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Lexical A and C: Birth and death rates for 1-grams for the 2012 Lo e

version of English Fiction determined using the method of
Petersen et al. [2],

References References
Curves correspond to different end-of-history boundaries
with history running from y,=1800 to y,=1860 to 2000 in 20
year increments.

3x10”7

Birth rates show clear departures from an overall form as
each end of history year is approached.

QY o N Including words that appear in only one year in a time range
1900 1920 W;;)ear ';’(’“ 1980 2000 eliminates these discrepancies (plot B).

Death rates however are strongly affected by the choice of
when history ends and this cannot be remedied by modifying
the rule for 1-gram death.

As the end of history moves forward in time, words that
seemed dead are no longer dead for a number of reasons.

B and D: Birth and death rates as per plots A and Cin all
respects except now including words that appear only once
in a time range—i.e., have a non-zero relative frequency in
only one year.

Birth rates are now well determined retrospectively from any

Figure 1| Word extinction. The English word “Roentgenogram” derives
from the Nobel prize winning scientist and discoverer of the X-ray,
‘Wilhelm Réntgen (1845-1923). The prevalence of this word was quickly
challenged by two main competitors, “X-ray” (recorded as “Xray” in the
database) and “Radiogram.” The arithmetic mean frequency of these three
time series is relatively constant over the 80-year period 1920-2000,( f ) =
1077, illustrating the limited linguistic “market share” that can be achieved
by any competitor. We conjecture that the main reason “Xray” has a higher
frequency is due to the “fitness gain” from its efficient short word length
and also due to the fact that English has become the base language for
scientific publication.
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vantage point of history and an exponential decay appears
confirmed.
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Petersen et al. define the birth year and death year of an individual 3
word as the first and last year, respectively, that the given word’s Z
relative frequency f,,., is found to be equal to or greater than a References <
cutoff frequency fﬁ‘jfylaw equal to one twentieth its median @
i me
relative frequency f77, ¢ b%
°
d cut — rmed
jw;y = fw:ylwy2 - 0'05jw;y1,y2'

y; and y, = the first and last year of the overall time period.

Excluded: words appearing in only one year (this turns out to
be a problem) and words appearing for the first time before
y, = 1700.

Rates of word birth and death found by normalizing the
numbers of word births and deaths by the total number of
unique words in a given year.

log,, Death rate (%)

_1%00 1850 1900 1950 2000 1800 1850 1900 1950 2000

Year Year
wae 8of23
” Why?
10 T o . .
- Lexical : ’ Lexical
o é(l o e ence Following: Two examples of how a 1-gram may be variously e ence
oot labeled dead or alive depending on the end of history using
o ““' . — - References the criterion in [Z] References
Anafd Word Death A. The word ‘CHAP’ declines in relative frequency over time,
Ep i from a high of 1073-° to as low as 1077-5.
v 2x10™) v . . .
y. e R0 0 e Using a twentlgth of the median frequency of a 1-gram as a
year, t year £ threshold for birth and death, we see ‘CHAP’ appears to have
Figure 3| Survivalofthe et i the ey processof words. Trends n “ s ;
P2 Dramat e nd st e v e ‘g : p e ‘WZ,E;L",:M‘« 9 ‘3‘ yearshow run down the curtain” in 1850 but then re-emerged as alive
e s o i o it e e i e i for 8 subsequent decadal end points.
increase in the death rat of words which likely correspond to low fitness, 251 <4/ Pp ol wordsthat . , . .
ot i N R e CHAP' once again succumbs in 1940 only to stagger on
e e - e decre: 12 ( ),
in the birth rate of new wmdsl:;lc:rn::lt:[;:‘:::h the decreasing marginal (o Gk O G e the lat 2030 ye through 2000
vocabulary e ol corpus s Hcspe o) Icrsingy e CIRNRCR I bV T R SR S )
g s ey e e o Vit e et v b This dead-undead cycling can be seen for many words and
o s s el i ity i e : leads us to exploring how words pass above and drop below
) ) fixed relative frequency thresholds.
, u i a W i .
In both plots, the blue region marks the lowest possible k ‘
Petersen et al. present a range of other Poa relative frequency for each year achieved when a 1-gram has SEALR
Lo acountof 1. B. Loy

interesting observations—all worth looking at *!

. i The word ‘Coryphaeus’ is a much less frequent word than
Our focus will be on life and death of words.

; |§| ‘CHAP’, and its time series contains a substantial number of

O
4]
. . 10l
zeroes and ones (resting on the top of the blue region).
Dae 90f23 Dace 120f23

The criterion in [2] leads to a flipping back and forth between
being dead and undead at most end-of-history years from
1850 through to 2000.
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Zipf's law has two scaling regimes: %!

f r-forr < m,
o’ forr > ry,

When comparing two texts, define Lexical

turbulence as flux of words across a frequency

threshold:

ft;f/ for finr < fo,
few fOF fine > fo,

o~

Estimates: .~ 0.77 and p/ ~ 1.10, and f, is the scaling break

point.

¢ v =ron forr <y,
r = mforr > .

Estimates: Lower and upper exponents v ~ 1.23 and v/ =~ 1.47.

Exponents match up:

v=ap ~1.14x1.10~1.25

4

and
~1.95 x 0.77 ~ 1.50.
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JSD flux contributions: 1970s to 1980s

JSD flux contributions: 1980s to 1990s

1-gram rank

T-gram rank
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JSD flux contributions: 1970s to 1980s
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