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a  b s  t r  a  c t

Of basic interest  is the quantification  of the long  term growth  of  a  language’s  lexicon as it  develops to

more  completely  cover  both a  culture’s communication  requirements  and  knowledge  space. Here,  we

explore  the usage dynamics of  words in the English language as  reflected  by  the Google Books  2012

English  Fiction corpus.  We critique an earlier  method that  found decreasing  birth and increasing  death

rates of  words over  the second  half  of the  20th Century, showing  death rates to be  strongly affected  by

the  imposed  time  cutoff  of the  arbitrary present and not  increasing  dramatically. We provide  a  robust,

principled  approach  to examining  lexical  evolution by tracking the volume of  word flux across various

relative  frequency thresholds. We  show  that  while the overall  statistical  structure of the English  language

remains stable over  time in  terms  of  its  raw Zipf  distribution,  we  find evidence of an enduring  ‘lexical

turbulence’:  The flux of words  across frequency  thresholds  from decade  to  decade  scales superlinearly

with word  rank  and exhibits a  scaling  break  we  connect to  that of Zipf’s law.  To better  understand  the

changing  lexicon,  we examine the contributions to the Jensen-Shannon  divergence  of  individual  words

crossing frequency thresholds. We  also  find indications that scholarly  works  about  fiction  are  strongly

represented  in  the  2012 English  Fiction corpus, and suggest  that  a  future revision  of the corpus  should

attempt to separate critical  works  from  fiction  itself.

© 2017 Elsevier B.V. All  rights  reserved.

1.  Introduction

In studying any entity  or  system, a fundamental scientific  goal

is  the satisfactory characterization of temporal dynamics, whether

empirically observed, simulated, or theoretically predicted. For lan-

guage, there  are many kinds and scales of  temporal  dynamics to

consider  such as the introduction and usage  decline of  specific

words [1], the evolution of  accents, the long  term development of

individual  languages [2],  and  the changes in the overall ecology  of

human languages which has  now moved well into  an  era of  die  off

[3].

Here,  we  are concerned  with  the  dynamics of the English lan-

guage’s  lexicon. Primarily, we  want  to  know how the usage of words

has changed  in time,  and how this  is reflected in  the  English lex-

icon’s evolution. This focus leads  us  to  several core  questions:  (1)

What are the  rates at  which words are born  and at  which they

∗ Corresponding author.

E-mail addresses: eitan.pechenick@gmail.com (E.A. Pechenick),

chris.danforth@uvm.edu (C.M. Danforth), peter.dodds@uvm.edu (P.S.  Dodds).

die? (2)  How do we  reasonably identify  word  births  and deaths

in the first  place? (3)  As the English lexicon has expanded,  how

have overall statistical patterns such as  Zipf’s law [4] changed,  if

at all?  We  are especially interested with  revisiting work on word

“birth” and “death” rates as performed in  [1].  As we  will show,  the

methods employed  in [1]  suffer  from  boundary effects, and  we pro-

pose and  investigate an  alternative  approach insensitive to time

range choice. We  also investigate lexical changes at a  range of  usage

frequency levels.

We  will perform our analyses using  the Google  Books  corpus

[5,6] whose incredible volume generated from an  extensive cover-

age of all  written works would seemingly make it  an ideal candidate

for linguistic research. However,  there are two major  caveats that

limit its potency  and we  will lay  them out  before proceeding.

In previous research [7], we broadly explored the characteris-

tics and dynamics of  the  unfiltered  English and  English Fiction data

sets from  both the  2009  and 2012 versions  of  the Google Books

corpus. We showed that the  2009 and 2012 unfiltered English data

sets and, surprisingly, the  2009 English Fiction  data  set, all become

increasingly influenced by scientific texts throughout the 1900s,

with medical research  language being especially  prevalent. We

http://dx.doi.org/10.1016/j.jocs.2017.04.020

1877-7503/© 2017  Elsevier B.V. All rights  reserved.

“Is language evolution grinding to a halt? The
scaling of lexical turbulence in English fiction
suggests it is not”
Pechenick, Danforth, and Dodds.
Journal of Computational Science, , , 2017. [1]

 Upshot: Not dead yet.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/pechenick2017a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/pechenick2017a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/pechenick2017a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/pechenick2017a.pdf


COcoNuTS
@networksvox

Lexical
Turbulence

References

.
.
.
.
.

.
6 of 23

A bit of a worry—language is slowing down:

Statistical LawsGoverning Fluctuations in
Word Use from Word Birth to Word
Death
Alexander M. Petersen1, Joel Tenenbaum2, Shlomo Havlin3 & H. Eugene Stanley2

1Laboratory for theAnalysis of Complex Economic Systems, IMT Lucca Institute for Advanced Studies, Lucca 55100, Italy, 2Center for
Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA, 3Minerva Center and
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.

We analyze the dynamic properties of 107 words recorded in English, Spanish and Hebrew over the period
1800–2008 in order to gain insight into the coevolution of language and culture. We report language
independent patterns useful as benchmarks for theoretical models of language evolution. A significantly
decreasing (increasing) trend in the birth (death) rate of words indicates a recent shift in the selection laws
governing word use. For new words, we observe a peak in the growth-rate fluctuations around 40 years after
introduction, consistent with the typical entry time into standard dictionaries and the human generational
timescale. Pronounced changes in the dynamics of language during periods of war shows that word
correlations, occurring across time and between words, are largely influenced by coevolutionary social,
technological, and political factors.We quantify culturalmemory by analyzing the long-term correlations in
the use of individual words using detrended fluctuation analysis.

S
tatistical laws describing the properties of word use, such as Zipf ’s law1–6 and Heaps’ law7,8, have been
thoroughly tested and modeled. These statistical laws are based on static snapshots of written language
using empirical data aggregated over relatively small time periods and comprised of relatively small corpora

ranging in size from individual texts1,2 to relatively small collections of topical texts3,4. However, language is a
fundamentally dynamic complex system, consisting of heterogenous entities at the level of the units (words) and
the interacting users (us). Hence, we begin this paper with two questions: (i) Do languages exhibit dynamical
patterns? (ii) Do individual words exhibit dynamical patterns?

The coevolutionary nature of language requires analysis both at the macro and micro scale. Here we apply
interdisciplinary concepts to empirical language data collected in amassive book digitization effort byGoogle Inc.,
which recently unveiled a database of words in seven languages, after having scanned approximately 4% of the
world’s books. The massive ‘‘n-gram’’ project9 allows for a novel view into the growth dynamics of word use and
the birth and death processes of words in accordance with evolutionary selection laws10.

A recent analysis of this database byMichel et al.11 addresses numerous well-posed questions rooted in cultural
anthropology using case studies of individual words. Here we take an alternative approach by analyzing the
aggregate properties of the language dynamics recorded in theGoogle Inc. data in a systematic way, using the word
counts of everyword recorded over the 209-year time period 1800 – 2008 in the English, Spanish, andHebrew text
corpora. This period spans the incredibly rich cultural history that includes several international wars, revolu-
tions, and numerous technological paradigm shifts. Together, the data comprise over 13 107 distinct words. We
use concepts from economics to gain quantitative insights into the role of exogenous factors on the evolution of
language, combined with methods from statistical physics to quantify the competition arising from correlations
between words12–14 and the memory-driven autocorrelations in ui(t) across time15–17.

For each corpora comprising millions of distinct words, we use a general word-count framework which
accounts for the underlying growth of language over time. We first define the quantity ui(t) as the number of
uses of word i in year t. Since the number of books and the number of distinct words have grown dramatically over
time, we define the relative word use, fi(t), as the fraction of uses of word i out of all word uses in the same year,

fi tð Þ:ui tð Þ=Nu tð Þ, ð1Þ

where the quantity Nu tð Þ:
PNw tð Þ

i~1 ui tð Þ is the total number of indistinct word uses digitized from books printed
in year t and Nw(t) is the total number of distinct words digitized from books printed in year t. To quantify the
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SCIENTIFIC REPORTS | 2 : 313 | DOI: 10.1038/srep00313 1

“Statistical laws governing fluctuations in
word use from word birth to word
death”
Petersen, Petersen, and Stanley,
Scientific Reports, 2, 313, Nature Publishing
Group. [2] www.nature.com/

SCIENTIFIC
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Figure 1 | Word extinction. The English word ‘‘Roentgenogram’’ derives

from the Nobel prize winning scientist and discoverer of the X-ray,

Wilhelm Röntgen (1845–1923). The prevalence of this word was quickly

challenged by two main competitors, ‘‘X-ray’’ (recorded as ‘‘Xray’’ in the

database) and ‘‘Radiogram.’’ The arithmetic mean frequency of these three

time series is relatively constant over the 80-year period 1920–2000, Æ f æ<

10–7, illustrating the limited linguistic ‘‘market share’’ that can be achieved

by any competitor.We conjecture that themain reason ‘‘Xray’’ has a higher

frequency is due to the ‘‘fitness gain’’ from its efficient short word length

and also due to the fact that English has become the base language for

scientific publication.

www.nature.com/

SCIENTIFIC

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Petersen et al. define the birth year and death year of an individual
word as the first and last year, respectively, that the given word’s
relative frequency 𝑓𝑤;𝑦 is found to be equal to or greater than a
cutoff frequency 𝑓cut𝑤;𝑦1,𝑦2 equal to one twentieth its median
relative frequency 𝑓med𝑤;𝑦1,𝑦2 :𝑓𝑤;𝑦 ≥ 𝑓cut𝑤;𝑦1,𝑦2 = 0.05𝑓med𝑤;𝑦1,𝑦2 .
 𝑦1 and 𝑦2 = the first and last year of the overall time period.
 Excluded: words appearing in only one year (this turns out to

be a problem) and words appearing for the first time before𝑦1 = 1700.
 Rates of word birth and death found by normalizing the

numbers of word births and deaths by the total number of
unique words in a given year.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Figure 2 | Dramatic shift in the birth rate and death rate of words. The

word birth rate cb(t) and theword death rate cd(t) showmarked underlying

changes in word use competition which affects the entry rate and the

sustainability of existing words. The modern print era shows a marked

increase in the death rate of words which likely correspond to low fitness,

misspelled and (technologically) outdated words. A simultaneous decrease

in the birth rate of new words is consistent with the decreasing marginal

need for new words indicated by the sub-linear allometric scaling between

vocabulary size and total corpus size (Heaps’ law)24. Interestingly, we

quantitatively observe the impact of the Balfour Declaration in 1917, the

circumstances surrounding which effectively rejuvenated Hebrew as a

national language, resulting in a 5-fold increase in the birth rate of words in

the Hebrew corpus.

www.nature.com/

SCIENTIFIC

Figure 3 | Survival of the fittest in the entry process of words. Trends in
the relative uses of words that either were born or died in a given year show

that the entry-exit forces largely depend on the relative use of the word. For

the English corpus, we calculate the average of the median lifetime relative

use, ÆMed(fi)æ, for all words born in year t (top panel) and for all words that

died in year t (bottom panel), which shows a 5-year moving average

(dashed black line). There is a dramatic increase in the relative use

(‘‘utility’’) of newborn words over the last 20–30 years, likely

corresponding to new technical terms, which are necessary for the

communication of core modern technology and ideas. Conversely, with

higher editorial standards and the recent use of word processors which

include spelling standardization technology, the words that are dying are

those words with low relative use.We confirm by visual inspection that the

lists of dying words contain mostly misspelled and nonsensical words.

www.nature.com/

SCIENTIFIC

 Petersen et al. present a range of other
interesting observations—all worth looking at [2]

 Our focus will be on life and death of words.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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For following pages:
 A and C: Birth and death rates for 1-grams for the 2012

version of English Fiction determined using the method of
Petersen et al. [2].

 Curves correspond to different end-of-history boundaries
with history running from 𝑦1=1800 to 𝑦2=1860 to 2000 in 20
year increments.

 Birth rates show clear departures from an overall form as
each end of history year is approached.

 Including words that appear in only one year in a time range
eliminates these discrepancies (plot B).

 Death rates however are strongly affected by the choice of
when history ends and this cannot be remedied by modifying
the rule for 1-gram death.

 As the end of history moves forward in time, words that
seemed dead are no longer dead for a number of reasons.

 B and D: Birth and death rates as per plots A and C in all
respects except now including words that appear only once
in a time range—i.e., have a non-zero relative frequency in
only one year.

 Birth rates are now well determined retrospectively from any
vantage point of history and an exponential decay appears
confirmed.

 Death rates remain incongruent as in C.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Why?
 Following: Two examples of how a 1-gram may be variously

labeled dead or alive depending on the end of history using
the criterion in [2].

 A. The word ‘CHAP’ declines in relative frequency over time,
from a high of 10−3.5 to as low as 10−7.5.

 Using a twentieth of the median frequency of a 1-gram as a
threshold for birth and death, we see ‘CHAP’ appears to have
“run down the curtain” in 1850 but then re-emerged as alive
for 8 subsequent decadal end points.

 ‘CHAP’ once again succumbs in 1940 only to stagger on
through 2000.

 This dead-undead cycling can be seen for many words and
leads us to exploring how words pass above and drop below
fixed relative frequency thresholds.

 In both plots, the blue region marks the lowest possible
relative frequency for each year achieved when a 1-gram has
a count of 1. B.

 The word ‘Coryphaeus’ is a much less frequent word than
‘CHAP’, and its time series contains a substantial number of
zeroes and ones (resting on the top of the blue region).

 The criterion in [2] leads to a flipping back and forth between
being dead and undead at most end-of-history years from
1850 through to 2000.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Lexical turbulence:
Zipf’s law has two scaling regimes: [3]𝑓 ∼ { 𝑟−𝛼 for 𝑟 ≪ 𝑟b,𝑟−𝛼′ for 𝑟 ≫ 𝑟b,
When comparing two texts, define Lexical
turbulence as flux of words across a frequency
threshold: 𝜙 ∼ { 𝑓−𝜇

thr for 𝑓thr ≪ 𝑓b,𝑓−𝜇′
thr for 𝑓thr ≫ 𝑓b,

Estimates: 𝜇 ≃ 0.77 and 𝜇′ ≃ 1.10, and 𝑓b is the scaling break
point. 𝜙 ∼ { 𝑟𝜈 = 𝑟𝛼𝜇′ for 𝑟 ≪ 𝑟b,𝑟𝜈′ = 𝑟𝛼′𝜇 for 𝑟 ≫ 𝑟b.
Estimates: Lower and upper exponents 𝜈 ≃ 1.23 and 𝜈′ ≃ 1.47.
Exponents match up:𝜈 = 𝛼𝜇′ ≃ 1.14 × 1.10 ≃ 1.25
and 𝜈′ = 𝛼′𝜇 ≃ 1.95 × 0.77 ≃ 1.50.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Inter-decade JSD comparisons:
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