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- Random networks ey

Pure random
networks

Definitions

Consider set of all networks with N labelled nodes i G

and m edges. e
Standard random network = i
one randomly chosen network from this set.

1 friends are

To be clear: each network is equally probable.

Sometimes equiprobability is a good assumption,
but it is always an assumption.

Known as Erd6s-Rényi random networks or ER
graphs.

Largest component
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Number of possible edges:

Pure random
networks

M N
0<m< =t ow s b Hedre
Limit of m = 0: empty graph. Generalzed
Limit of m = (§'): complete or fully-connected Nemioks £

graph.
Number of possible networks with N labelled

nodes:
2(1;7) ~ @“172]\]2_

Given m edges, there are ((gﬂ)) different possible
networks.
Crazy factorial explosion for 1 < m < (§).

Real world: links are usually costly so real =
UNIVERSITY |5

networks are almost always sparse. Az @
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- Random networks

Given N and m.

Two probablistic methods (we'll see a third later
on)

1. Connect each of the (%) pairs with appropriate
probability p.

Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

Algorithm: Randomly choose a pair of nodes 7 and
j. @ # 7, and connect if unconnected; repeat until
all m edges are allocated.

Best for adding relatively small numbers of links
(most cases).

1 and 2 are effectively equivalent for large N.
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Pure random
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Generalized
Random
Networks
Configuration mode
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“RandonwneﬁNOrks

Pure random: * =+
networks

For method 1, # links is probablistic:

N 1
= —p-N(N-—1
<m> p( 2 ) p2 ( ) Generalized
Random

Networks

So the expected or average degree is

_24m)
K e
= ZpAN(V=1) = Zpi (N —1)=p(N =1

Which is what it should be...

If we keep (k) constant thenp x 1/N — 0 as Poomm 9

¢ VERMONT 1Ol
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Random networks: examples

Example realizations of random networks
N =500
Vary m, the number of edges from 100 to 1000.
Average degree (k) runs from 0.4 to 4.

Look at full network plus the largest component.

COcoNuTS

Pure random
networks

Generalized
Random
Networks
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- Random networks: examples for N=500

COcoNuTS
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Definitions
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“ Random networks: largest components

Pure random + ¥+
networks

Definitions

How to build theoretically
Some visu

Clusteril

COcoNuTS

Degree distributions

m =230
(k) =0.92

Generalized
Random
Nétworks

m =200
(ky=0.8

“m =100 CHieol st
(k)=0.4 (k) =
e m =240
(k) =0.96 argest component
m =260 ) & I
(k)=1.04 A
& [ovint i
z:) =218(1)2 m =500 m = 1000 = =
: (ky=2 (k) =4
m =300 w10
apey Hoomn &
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- Random networks: examples for N=500

Pure random: * =+
networks
Definitions

1o build theoretically

ributions’

Generalized
Random
Nétworks
Configuration model

build in practice

m friends are

Largest component

References
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Random networks: largest components
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Pure random
networks
Definitions

How to bLild theoretically

Clustering

Degree distributions

Generalized
Random
Z:; 2150 Networks
| m =250 m =250 Cm"hq.,muu‘u model
! (k) =1 build in practice
= m =250 Motifs
i Random friends a
(k) g
m =250 Largest component
(k)=1
M References
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Giant COmponent COCONUTS

Pure random
networks
Definitions
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- Clustering in random networks:

For construction method 1, what is the clustering
coefficient for a finite network?
Consider triangle/triple clustering coefficient:
3 x #triangles
20 P dtriples

! Recall: C,, = probability that
i two friends of a node are
also friends.

PC, Or: C, = probability that a
,,1) triple is part of a triangle.

| For standard random

' networks, we have simply
! that

“"3 Cy =p.

COcoNuTS

Pure random
networks
Definitions

Generalized

Random

Networks
Conf

Hc
Mot
R
Lar

References
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Clustering in random networks:

So for large random
networks (N — o0),
clustering drops to zero.

Key structural feature of
random networks is that
they locally look like

pure branching networks

No small loops.

COcoNuTS

Pure random

Generalized
Random
Nétworks
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Recall P, = probability that a randomly selected
node has degree k.

Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

Now consider one node: there are ‘N — 1 choose k'
ways the node can be connected to k of the other
N — 1 nodes.

Each connection occurs with probability p, each
non-connection with probability (1 — p).

Therefore have a binomial distribution (";

B b= (Nk_l)p%—p)N—l—k.
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Pure random
networks
Definitions

How to bLild theoretically

Clustering

Generalized
Random
Networks
Configuration mode
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Our degree distribution:

P(kip, ) = (T pt (1 =p)N 1"

What happens as N — oo?

We must end up with the normal distribution
right?

If p is fixed, then we would end up with a Gaussian
with average degree (k) ~ pN — cc.

But we want to keep (k) fixed...

So examine limit of P(k; p, N) when p — 0 and
N — oo with (k) = p(N — 1) = constant.

k N-1-k 7
Pk ;N ) o2 <kk:>' (1 B N<k_>1> Bl (k) (k)

This is a Poisson distribution (£ with mean (k).

COcoNuTS
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Poisson basics:

COcoNuTS

Pure random

% networks
)\ )\ > O DI s
Pk X = —'e’/\
k! k=0,1,2,3, ...
0.40 Classic use: probability  c..craieq
0351 % i:i that an event occurs & (o,
i BBl St times in a given time
%2;; ‘-. period, given an
8 L8e
‘ém 7% : average rate of
o010 | R ETR occurrence.
[ ! = (=1
0.05f / R A% 0 1
PR 2 i LQ? .!-‘ LOQ(\ e.g.- :
SR e s phone calls/minute,

horse-kick deaths.

) ‘Law of small numbers’
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- Poisson basics:

Pure random

The variance of degree distributions for random networks
networks turns out to be very important.

Using calculation similar to one for finding (k) we
find the second moment to be:

Definitions

Generalized
Random
Networks

(k2) = (k)2 + (k).

Variance is then

o2 = <k2> L <k>2 a2 <k>2 4 (k) — <k>2 e <I€> Reijl'Eirwces

So standard deviation o is equal to \/ (k).

Note: This is a special property of Poisson
distribution and can trip us up...
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General random networks B

So... standard random networks have a Poisson Pt
degree distribution RN

How to build theoretically

Generalize to arbitrary degree distribution P,. o vl
Also known as the configuration model. ! s ol o ot

Generalized
Can generalize construction method from ER Raridon.
random networks. Confguraton model
Assign each node a weight w from some oA
distribution P,, and form links with probability Cikentc

P(link between i and j) oc w,;w,.

But we'll be more interested in
1. Randomly wiring up (and rewiring) already existing
nodes with fixed degrees.

2. Examining mechanisms that lead to networks with £
certain degree distributions. E‘%‘Qﬁ&'ﬁ?&‘i} 4

D 290f74
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- Random networks: examples

Pure random
networks
Definitions

Example realizations of random networks with power e diinguend
law degree distributions: CgHig el
N = 1000. s
B ockpifork = L
Set P, = 0 (no isolated nodes).
Vary exponent v between 2.10 and 2.91.

Again, look at full network plus the largest
component.

Apart from degree distribution, wiring is random.
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- Random networks: examples for N=1000 ™"

Pure random

Generalized

-~ Random
Networks

Configuration model

Y2137, ~ =246
(k) =2.504 (k)=1.856

62 (k) =1.386 (k) =1.49

e te)
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Random networks: largest components A

Pure random
networks
Definitions

Generalized
Random
Networks

2.28 ~ =237 ~ =246 Configuration model
=2

.306 (k) =2.504 (k) =1.856 How

Motifs

ouild in practice

Random friei
strange

e te)
ﬁ UNIVERSITY |9|
3l v VERMONT |0

DA 320f74

SLild theoretically


http://www.uvm.edu
http://www.uvm.edu/pdodds

Models

Arbitrary degree distribution P,.

Create (unconnected) nodes with degrees
sampled from P,.

Wire nodes together randomly.

Create ensemble to test deviations from
randomness.

COcoNuTS

Pure random
networks

Generalized
Random
Networks
Configuration mode

How to build in practice

Random friends are

References
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- Building random networks: Stubs

Pure random
networks

|dea: start with a soup of unconnected nodes with e
stubs (half-edges):

jeoretically
egree distributions
Generalized
Random
. Networks
I i
rgest componen

_- . " Y\T/+ IIII Randomly select stubs

(not nodes!) and
connect them.

% H } } } Must have an even N
g } + number of stubs.
¥ ! H} }H Initially allow self- and 7
I I + } repeat connections. %‘E‘ﬁ&&"}i |§|
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- Building random networks: First rewiring

Now find any (A) self-loops and (B) repeat edges
and randomly rewire them.

(A) (B) ><>/<

Being careful: we can't change the degree of any
node, so we can't simply move links around.
Simplest solution: randomly rewire two edges at a
time.

COcoNuTS

Pure random

Generalized
Random

3 >

LL—jA
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General random rewiring algorithm
& L

i

Randomly choose two edges.
(Or choose problem edge and
arandom edge)

Check to make sure edges are
disjoint.

Rewire one end of each edge.
Node degrees do not change.

Works if e, is a self-loop or
repeated edge.

Same as finding on/off/on/off
4-cycles. and rotating them.

COcoNuTS

Pure random
networks
Definitions

Generalized
Random
Networks
Configuration mode

How to build in practice

Larg

References
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 Sampling random networks

Use rewiring algorithm to remove all self and
repeat loops.

Randomize network wiring by applying rewiring
algorithm liberally.

Rule of thumb: # Rewirings ~ 10 x # edges “).

COcoNuTS

Pure random

Generalized
Random

3 >

LL—jA
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Random sarhpling

Problem with only joining up stubs is failure to
randomly sample from all possible networks.

Example from Milo et al. (2003) 4

(@)

1 configuration

(b)

90 configurations

9% frequency of occurrence

Eo ansm s et ontaminid]

‘20 with the winners

R

switching algorithm

b st i

COcoNuTS

Pure random
networks

Definitions

suild theoretically

Generalized
Random
Networks

Configuration mode
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- Sampling random networks couTs |

Pure random

networks
What if we have P, instead of NV,.? i
Must now create nodes before start of the Sl
construction algorithm. Networks
Generate N nodes by sampling from degree Houiobuldinprectee
distribution P;,.

Easy to do exactly numerically since k is discrete.

Note: not all P, will always give nodes that can be
wired together.

e o)
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3 7 VERMONT |0l

DA 400f74


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

- Network motifs

Pure random
networks

Idea of motifs!’! introduced by Shen-Orr, Alon et oefnon

How to build theoretically

al. in 2002. i
Looked at gene expression within full context of GHN
transcriptional regulation networks. Random.
Specific example of Escherichia coli. g
Directed network with 577 interactions (edges) ‘ o
and 424 operons (nodes). frie e
References

Used network randomization to produce
ensemble of alternate networks with same degree 7. 7
Jx
I

frequency N,,. L
Looked for certain subnetworks (motifs) that A ‘E,
appeared more or less often than expected o
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Network motifs

Pure random

feedforward loop networks
Definitions

X a | input 1 input X How to bLild theoretically
l g 05 5
o » )
Y 0 2 4 6 8 10 12 14 16 18 20 e Stribatians
! F
Z §05M Generalized
o Random
6 8 10 12 14 16 18 20 Networks
P g, Configuration mode
J / \ How to build in practice
araG output Motifs
6 8 10 12 14 16 18 20 R ends are
J time wli
araBAD Largest compone

Z only turns on in response to sustained activity in
X.

Turning off X rapidly turns off Z.
Analogy to elevator doors.
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Network motifs ey

single input module (SIM)

Motis
A

F38 8
QO § & © ©
>
&
Ir:
Master switch. é i
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Network motifs S

Pure random
networks

dense overlapping regulons (DOR) oA

X1 X2 X3 - Xn Generalized
Random
Networks
onfiguration mode
H 0 build in pract
Motifs

R om frie

Zy 2, Z3 Zy..Zn

9] xc < iy L t
S m X e % 8 a
S E s £ & EE R References
Q N Q
f § 88 3 § %
© g g % < 5
&=
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Network motifs

Pure random
networks

Generalized
Random

Note: selection of motifs to test is reasonable but NahwoEks
nevertheless ad-hoc. ey

For more, see work carried out by Wiggins et al. at
Columbia.
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The edge-degree distribution: oy

The degree distribution P, is fundamental for our - :
. . ure ranaom
description of many complex networks networks

Definitions

Again: P, is the degree of randomly chosen node.

A second very important distribution arises from B
choosing randomly on edges rather than on nodes. cierl

Random

Define ;. to be the probability the node at a random Networks
end of a randomly chosen edge has degree k.

Now choosing nodes based on their degree (i.e., size):

Normalized form:

bl KR RE
Z;?:o KB AR
Big deal: Rich-get-richer mechanism is built into this %‘Qﬁ&%’&-}i |§|

selection process.
DA 480f 74
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Probability of randomly
selecting a node of degree k
by choosing from nodes:

Pl 3/np olr bl
Pa—1v/47

Probability of landing on a
node of degree k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

Q, =3/16,Q, = 4/16,

Qs =3/16, Qg = 6/16.
Probability of finding #
outgoing edges = k after
randomly selecting an edge
and then randomly choosing
one direction to travel:

R, =3/16 R, = 4/16,

R, =3/16, R5 = 6/16.

COcoNuTS

Pure random
networks
Definitions

Generalized
Random
Networks
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The edge-'delgree distribution:

Pure random

For random networks, @, is also the probability neworks
that a friend (neighbor) of a random node has & oS T
friends. cer
Useful variant on Q;.: Generalized

Random
Networks

R, = probability that a friend of a random node B G Bl
has k other friends.

(k+1)Py. 4 (k+1)Py. 4

R, = =
SR TR ()

Equivalent to friend having degree k + 1.

Natural question: what's the expected number of
other friends that one friend has?

The O
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- The edge-degree distribution: b
| Given R, is the probability that a friend has k other : o
friends, then the average number of friends' other ngtrvcvgips i
friends is Sl

o= > (k+1)P
e Ly R
k=0 k=0 <k> Generalized

Random
Networks

1 = Conf r; o
Z k(k +1)Ppia

k=1
e 2

=7 k; (k+1)2—(k+1)) Py.q

(where we have sneakily matched up indices)

= = (32 =B lusing = k)

(k) <=

= o (%) — (k) o
(k) Aoz B

DA 510f74
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The edge-'delgree distribution:

NOtE‘Z our result, <k>R = (IT) (<l€2> e <k§>>, is true fOI’ Pure random

all random networks, independent of degree i
distribution. s
For standard random networks, recall Degree dstrbgtons
Generalized
Random
(k2) = (k)2 + (k). Netwars
Therefore: sl 1
1 Gar : ohen
<k>R = ﬁ (<k>2 S5 <k> F <k‘>> = <k’> References

Again, neatness of results is a special property of
the Poisson distribution.

So friends on average have (k) other friends, and
i The g 9
(k) + 1 total friends... |} fegt

DA 520f74
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 The edge—'de'gree distribution:

COcoNuTS
In fact, R, is rather special for pure random ,
Pure random: ' *
networks networks

Substituting -
S e
Pk . T < > Generalized
i rondon’
Rk == % Hw ration ,:‘:’\{'H
(k)
we have ,,,,,

o (k’ L 1) <k‘><k+1> 67<k> b M <k>(k+/1/) e,<k> References
k (k) (k+1)! % (k—17k! ——
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ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

#samesies. Ha e 530f74


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Two reasons why this matters

Average # friends of friends per node is

(ea) = () X (k) = <k>$ ((B2) — (k) = (K2) — (k).

Key: Average depends on the 1st and 2nd moments of
P, and not just the 1st moment.

Three peculiarities:

1. We might guess (k,) = (k)({k) — 1) but it's actually
(k(k—1)).

2. If P, has a large second moment,
then (k5) will be big.
(e.g., in the case of a power-law distribution)

3. Your friends really are different from you... > °!

4. See also: class size paradoxes (nod to: Gelman)
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COcoNuTS

- TWo reasons why this matters

Pure random
networks
Defi

A node's average # of friends: (k)
(k2)
(k)
Comparison: Generalized

<k2> o </<:2> Sei o2l <k>2 A o2 o
W w2 (1

Friend's average # of friends:

Configuration mode

So only if everyone has the same degree
(variance= ¢2 = 0) can a node be the same as its
friends.

Intuition: for random networks, the more
connected a node, the more likely it is to be
chosen as a friend. B 9
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“Generalized friendship paradox in

29 | complex networks: The case of scientific
/i | Collaboration” (4

Eom and Jo,
Nature Scientific Reports, 4, 4603, 2014.*]

I

Go on, hurt me: Friends have more coauthors,
citations, and publications.

Other horrific studies: your connections on
Twitter have more followers than you, your sexual
partners more partners than you, ...

The hope: Maybe they have more enemies and
diseases too.

'Some press here (4 [MIT Tech Review].
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COcoNuTS

- TWo reasons why this matters

Pure random
networks

(k)  is key to understanding how well random Deitons
networks are connected together. Sonevapia

e.g., we'd like to know what's the size of the largest "o
component within a network. 2
Networks

As N — oo, does our network have a giant
component? :

Defn: Component = connected subnetwork of
nodes such that 3 path between each pair of
nodes in the subnetwork, and no node outside of
the subnetwork is connected to it.

Defn: Giant component = component that
comprises a non-zero fraction of a network as
N — o0.

e i 1O
Note: Component = Cluster |} fegt
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Giant COmponent COCONUTS
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- Structure of random networks oy

Pure random
networks

A giant component exists if when we follow a
random edge, we are likely to hit a node with at : e
least 1 other outgoing edge. i ping

Equivalently, expect exponential growth in node Seheialize

Random

number as we move out from a random node. e otk |

All of this is the same as requiring (k) p > 1.

Giant component condition (or percolation
condition):

k2 — (k)
{®)

Again, see that the second moment is an essential
part of the story.

i llTV]VLfksrrY |8|
Equivalent statement: (k?) > 2(k) ¥V 18
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- Spreading on Random Networks COcoNTS
‘ For random networks, we know local structure is e
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

5 G lized
Success Failure: Rttt

Networks

Configuration model

build in practice

I~ I~

Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a LR
single seed occur? 1 g
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Global spreading condition Oy
We need to find: "
R = the average # of infected edgeS that one Pure random

networks

random infected edge brings about. Do

How to build theoretically

Call R the gain ratio. s,
Define B, as the probability that a node of

Generalized

IS i i i Random
degree k is infected by a single infected edge. Raridor
o Motifs
kP, Fardor e are
R:Z hal o (k—=1) & By
=0 (k) i s
= S # outgoing Prob. of
prob. of infected infection
connecting to edges

a degree k node

&, kP,
+Z kk g 4 * (1—By)
k=0 (k) # outgoing W

i ; ; e 1o}
e e R B
edges  ERERL
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COcoNuTS

| ‘G‘Iobal sprea"d.ihg condition

Pure random: * =+
networks

Our global spreading condition is then: i

Degree

o)
E . e 1 . Bkl el Generalized
Random

Networks

distributions

Case 1-Rampant spreading: If B,; =1 then

= = kP, <tk — 1))
_;ﬁ.(k—l)_T>l.

Good: This is just our giant component condition
again.
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- Global spfea'di»ng condition

Case 2—Simple disease-like: If B,,; =8 <1 then

oikp,
‘;0 (k)

—1l)efg>1.

A fraction (1-3) of edges do not transmit infection.

Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (.

Resulting degree distribution P, :

Pk_6k2(> A=k R

COcoNuTS
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COcoNuTS

Pure random
Recall (k2) = (k)2 + (k). i
Determine condition for giant component:

Degree distributions

B = (%) — (k) _(B)° + (k) — (k) (k) Generalized

<k> <k> Nélwrurks

Therefore when (k) > 1, standard random
networks have a giant component.

When (k) < 1, all components are finite.
Fine example of a continuous phase transition (4,

We say (k) = 1 marks the critical point of the
system.
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COcoNuTS

eg if P, =ckr"with2 <~y < 3,k = 1, then

Pure random
networks
De s

T2 SR e
k=1

Generalized

2 Random
e / x27’ydx Neétworks
=%

tion model

So giant component always exists for these kinds
of networks.

Cutoff scaling is k=3 if v > 3 then we have to look
harder at (k) .

How about Py, = §y,, ? Poomm 9
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COcoNuTS

 Giant compdnent

Pure random
networks

Define S, as the size of the largest component.

Consider an infinite ER random network with average

degree (k).
Generalized
Let's find .S; with a back-of-the-envelope argument. Raljuai

Networks
Define § as the probability that a randomly chosen i
node does not belong to the largest component.

Simple connection: 6 =1 — S;.

Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

So
o0
4 N IP.ot
k=0
0N /ERSITY g
Substitute in Poisson distribution... i’@‘em&m |o|
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~ Giant compdnent

COcoNuTS

Pure random

Carrying on: networks
D S
> =, (g
Ty Pk(;k Zs E : T€_<k>5k
k=0 k=0 4 Generalized
Random

Networks

tion model

00 e} )2
—e Wy (€ ]Z!)
k=0

— o (k)elk)d — o—(k)(1-0)

Now substitute in § = 1 — S; and rearrange to
obtain:

Sl == 1 g ei<k>sl
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~ Giant component ey

Pure random
networks

We can figure out some limits and details for G s
Sl = ]_ —_ 67<k>sl. Son

First, we can write (k) in terms of S;:

Degree distributions

Generalized
Random
<k> 1 |n 1 !\(Is((works =
IR T Srag

As (kY —» 0,5, — 0.

As (k) — 00, §; — 1.

Notice that at (k) = 1, the critical point, S; = 0.
Only solvable for S; > 0 when (k) > 1.

Really a transcritical bifurcation. '/
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Giant COmponent COCONUTS
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COcoNuTS

- Giant compdnent

Pure random
networks

Our dirty trick only works for ER random networks. o

The problem: We assumed that neighbors have ~
the same probability § of belonging to the largest Degreedistribgtions
Component, Generalized

Random
But we know our friends are different from us... i s
Works for ER random networks because
(k) = (k) g
We need a separate probability 6" for the chance

that an edge leads to the giant (infinite)
component.

We can sort many things out with sensible
probabilistic arguments...

More detailed investigations will profit from a spot

O
D)
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UNIVERSITY
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