they have more enemies and diseases too．

Some press here［＇［MIT Tech Review］．
Two reasons why this matters
（Big）Reason \＃2：
$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
e．g．，we＇d like to know what＇s the size of the largest component within a network．
As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork is connected to it．
\＆Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
Note：Component＝Cluster

COcoNuTs

Pure random
networks
Defnitions
How to buid theorectcally
How to bulid theorectcally
Some visual examples
Somevisual exa
Clustering
Cegree disrributions
Generalized
Retworks
Configuration model
How to buid in practice
How to build in practice
Motifs

${ }^{\text {Starange }}$ Largest component
References

A MNyERSITY \mid ：
⿹ดल 56 of 74

COcoNuTS

Pure random
networks
Definitions
How to buid theorecically
Sowe visual examples
Clustering
Degree distributions
Generalized
Random
Networks
Confifuration model
How to buidd In practice
How to build in practice
Mootifs
Random friends aree
stinjoge
Strange Largest component
References

Giant component

Structure of random networks

Giant component：
A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
Equivalently，expect exponential growth in node number as we move out from a random node．
A All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
\＆Giant component condition（or percolation condition）：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Again，see that the second moment is an essential part of the story．
，Equivalent statement：$\left\langle k^{2}\right\rangle>2\langle k\rangle$

Spreading on Random Networks

For random networks，we know local structure is pure branching．
Successful spreading is ：－contingent on single edges infecting nodes．

Success

Failure：

Focus on binary case with edges and nodes either infected or not．
\＆irst big question：for a given network and contagion process，can global spreading from a single seed occur？

Global spreading condition

的 We need to find：${ }^{[1]}$
R＝the average \＃of infected edges that one random infected edge brings about．
的 Call \mathbf{R} the gain ratio．
Define $B_{k 1}$ as the probability that a node of degree k is infected by a single infected edge．
B

$$
\begin{aligned}
\mathbf{R}= & \sum_{k=0}^{\infty} \underbrace{\frac{k P_{k}}{\langle k\rangle}}_{\begin{array}{c}
\text { prob. of } \\
\text { connecting to } \\
\text { a degree } k \text { node }
\end{array}} \bullet \underbrace{(k-1)}_{\begin{array}{l}
\text { \# outgoing } \\
\text { infected } \\
\text { edges }
\end{array}} \bullet \underbrace{B_{k 1}}_{\begin{array}{c}
\text { Prob. of } \\
\text { infection }
\end{array}} \\
& +\sum_{k=0}^{\infty} \overbrace{\frac{k P_{k}}{}}^{\langle k\rangle} \bullet \underbrace{0}_{\begin{array}{l}
\text { \# outgoing } \\
\text { infected } \\
\text { edges }
\end{array}} \bullet \underbrace{\left(1-B_{k 1}\right)}_{\begin{array}{l}
\text { Prob. of } \\
\text { no infection }
\end{array}}
\end{aligned}
$$

Global spreading condition

Our global spreading condition is then：

$$
\mathbf{R}=\sum_{k=0}^{\infty} \frac{k P_{k}}{\langle k\rangle} \bullet(k-1) \bullet B_{k 1}>1 .
$$

Case 1－Rampant spreading：If $B_{k 1}=1$ then

$$
\mathbf{R}=\sum_{k=0}^{\infty} \frac{k P_{k}}{\langle k\rangle} \bullet(k-1)=\frac{\langle k(k-1)\rangle}{\langle k\rangle}>1 .
$$

Good：This is just our giant component condition again．

Global spreading condition

\＆${ }_{\text {B }}$ Case 2－Simple disease－like：If $B_{k 1}=\beta<1$ then

$$
\mathbf{R}=\sum_{k=0}^{\infty} \frac{k P_{k}}{\langle k\rangle} \bullet(k-1) \bullet \beta>1 .
$$

A fraction（ $1-\beta$ ）of edges do not transmit infection．
\＆Analogous phase transition to giant component case but critical value of $\langle k\rangle$ is increased．
\＆Aka bond percolation－
Resulting degree distribution \tilde{P}_{k} ：

$$
\tilde{P}_{k}=\beta^{k} \sum_{i=k}^{\infty}\binom{i}{k}(1-\beta)^{i-k} P_{i} .
$$

COcoNuTS
COcoNuTS
Giant component for standard random networks：
R Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
\＆Determine condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
When $\langle k\rangle<1$ ，all components are finite．
\＆Fine example of a continuous phase transition［
We say $\langle k\rangle=1$ marks the critical point of the system．

๑のく 62 of 74

COcoNuTs

Pure random
networks
networks
Deffitions
How to build the
How to build theorectcally
Some visual examples
Some visual examples
Clustering
Degree distributions
Generalized
Generalized
Random Random
Networks
Networts
Confifuraion model
How to buid in practice

| Motifs |
| :--- | :--- |
| Random friends are |
| strange |

Largestcomponent
References

つのく 63 of 74

COcoNuTS

Pure random
networks
Definitions
How to build theorectically
How to build theorercically
Some visual examples
Some visual examples
Clustering
Degree dissributions
Generalized
Random
Networks
Configuration model
How to buidid in practicice
How to build in practice
Motis
Random friends are
Randon friends are
strange
Largest component
References

2 WNyERSTY \mid ：
つのल 64 of 74

Random networks with skewed P_{k} ：
e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3, k \geq 1$ ，then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=1}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=1}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=1} ^{\infty}=\infty \quad(\gg\langle k\rangle) .
\end{gathered}
$$

So giant component always exists for these kinds of networks．
Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．
\＆How about $P_{k}=\delta_{k k_{0}}$ ？

Giant component

And how big is the largest component？
Define S_{1} as the size of the largest component．
Consider an infinite ER random network with average degree $\langle k\rangle$ ．
Let＇s find S_{1} with a back－of－the－envelope argument．
，Define δ as the probability that a randomly chosen node does not belong to the largest component．
Simple connection：$\delta=1-S_{1}$ ．
Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．
， $\mathrm{B}_{\mathrm{B}} \mathrm{So}$

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

Substitute in Poisson distribution．．．

Giant component

－Carrying on：

$$
\begin{gathered}
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)} .
\end{gathered}
$$

Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

$$
S_{1}=1-e^{-\langle k\rangle S_{1}} .
$$

Giant component

We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

（1．As $\langle k\rangle \rightarrow 0, S_{1} \rightarrow 0$ ．
（ As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
－Only solvable for $S_{1}>0$ when $\langle k\rangle>1$ ．
Really a transcritical bifurcation．${ }^{[8]}$

Pure random
networks
How to build theorectically
Some visual example
Clustering
Clustering
Degree distributions
Generalized Random
Networks Networks
Configuration model
How to build in practice
Motifs
Random friends are
strange
Largestcomponent
References

つのく 68 of 74

COcoNuTS

Pure random
networks
networks
Definitions
How to buid theoretically Some visual e examples
Some visual examples
Clustering
Clustering
Degree dissributions
Generalized
Generalized
Random
Randworks
Networ
Confifuration model
How to build in practice
How to build in practice
Motifs
Motifs
Randomemerends are
strange
Largest component
References

つのく 69 of 74

COcoNuTS

Pure random
networks
Deffinitions
Deffititions
How to buidd theorectcally
How to Buid theorerectally
Some visual examples
Clustering
Custering
Degree disstibution
Degree distributions
Generalized
Random
Networks
Configuration model
How to build din practice
How to build in practice
Mouns
Random friends are
strange
Largest component
References

〈k〉

Giant component

Turns out we were lucky．．．
S Our dirty trick only works for ER random networks．
The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
But we know our friends are different from us．．．
Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
We need a separate probability δ^{\prime} for the chance that an edge leads to the giant（infinite） component．
噱 We can sort many things out with sensible probabilistic arguments．．．
．More detailed investigations will profit from a spot of Generatingfunctionology．${ }^{[9]}$

References I

［1］P．S．Dodds，K．D．Harris，and J．L．Payne． Direct，phyiscally motivated derivation of the contagion condition for spreading processes on generalized random networks．
Phys．Rev．E，83：056122，2011．pdf［T
［2］Y．－H．Eom and H．－H．Jo．
Generalized friendship paradox in complex networks：The case of scientific collaboration． Nature Scientific Reports，4：4603，2014．pdf［
［3］S．L．Feld．
Why your friends have more friends than you do． Am．J．of Sociol．，96：1464－1477，1991．pdf（

References II

［4］R．Milo，N．Kashtan，S．Itzkovitz，M．E．J．Newman， and U．Alon．
On the uniform generation of random graphs with prescribed degree sequences，2003．pdf \mathcal{C}
［5］M．E．J．Newman．
Ego－centered networks and the ripple effect，． Social Networks，25：83－95，2003．pdf［
［6］M．E．J．Newman．
The structure and function of complex networks． SIAM Rev．，45（2）：167－256，2003．pdf［T
［7］S．S．Shen－Orr，R．Milo，S．Mangan，and U．Alon． Network motifs in the transcriptional regulation network of Escherichia coli． Nature Genetics，31：64－68，2002．pdf■

COcoNuTS

Pure random
networks
networks
Definitions
How to bulld theoreticall
Some visual examples
Some vsual exam
Clustering
Custering
Degree distributions
Generalized
Random
Networks
Configuration model
How to build in practice
Motis
Random friends are
strange
Largestcomponent
References

A
صのल 71 of 74

COcoNuTs

Pure random
networks
Definitions
How to buid theoretically
Some visual examples
Clustering
Clusterree distributions
Generalized
Random
Networks
Confifuration model
How to build in pratice
How to build in practice
Motifs
Random friends are
strange
Largest component
References

10 Mixzer
صのく 72 of 74

COcoNuTs

Pure random
networks
Definitions
How to buld theoretically
How to buld theoretcicaly
Some visual examples
Clustering
Degree distributions
Generalized
Networks
Configuration model
How to build in practice
How to build in pratice
Motiss
Random friends are
strange
Largest component
References

References III

[8] S. H. Strogatz.
Nonlinear Dynamics and Chaos.
Addison Wesley, Reading, Massachusetts, 1994.
[9] H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdf(

COcoNuTS

A
๑のく 74 of 74

