Organizational Networks: Information Exchange and Robustness

Last updated: 2018/03/23, 12:08:15

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

References

200 1 of 61

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals

Testing Results

Conclusion References

VERMONT

20f61

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results Conclusion References

200 3 of 61

Outline

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

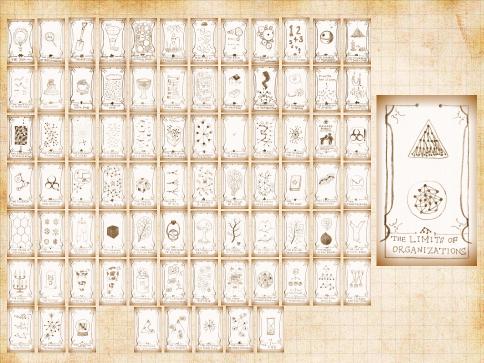
Conclusion

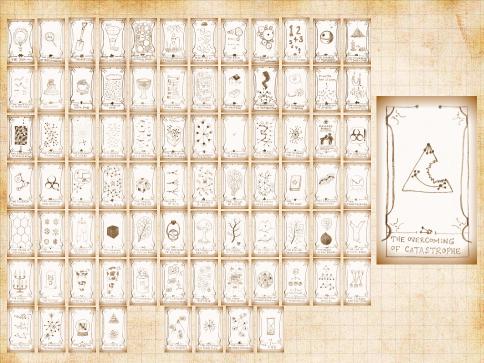
References

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification


Goals Model Testing Results Conclusion


References



200 4 of 61

COcoNuTS

The basic idea/problem/motivation/history: Organizations as information exchange entities. Catastrophe recovery. Solving ambiguous, ill-defined problems. Robustness as 'optimal' design feature.

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing

Results

Conclusion

References

200 8 of 61

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
 Catastrophe recovery.
 - Solving embiguous, ill-defined problems. Robustness as 'optimal' design feature.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model Testing

Conclusion References

990 8 of 61

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- 🙈 Catastrophe recovery.
- lil-defined problems.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model

Conclusion References

VERMONT

200 8 of 61

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- 🙈 Catastrophe recovery.
- lil-defined problems.
- 🗞 Robustness as 'optimal' design feature.

Modelification

References

COCONUTS

de la construction de la constru

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- 🙈 Catastrophe recovery.
- Solving ambiguous, ill-defined problems.
- 🗞 Robustness as 'optimal' design feature.

A model of organizational networks:

line algorithm.

lessage routing algorithm.

Overview

COCONUTS

Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- 🙈 Catastrophe recovery.
- lil-defined problems.
- 🗞 Robustness as 'optimal' design feature.

A model of organizational networks:

Network construction algorithm.
 Task specification.

Message routing algorithm.

Overview

COCONUTS

Ambiguous problems Models of organizations

Modelification Goals Model Testing

Conclusion References

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- 🙈 Catastrophe recovery.
- Solving ambiguous, ill-defined problems.
- 🗞 Robustness as 'optimal' design feature.

A model of organizational networks:

- line algorithm.
- 🚳 Task specification.
- 🚳 Message routing algorithm.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations

Modelification Goals Model Testing Results

onclusion

References

The basic idea/problem/motivation/history:

- Organizations as information exchange entities.
- Catastrophe recovery.
- Solving ambiguous, ill-defined problems.
- Robustness as 'optimal' design feature.

A model of organizational networks:

- Network construction algorithm.
- 🚳 Task specification.
- Message routing algorithm.

Results:

Performance measures.

COCONUTS

Outline

Overview Toyota

COcoNuTS

Overview Toyota Ambiguous problems

Models of organizations

Modelification

Goals Model Testing Results

Conclusion

References

99 CP 9 of 61

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

4 hours supply ("just in time").
14,000 cars per day → 0 cars per day.
6 months before new machines would arrive

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model Testing

Conclusion References

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

🚳 4 hours supply ("just in time").

14,000 cars per day \rightarrow 0 cars per day. 6 months before new machines would arrive.

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations

Modelification

Goals Model Testing

Conclusion References

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

- line").
- \mathfrak{s} 14,000 cars per day \rightarrow 0 cars per day.

6 months before new machines would arrive

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations

Modelification Goals

Goals Model Testing Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

- 🚳 4 hours supply ("just in time").
- \mathfrak{s} 14,000 cars per day \rightarrow 0 cars per day.
- 🙈 6 months before new machines would arrive.

COcoNuTS

Overview Toyota

Ambiguous problems Models of organizations:

Modelification Goals Model

Results

Conclusion References

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

🚳 4 hours supply ("just in time").

Recovered in 5 days.

- \mathfrak{s} 14,000 cars per day \rightarrow 0 cars per day.
- 🚳 6 months before new machines would arrive.

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations:

Modelification Goals Model

Results

Conclusion References

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

- 🚳 4 hours supply ("just in time").
- \mathfrak{s} 14,000 cars per day \rightarrow 0 cars per day.
- & 6 months before new machines would arrive.
- 🚳 Recovered in 5 days.

COcoNuTS

Overview Toyota

Ambiguous problems Models of organizations:

Modelification Goals Model

Results

Conclusion

Aisin (eye-sheen), maker of brake valve parts for Toyota, burns to ground.^[4]

- 🚳 4 hours supply ("just in time").
- \mathfrak{s} 14,000 cars per day \rightarrow 0 cars per day.
- 6 months before new machines would arrive.
 Recovered in 5 days.

Case study performed by Nishiguchi and Beaudet^[4] "Fractal Design: Self-organizing Links in Supply Chain" in "Knowledge Creation: A New Source of Value"

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results Conclusion

References

Some details:

🚳 36 suppliers, 150 subcontractors

Sewing machine maker with no experience in c parts spent about 500 man hours refitting a milling machine to produce 40 valves a day. Recovery depended on horizontal links which arguably provided:

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations

Modelification

Goals Model Testing

Conclusion References

Some details:

36 suppliers, 150 subcontractors
 50 supply lines

Sewing machine maker with no experience in c parts spent about 500 man hours refitting a milling machine to produce 40 valves a day. Recovery depended on horizontal links which arguably provided:

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations

Modelification

Goals Model Testing

Conclusion References

Some details:

- 🚳 36 suppliers, 150 subcontractors
- 🚳 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.

Recovery depended on horizontal links which arguably provided:

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion References

Some details:

- 🚳 36 suppliers, 150 subcontractors
- 🚳 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals

Conclusion

Some details:

- 🚳 36 suppliers, 150 subcontractors
- 🚳 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:
 - 1. robustness

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

References

Some details:

- 🚳 36 suppliers, 150 subcontractors
- 🚳 50 supply lines
- Sewing machine maker with no experience in car parts spent about 500 man hours refitting a milling machine to produce 40 valves a day.
- Recovery depended on horizontal links which arguably provided:
 - 1. robustness
 - 2. searchability

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion References

Some things fall apart:

LEHMAN BROTHERS

Conclusion References

UNIVERSITY S

990 12 of 61

990 13 of 61

Rebirth:

FORMERLY LEHMAN BROTHERS

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model Testing Results

Conclusion

References

UNIVERSITY SV VERMONT

DQC 14 of 61

Outline

Overview

Ambiguous problems

COCONUTS

Overview Toyota Ambiguous problems

Models of organization

Modelification Goals Model

Results

Conclusion

References

DQC 15 of 61

Motivation

Recovery from catastrophe involves solving problems that are:

Unanticipated, Unprecedented, Ambiguous (nothing is obvious), Distributed (knowledge/people/resources Limited by existing resources, Critical for survival.

COcoNuTS

Overview Toyota Ambiguous problems

Modelification Goals Model Testing Results Conclusion

References

990 16 of 61

Motivation

Recovery from catastrophe involves solving problems that are:

🚳 Unanticipated,

Ambiguous (nothing is obvious), Distributed (knowledge/people/resources Limited by existing resources, Critical for survival.

COcoNuTS

Overview Toyota Ambiguous problems

Modelification Goals Model Testing Results

References

990 16 of 61

Motivation

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,

Ambiguous (nothing is obvious), Distributed (knowledge/people/resources Limited by existing resources, Critical for survival. Overview Toyota Ambiguous problems

COCONUTS

Modelification Goals Model Testing Results

References

990 16 of 61

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,
- langle for the second s

Distributed (knowledge/people/resource Limited by existing resources, Critical for survival.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizatio

Modelification Goals Model Testing Results Conclusion

References

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,
- left for the second sec
- Distributed (knowledge/people/resources),

Limited by existing resources, Critical for survival. COcoNuTS

Overview Toyota Ambiguous problems Models of organizations

Modelification Goals Model Testing Results Conclusion

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,
- langle for the second s
- Distributed (knowledge/people/resources),
- Limited by existing resources,

Overview Toyota Ambiguous problems Models of organizations

Modelification Goals Model Testing Results Conclusion

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,
- langle for the second s
- Distributed (knowledge/people/resources),
- limited by existing resources,
- 🚳 Critical for survival.

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

References

Recovery from catastrophe involves solving problems that are:

- 🚳 Unanticipated,
- 🚳 Unprecedented,
- langle for the second s
- Distributed (knowledge/people/resources),
- limited by existing resources,
- 🚳 Critical for survival.

Frame:

Collective solving of ambiguous problems

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

References

Ambiguity:

Question much less answer is not well understood.

Back and forth search process rephrases question Leads to iterative process of query reformulation Ambiguous tasks are inherently not decomposable.

How do individuals collectively work on ar ambiguous organization-scale problem? How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

References

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
 - Leads to iterative process of query reformulation Ambiguous tasks are inherently not decomposable.
 - How do individuals collectively work on a ambiguous organization-scale problem? How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

Ambiguity:

- Question much less answer is not well understood.
- 🙈 Back and forth search process rephrases question.
- leads to iterative process of query reformulation.
 - decomposable. How do individuals collectively work on an ambiguous organization-scale problem? How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

Ambiguity:

- Question much less answer is not well understood.
- 🙈 Back and forth search process rephrases question.
- leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
 - How do individuals collectively work on a ambiguous organization-scale problem? How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

Ambiguity:

- Question much less answer is not well understood.
- 🙈 Back and forth search process rephrases question.
- leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?

How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

Ambiguity:

- Question much less answer is not well understood.
- Back and forth search process rephrases question.
- leads to iterative process of query reformulation.
- Ambiguous tasks are inherently not decomposable.
- How do individuals collectively work on an ambiguous organization-scale problem?
- How do we define ambiguity?

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion References

Modeling ambiguous problems is hard... Model response instead... Individuals need novel information and mus communicate with others outside of their us contacts. Creative search is intrinsically inefficient

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

References

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
 - Individuals need novel information and must communicate with others outside of their usua contacts.
 - Creative search is intrinsically inefficient

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion

References

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.

Creative search is intrinsically inefficient.

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion References

A De da

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- line ficient. Search is intrinsically inefficient.

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion References

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- line ficient. Search is intrinsically inefficient.

Focus on robustness:

Avoidance of individual failures. Survival of organization even when failures do occur.

References

200 18 of 61

COcoNuTS

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- line ficient. Search is intrinsically inefficient.

Focus on robustness:

- 1. Avoidance of individual failures.
 - Survival of organization even when failures do occur.

COcoNuTS

Overview Toyota Ambiguous problems Models of organization

Modelification Goals Model Testing Results Conclusion References

Modeling ambiguous problems is hard...

- 🚳 Model response instead...
- Individuals need novel information and must communicate with others outside of their usual contacts.
- line ficient. Search is intrinsically inefficient.

Focus on robustness:

- 1. Avoidance of individual failures.
- 2. Survival of organization even when failures do occur.

Overview Toyota Ambiguous problems

COCONUTS

Modelification Goals Model Testing Results Conclusion References

う へ へ 18 of 61

Outline

Overview

Models of organizations:

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations:

woders of organizations.

Modelification

Goals

Trestor

Results

Conclusion

References

990 19 of 61

The Nature of the First.

PARTY INCOME. IN CASE AND ADDRESS OF

"The Nature of the Firm" C Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937.^[1]

COCONUTS

Overview

Ambiguous problems Models of organizations:

Modelification

Goals Model

Testing

Results

Conclusion

References

e Nature of the First By R. H. Guart

CONTRACTOR DE LA CONTRACTION DE LA CONTRACTION DE LA CONTRACTIÓN DE LA CONTRACTICACTIÓN DE LA CONTRACTIÓN DE LA CONTRACTIÓN DE LA CONTRACT

"The Nature of the Firm" Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937.^[1]

A Notion of Transaction Costs C.

More efficient for individuals to cooperate outside of the market.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Testing

Conclusion

References

Network of the Firm

"The Nature of the Firm" Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937.^[1]

lacktrian Notion of Transaction Costs C.

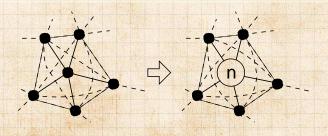
More efficient for individuals to cooperate outside of the market.

COcoNuTS

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model Testing Results Conclusion



The Nature of the Parts

"The Nature of the Firm" C Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937.^[1]

Solution of Transaction Costs .

More efficient for individuals to cooperate outside of the market.

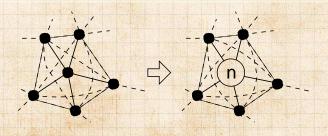
COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing

Conclusion References



The Nature of the Parts

"The Nature of the Firm" C Ronald H. Coase, Economica, **New Series, 4**, 386–405, 1937.^[1]

Solution of Transaction Costs .

More efficient for individuals to cooperate outside of the market.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing

Conclusion References

Real organizations—Extremes

Hierarchy:

🚳 Maximum efficiency, Suited to static environment, 🚳 Brittle.

COCONUTS

Overview Ambiguous problems Models of organizations:

Modelification

References

DQ @ 21 of 61

Real organizations—Extremes

Hierarchy:

🚳 Maximum efficiency, Suited to static environment, 🐣 Brittle.

Market:

🚳 Resilient,

Suited to rapidly changing environment,

Requires costless or low cost interactions.

COCONUTS

Ambiguous problems Models of organizations:

Modelification

References

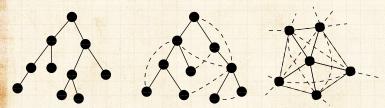
Organizations as efficient hierarchies

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations

Modelification

Goals Model Testing Results Conclusion References


Seconomics: Organizations = Hierarchies.
Seg., Radner (1993)^[5], Van Zandt (1998)^[7]
Hierarchies performing associative operations:

Real organizations...

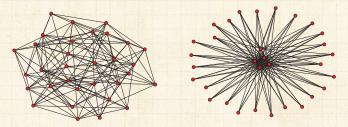
But real, complex organizations are in the middle...

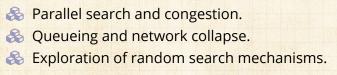
COCONUTS

Results

Conclusion

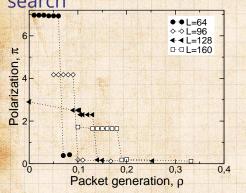
References

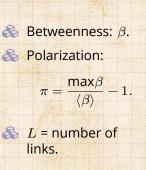

"Heterarchy" David Stark, The Biology of Business: Decoding the Natural Laws of the Enterprise., **New Series, 4**, 153–, 1999. ^[6]

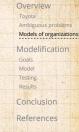


Optimal network topologies for local search

"Optimal network topologies for local search with congestion" Guimerà et al., Phys. Rev. Lett., **89**, 248701, 2002.^[3]


Overview Tayota Ambeguous problems Models of organizations Model Testing Results Conclusion References


COCONUTS



Optimal network topologies for local search

Goal: minimize average search time.
 Few searches ⇒ hub-and-spoke network.
 Many searches ⇒ decentralized network.
 Phase transition?

COCONUTS

Outline

COcoNuTS

Overview

Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Testing

Results

Conclusion

References

VNIVERSITY SV VERMONT

990 26 of 61

Models of organ

Goals

1. Low cost (requiring few links).

Ease of construction—existence is plausible

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

References

1. Low cost (requiring few links).

2. Scalability.

Ease of construction—existence is plausible

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

References

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model

Results

Conclusion

References

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model

Testing Results

Conclusion

References

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':

(Resilience to failure due to information exchange);

Connectivity robustness (Recoverability in the event of failure

Overview Toyota Ambiguous problems Models of organizations

Modelification

Goals Model

Results

onclusion

References

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':

I Congestion robustness (Resilience to failure due to information exchange);

Recoverability in the event of failure)

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model

Results

onclusion

Desirable organizational qualities:

- 1. Low cost (requiring few links).
- 2. Scalability.
- 3. Ease of construction—existence is plausible.
- 4. Searchability.
- 5. 'Ultra-robustness':

I Congestion robustness (Resilience to failure due to information exchange);

Il Connectivity robustness (Recoverability in the event of failure).

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model

Results

onclusion

References

990 27 of 61

Searchability

Small world problem:

- Can individuals pass a message to a target individual using only personal connections?
- Yes, large scale networks searchable if nodes have identities.
- "Identity and Search in Social Networks," Watts, Dodds, & Newman, 2002.^[8]

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model

Results

Conclusion

Outline

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model

Results

Conclusion

References

UNIVERSITY SVERMONT

DQC 29 of 61

Ambiguous problems Models of organizatio

Modelification

Model

Results

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Results

Conclusion

References

Vermont

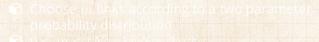
20 0 30 of 61

🚳 Edited by Harrison White 🗹

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification


Goals

Model Testing

Conclusion

References

200 30 of 61

🚳 Edited by Harrison White

Formal organizational structure:

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Conclusion

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

branching ratio bdepth L $N = (b^L - 1)/(b - 1)$ nodes N - 1 links

ditional informal ties:

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Results

Conclusion

References

VERMONT

20 0 30 of 61

🚳 Edited by Harrison White

Formal organizational structure:

Underlying hierarchy:
 branching ratio b

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Conclusion

References

VERMONT 8

うへで 30 of 61

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Results

Conclusion

References

うへで 30 of 61

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

i> branching ratio b
 i> depth L
 N = (b^L − 1)/(b − 1) nodes

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Results

conciabion

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

branching ratio b
 depth L
 N = (b^L - 1)/(b - 1) nodes
 N - 1 links

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

onclusio

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

i> branching ratio b
 i> depth L
 N = (b^L − 1)/(b − 1) nodes
 N − 1 links

Additional informal ties:

Choose m links according to a two parameter probability distribution $0 \le m \le (N-1)(N-2)/2$ COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

anclusia

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

i> branching ratio b
 i> depth L
 N = (b^L − 1)/(b − 1) nodes
 N − 1 links

Additional informal ties:

Choose *m* links according to a two parameter probability distribution

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Results

Conclusion

🚳 Edited by Harrison White

Formal organizational structure:

Onderlying hierarchy:

branching ratio b
 depth L
 N = (b^L - 1)/(b - 1) nodes
 N - 1 links

Additional informal ties:

Choose *m* links according to a two parameter probability distribution $0 \le m \le (N-1)(N-2)/2$ COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

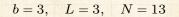
Modelification

Goals

Model Testing

Conclusion

References



200 30 of 61

Model—underlying hierarchy

Model—formal structure:

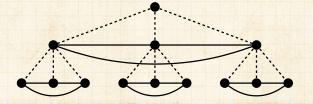
Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing Results

Conclusion


References

990 31 of 61

Team-based networks (m = 12):

COCONUTS

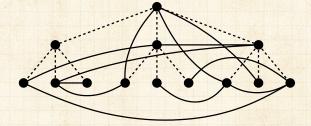
Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing Results

Conclusion


References

200 32 of 61

Random networks (m = 12):

COCONUTS

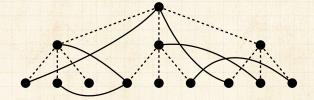
Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing Results

Conclusion


References

990 33 of 61

Random interdivisional networks (m = 6):

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing Results

Conclusion

References

20 34 of 61

COCONUTS

Overview Toyota Ambiguous problems Models of organizations.

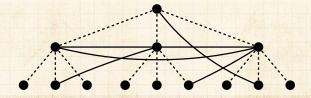
Modelification

Goals

Model

Results

Conclusion


References

20 35 of 61

Core-periphery networks (m = 6):

Multiscale networks (m = 12):

COCONUTS

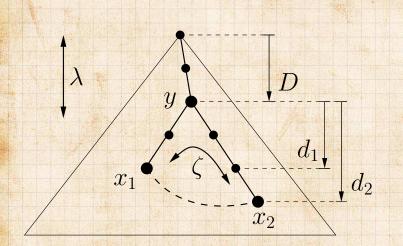
Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing Results

Conclusion


References

990 36 of 61

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing Results

Conclusion

References

VERMONT 8

うへで 37 of 61

link addition probability:

 $P(D,d_1,d_2) \propto e^{-D/\lambda} e^{-f(d_1,d_2)/\zeta}$

Sirst choose (D, d_1, d_2) .

 $\ref{eq: Solution}$ Randomly choose (y, x_1, x_2) given (D, d_1, d_2) .

Choose links without replacement.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Resolution

LOTICIUSION

Requirements for $f(d_1, d_2)$:

f increases monotonically with d_1 $f(d_1, d_2) = f(d_2, d_1).$

f is maximized when $d_1=d_2$

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Conclusion

References

Requirements for $f(d_1, d_2)$: 1. $f \ge 0$ for $d_1 + d_2 \ge 2$

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals

Model Testing

Conclusion

References

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Results

Conclusion

References

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1).$

is maximized when $a_1 = a_2$.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Conclusion

References

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. *f* is maximized when $d_1 = d_2$.

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals

Model Testing

Results

Conclusion

References

Requirements for $f(d_1, d_2)$:

- 1. $f \ge 0$ for $d_1 + d_2 \ge 2$
- 2. f increases monotonically with d_1 , d_2 .
- 3. $f(d_1, d_2) = f(d_2, d_1)$.
- 4. *f* is maximized when $d_1 = d_2$.

Simple function satisfying 1-4:

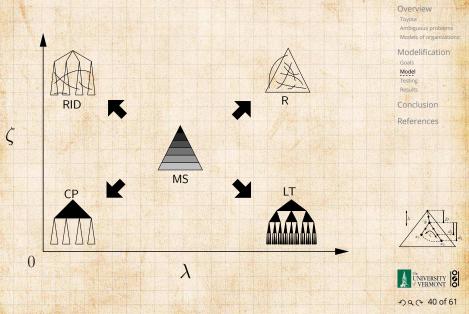
$$\begin{split} f(d_1,d_2) &= (d_1^2+d_2^2-2)^{1/2} \\ \Rightarrow P(y,x_1,x_2) \propto e^{-D/\lambda} e^{-(d_1^2+d_2^2-2)^{1/2}/\zeta} \end{split}$$

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals


Model Testing

Conclusion

Model—limiting cases

COcoNuTS

Outline

Toyota Ambiguous problems Models of prganization

Modelification

Testing

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model

Testing Results

Conclusion

References

990 41 of 61

Each of *T* time steps, each node generates a message with probability μ .

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results Conclusion

References

290 42 of 61

- Each of T time steps, each node generates a message with probability μ .
- Recipient of message chosen based on distance from sender.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

conclusion

References

200 42 of 61

- Each of T time steps, each node generates a message with probability μ .
- Recipient of message chosen based on distance from sender.

 $P(\text{recipient at distance } d) \propto e^{-d/\xi}.$

1. ξ = measure of uncertainty;

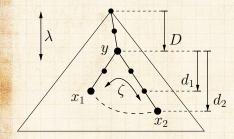
2

- 2. $\xi = 0$: local message passing;
- 3. $\xi = \infty$: random message passing.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion


References

20 A 42 of 61

Distance d_{12} between two nodes x_1 and x_2 :

$$d_{12} = \max(d_1, d_2) = 3$$

Measure unchanged with presence of informal ties.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion References

Simple message routing algorithm:

Look ahead one step: always choose neighbor closest to recipient node.

Nodes understand hierarchy.
 Nodes know only local informal tie

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

References

20 A 44 of 61

Simple message routing algorithm:

- Look ahead one step: always choose neighbor closest to recipient node.
- Pseudo-global knowledge:
 - 1. Nodes understand hierarchy.
 - 2. Nodes know only local informal ties.

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing

Conclusion References

20 44 of 61

Interpretations:

- 1. Sender knows specific recipient.
 - Sender requires certain kind of recipient. Sender seeks specific information but recipien unknown.
 - Sender has a problem but information/recipien unknown.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals

Testing Results

Conclusion

References

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
 - Sender seeks specific information but recipien unknown.
 - Sender has a problem but information/recipien unknowh.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing

Results

References

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- 3. Sender seeks specific information but recipient unknown.

Sender has a problem but information/recipien unknowh.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion

References

Interpretations:

- 1. Sender knows specific recipient.
- 2. Sender requires certain kind of recipient.
- 3. Sender seeks specific information but recipient unknown.
- 4. Sender has a problem but information/recipient unknown.

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion

References

Performance:

- Solution Contrality ρ_i , fraction of messages passing through node *i*.
 - Similar to betweenness centrality However: depends on

Congestion robustness comes from minimizing

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model

Testing Results

Conclusion

References

290 46 of 61

Performance:

- Solution Contrality ρ_i , fraction of messages passing through node *i*.
- 🚳 Similar to betweenness centrality.

Congestion robustness comes from minimizing,

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion

20 46 of 61

Performance:

- Solution Contrality ρ_i , fraction of messages passing through node *i*.
- 🚳 Similar to betweenness centrality.
- 🚳 However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).

Congestion robustness comes from minimizing p

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Performance:

- Solution Measure Congestion Centrality ρ_i , fraction of messages passing through node *i*.
- 🚳 Similar to betweenness centrality.
- 🚳 However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).

Congestion robustness comes from minimizing ρ

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model

Testing Results

Conclusion

Performance:

- Solution Contrality ρ_i , fraction of messages passing through node *i*.
- 🚳 Similar to betweenness centrality.
- 🚳 However: depends on
 - 1. Search algorithm;
 - 2. Task specification (μ , ξ).
 - Congestion robustness comes from minimizing ρ_{max} .

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion

Outline

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing

Results

Conclusion

References

DQC 47 of 61

Toyota Ambiguous problems Models of prganization

Modelification

Results

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results Conclusion References

990 48 of 61

Parameter settings (unless varying):

 \bigotimes Underlying hierarchy: b = 5, L = 6, N = 3096;

Link addition algorithm: $\lambda = \zeta = 0.5$. Message passing: $\xi = 1, \mu = 10/N, T = 1000$.

Parameter settings (unless varying):

- Solution Underlying hierarchy: b = 5, L = 6, N = 3096;
- Solution Number of informal ties: m = N.

Link addition algorithm: $\lambda = \zeta = 0.5$.

Message passing: $\xi = 1$, $\mu = 10/N$, T = 1000.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion References

290 48 of 61

Parameter settings (unless varying):

- Solution Underlying hierarchy: b = 5, L = 6, N = 3096;
- Solution Number of informal ties: m = N.
- Solution Link addition algorithm: $\lambda = \zeta = 0.5$.

Message passing: $\xi = 1, \mu = 10/N, T = 100$

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

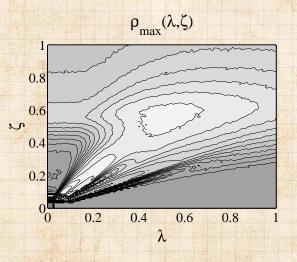
Modelification Goals Model Testing Results Conclusion References

Parameter settings (unless varying):

- Solution Underlying hierarchy: b = 5, L = 6, N = 3096;
- Solution Number of informal ties: m = N.
- Solution Link addition algorithm: $\lambda = \zeta = 0.5$.

Solution Message passing: $\xi = 1$, $\mu = 10/N$, T = 1000.

COcoNuTS


Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion References

Results—congestion robustness

COCONUTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion References

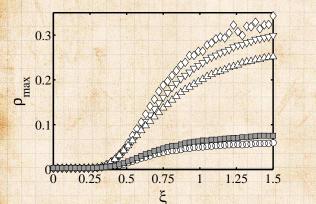
UNIVERSITY SVERMONT

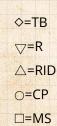
20 A 49 of 61

Results-varying number of links added:

0. 0.6 d^{Xem} 0.4 0.2 -3 -2 $\log_{10} m/N$

COcoNuTS


Overview Toyota Ambiguous problems Models of organizations.


Modelification Goals Model Testing Results Conclusion References

Results—varying message passing pattern

Overview Toyota Ambiguous problems Models of organizations

COcoNuTS

Modelification Goals Model Testing Results Conclusion References

longestion may increase with size of network.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Goals Model Testing Results Conclusion

200 52 of 61

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Congestion may increase with size of network.
 Fix rate of message passing (μ) and Message pattern (ξ).

Modelification Goals Model Testing Results Conclusion

20 52 of 61

COcoNuTS

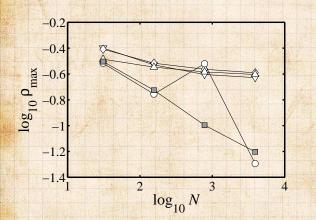
Overview Toyota Ambiguous problems Models of organizations.

- Source Congestion may increase with size of network. Fix rate of message passing (μ) and Message pattern (ξ).
- line and a second secon

Model of Granmatic Goals Model Testing Results Conclusion References

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.


- Congestion may increase with size of network.
 Fix rate of message passing (μ) and Message pattern (ξ).
- S Fix branching ratio of hierarchy and add more levels.
- \$ Individuals have limited capacity \Rightarrow limit to firm size.

Modelificatio Goals Model Testing Results Conclusion References

Scalability in complete uncertainty: $\xi = \infty$

Overview Toyota Ambiguous problems Models of organizations

COcoNuTS

Modelification Goals Model Testing Results Conclusion References

290 53 of 61

Connectivity Robustness

Inducing catastrophic failure:

Remove N_r nodes and measure relative size of largest component $C = S/(N - N_r)$.

Four deletion sequences:

2. Random;

3. Hub;

4. Cascading failure

Results largely independent of sequence

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results Conclusion References

200 54 of 61

Connectivity Robustness

Inducing catastrophic failure:

Remove N_r nodes and measure relative size of largest component $C = S/(N - N_r)$.

Four deletion sequences:

- 1. Top-down;
- 2. Random;
- 3. Hub;
- 4. Cascading failure.

Results largely independent of sequence.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations

Modelification Goals

Model

Testing

Results

Conclusion

References

200 54 of 61

Connectivity Robustness

Inducing catastrophic failure:

Remove N_r nodes and measure relative size of largest component $C = S/(N - N_r)$.

Four deletion sequences:

- 1. Top-down;
- 2. Random;
- 3. Hub;
- 4. Cascading failure.

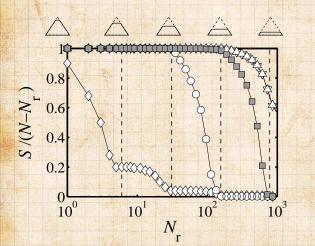
Results largely independent of sequence.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations

Modelification Goals

Model


Results

Conclusion

Results—Connectivity Robustness

COCONUTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion References

♦=TB

▽=R

 $\triangle = RID$ $\bigcirc = CP$

□=MS

200 55 of 61

Summary of results

COcoNuTS

Overview

Feature	Congestion Robustness	Connectivity Robustness	Scalability	Modelification Goals
Core-periphery	good	average	average	Model Testing Results Conclusion
Random	poor	good	poor	References
Rand. Interdivisional	poor	good	poor	
Team-based	poor	poor	poor	
Multiscale	good	good	good	

VERMONT

200 56 of 61

Multi-scale networks:

 Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;

Above suggests existence of multi-scale structure i plausible.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion References

Multi-scale networks:

- Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;

Above suggests existence of multi-scale structure is plausible.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion References

Multi-scale networks:

- Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;

Above suggests existence of multi-scale structure i plausible.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results

Conclusion

Multi-scale networks:

- Possess good Congestion Robustness and Connectivity Robustness ⇒ Ultra-robust;
- 2. Scalable;
- 3. Relatively insensitive to parameter choice;

Above suggests existence of multi-scale structure is plausible.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification Goals Model Testing Results

Conclusion References

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).

Balance of generalists versus specialists—how many middle managers does an organization need?

Still a need for data on real organizations.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification

Goals Model Testing Results

Conclusion References

200 58 of 61

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).

Balance of generalists versus specialists—how man middle managers does an organization need? Still a need for data on real organizations.

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing Results

Conclusion References

20 58 of 61

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

- Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).
- Balance of generalists versus specialists—how many middle managers does an organization need?

Still a need for data on real organizations...

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals

Testing Results

Conclusion References

Foregoing is an attempt to model what organizations might look like beyond simple hierarchies (2003).

- Possible work: develop 'bottom up' model of organizational networks based on social search, identity (emergent searchability).
- Balance of generalists versus specialists—how many middle managers does an organization need?
- Still a need for data on real organizations...

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing Results

Conclusion References

References I

- [1] R. H. Coase. The nature of the firm. Economica, New Series, 4(4):386–405, 1937. pdf C
- P. S. Dodds, D. J. Watts, and C. F. Sabel.
 Information exchange and the robustness of organizational networks.
 Proc. Natl. Acad. Sci., 100(21):12516–12521, 2003. pdf C

[3] R. Guimerà, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales, and A. A.

Optimal network topologies for local search with congestion.

Phys. Rev. Lett., 89:248701, 2002. pdf

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations:

Modelification

Model Testing

Conclusion

References

200 59 of 61

References II

[4] T. Nishiguchi and A. Beaudet. Fractal design: Self-organizing links in supply chain. In G. Von Krogh, I. Nonaka, and T. Nishiguchi, editors, Knowledge Creation: A New Source of Value, pages 199–230. MacMillan, London, 2000.

[5] R. Radner.

The organization of decentralized information processing.

Econometrica, 61(5):1109–1146, 1993. pdf

[6] D. Stark. Heterarchy.

In J. Clippinger, editor, <u>The Biology of Business</u>: Decoding the Natural Laws of the Enterprise., chapter 5, pages 153–. Jossey-Bass, San Francisco, 1999. pdf

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals

Model Testing

Results

Conclusion

References

990 60 of 61

References III

[7] T. Van Zandt.

Organizations with an endogenous number of information processing agents.

In Organizations with Incomplete Information, chapter 7. Cambridge University Press, New York, 1998.

[8] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf

COcoNuTS

Overview Toyota Ambiguous problems Models of organizations.

Modelification Goals Model Testing Results Conclusion

References

200 61 of 61