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Advances in sociotechnical algorithms:

4 8 4  |  N A T U R E  |  V O L  5 2 9  |  2 8  J A N U A R Y  2 0 1 6

ARTICLE
doi:10.1038/nature16961

Mastering the game of Go with deep 
neural networks and tree search
David Silver1

*, Aja Huang1
*, Chris J. Maddison1, Arthur Guez1, Laurent Sifre1, George van den Driessche1,  

Julian Schrittwieser1, Ioannis Antonoglou1, Veda Panneershelvam1, Marc Lanctot1, Sander Dieleman1, Dominik Grewe1, 
John Nham2, Nal Kalchbrenner1, Ilya Sutskever2, Timothy Lillicrap1, Madeleine Leach1, Koray Kavukcuoglu1,  
Thore Graepel1 & Demis Hassabis1

All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its 
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach 
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep 
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement 
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state- 
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a 
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, 
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go 
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the 
full-sized game of Go, a feat previously thought to be at least a decade away.

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.

*These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited. All rights reserved

“Mastering the game of Go with deep
neural networks and tree search”
Silver and Silver,
Nature, 529, 484–489, 2016. [6]
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Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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 Nature News (2016): Digital Intuition

 Wired (2012): Network Science of the game of
Go
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Rules for Biologically Inspired
Adaptive Network Design
Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4

Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6*

Transport networks are ubiquitous in both social and biological systems. Robust network performance

involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological

networks have been honed by many cycles of evolutionary selection pressure and are likely to yield

reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without

centralized control and may represent a readily scalable solution for growing networks in general. We

show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault

tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system.

The core mechanisms needed for adaptive network formation can be captured in a biologically

inspired mathematical model that may be useful to guide network construction in other domains.

T
ransport networks are a critical part of the

infrastructure needed to operate a modern

industrial society and facilitate efficient

movement of people, resources, energy, and

information. Despite their importance, most net-

works have emerged without clear global design

principles and are constrained by the priorities

imposed at their initiation. Thus, the main motiva-

tion historically was to achieve high transport

efficiency at reasonable cost, but with correspond-

ingly less emphasis on making systems tolerant to

interruption or failure. Introducing robustness

inevitably requires additional redundant pathways

that are not cost-effective in the short term. In recent

years, the spectacular failure of key infrastructure

such as power grids (1, 2), financial systems (3, 4),

airline baggage-handling systems (5), and railway

networks(6),aswellasthepredictedvulnerabilityof

systems such as information networks (7) or supply

networks (8) to attack, have highlighted the need to

develop networks with greater intrinsic resilience.

Some organisms grow in the form of an inter-

connected network as part of their normal forag-

ing strategy to discover and exploit new resources

(9–12). Such systems continuously adapt to their

environment and must balance the cost of produc-

ing an efficient network with the consequences of

even limited failure in a competitive world. Unlike

anthropogenic infrastructure systems, these biolog-

ical networks have been subjected to successive

rounds of evolutionary selection and are likely to

have reached a point at which cost, efficiency, and

resilience are appropriately balanced. Drawing in-

spiration from biology has led to useful approaches

to problem-solving such as neural networks, ge-

netic algorithms, and efficient search routines de-

veloped from ant colony optimization algorithms

(13). We exploited the slime mold Physarum

polycephalum to develop a biologically inspired

model for adaptive network development.

Physarum is a large, single-celled amoeboid

organism that forages for patchily distributed

food sources. The individual plasmodium ini-

tially explores with a relatively contiguous for-

aging margin to maximize the area searched.

However, behind the margin, this is resolved into

a tubular network linking the discovered food

sources through direct connections, additional in-

termediate junctions (Steiner points) that reduce

the overall length of the connecting network,

and the formation of occasional cross-links that

improve overall transport efficiency and resil-

ience (11, 12). The growth of the plasmodium is

influenced by the characteristics of the sub-

strate (14) and can be constrained by physical

barriers (15) or influenced by the light regime

(16), facilitating experimental investigation of

the rules underlying network formation. Thus,

for example, Physarum can find the shortest

path through a maze (15–17) or connect dif-

ferent arrays of food sources in an efficient

manner with low total length (TL) yet short

averageminimum distance (MD) between pairs

of food sources (FSs), with a high degree of

fault tolerance (FT) to accidental disconnection

(11, 18, 19). Capturing the essence of this sys-

tem in simple rules might be useful in guiding

the development of decentralized networks in

other domains.

We observed Physarum connecting a template

of 36 FSs that represented geographical locations

of cities in the Tokyo area, and compared the result

with the actual rail network in Japan. The

Physarum plasmodium was allowed to grow from

Tokyo and initially filled much of the available

land space, but then concentrated on FSs by

thinning out the network to leave a subset of larger,

interconnecting tubes (Fig. 1). An alternative

protocol, in which the plasmodium was allowed

to extend fully in the available space and the FSs

were then presented simultaneously, yielded sim-

ilar results. To complete the network formation, we

allowed any excess volume of plasmodium to

1Research Institute for Electronic Science, Hokkaido University,
Sapporo 060-0812, Japan. 2PRESTO, JST, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan. 3Graduate School of Engineering,
Hokkaido University, Sapporo 060-8628, Japan. 4Department of
Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
5Department of Mathematical and Life Sciences, Hiroshima
University, Higashi-Hiroshima 739-8526, Japan. 6JST, CREST, 5
Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.

*To whom correspondence should be addressed. E-mail:
nakagaki@es.hokudai.ac.jp
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“Rules for Biologically Inspired Adaptive
Network Design”
Tero et al.,
Science, 327, 439-442, 2010. [7]

Urban deslime in action:
https://www.youtube.com/watch?v=GwKuFREOgmo
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Citations to articles citing Benford’s law: a Benford analysis

Tariq Ahmad Mir

Nuclear Research Laboratory, Astrophysical Sciences Division, Bhabha Atomic

Research Centre, Srinagar-190 006, Jammu and Kashmir, India.

email: taarik.mir@gmail.com

1. Abstract

The observation that in large data the occurrence of first significant digits of num-

bers is often governed by a logarithmically decreasing distribution, quite far from

the ordinarily expected uniform distribution, is called Benford’s law (BL). It was

first reported by S. Newcomb and many decades later independently by F. Ben-

ford. Due to its counter-intuitiveness the law was ignored for decades as a mere

curious observation. However, huge swell in number of publications which the law

has seen lately is an indication of its remarkable resurgence. The law has come a

long way, from obscurity to now being a regular subject of books, peer reviewed

papers, patents, blogs and news. Here, we use Google Scholar (GS) to collect the

data on the number of citations received by the articles citing the original papers

of Newcomb and Benford, and then investigate whether the leading digits of this

citations data are distributed according to the law they discovered. We find that

the monthly citations data of the articles citing Benford’s paper remarkably follow

the law but that of Newcomb’s paper in some cases does/does not follow the law.

On the other hand, the yearly citations data corresponding to both Newcomb’s and

Benford’s paper follow the law.

2. Keywords

BL; citations; Google Scholar

3. Introduction

As per the common perception the first digits of decimal numbers in large data

ought to be distributed uniformly, irrespective of the digit magnitude. But, in reality,

this is only superficial. Contrary to intuition, in large tabulated data digits 1 to 9

appear as first digits with varying proportions with digits of smaller magnitude

appearing as the first digits of numbers more frequently than do the digits of larger

1

“Citations to articles citing Benford’s law: A
Benford analysis”
Tariq Ahmad Mir,
Preprint available at
http://arxiv.org/abs/1602.01205, 2016. [4]

Fig. 1: The observed proportions of first digits of citations received by the articles

citing FB and SN on September 30, 2012. For comparison the proportions expected

from BL and uniform distributions are also shown.
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Applied knot theory:

➞ ✶��� ✁✂✄☎✆✝✝✂✞ ✁✂✟✂✠✆✞✡☛ ☞✌✍

❤❡ s✐♠♣❧❡st ♦❢ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡ ❦♥♦ts✱
t❤❡ ❢♦✉r✲✐♥✲❤❛♥❞✱ ❤❛s ✐ts ♦r✐❣✐♥s ✐♥ ❧❛t❡✲

♥✐♥❡t❡❡♥t❤✲❝❡♥t✉r② ❊♥❣❧❛♥❞✳ ❚❤❡ ❉✉❦❡ ♦❢
❲✐♥❞s♦r✱ ❛s ❑✐♥❣ ❊❞✇❛r❞ ❱■■■ ❜❡❝❛♠❡ ❛❢t❡r
❛❜❞✐❝❛t✐♥❣ ✐♥ ✎✾✸✻✱ ✐s ❝r❡❞✐t❡❞ ✇✐t❤ ✐♥tr♦✲
❞✉❝✐♥❣ ✇❤❛t ✐s ♥♦✇ ❦♥♦✇♥ ❛s t❤❡ ❲✐♥❞s♦r
❦♥♦t✱ ❢r♦♠ ✇❤✐❝❤ ✐ts s♠❛❧❧❡r ❞❡r✐✈❛t✐✈❡✱ t❤❡
❤❛❧❢✲❲✐♥❞s♦r✱ ❡✈♦❧✈❡❞✳ ■♥ ✎✾✽✾✱ t❤❡ Pr❛tt
❦♥♦t✱ t❤❡ ❢✐rst ♥❡✇ ❦♥♦t t♦ ❛♣♣❡❛r ✐♥ ❢✐❢t②
②❡❛rs✱ ✇❛s r❡✈❡❛❧❡❞ ♦♥ t❤❡ ❢r♦♥t ♣❛❣❡ ♦❢ ✏✑✒
◆✒✓ ❨✔✕✖ ✏✗✘✒✙✳
❘❛t❤❡r t❤❛♥ ✇❛✐t ❛♥♦t❤❡r ❤❛❧❢✲❝❡♥t✉r②

❢♦r t❤❡ ♥❡①t s❛rt♦r✐❛❧ ❛❞✈❛♥❝❡✱ ✇❡ ❤❛✈❡
t❛❦❡♥ ❛ ♠♦r❡ ❢♦r♠❛❧ ❛♣♣r♦❛❝❤✳ ❲❡ ❤❛✈❡
❞❡✈❡❧♦♣❡❞ ❛ ♠❛t❤❡♠❛t✐❝❛❧ ♠♦❞❡❧ ♦❢ t✐❡
❦♥♦ts✱ ❛♥❞ ♣r♦✈✐❞❡ ❛ ♠❛♣ ❜❡t✇❡❡♥ t✐❡
❦♥♦ts ❛♥❞ ♣❡rs✐st❡♥t r❛♥❞♦♠ ✇❛❧❦s ♦♥ ❛
tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡✳ ❲❡ ❝❧❛ss✐❢② ❦♥♦ts ❛❝❝♦r❞✲
✐♥❣ t♦ t❤❡✐r s✐③❡ ❛♥❞ s❤❛♣❡✱ ❛♥❞ q✉❛♥t✐❢②
t❤❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts ✐♥ ❡❛❝❤ ❝❧❛ss✳ ❚❤❡
♦♣t✐♠❛❧ ❦♥♦t ✐♥ ❛ ❝❧❛ss ✐s s❡❧❡❝t❡❞ ❜② t❤❡
♣r♦♣♦s❡❞ ❛❡st❤❡t✐❝ ❝♦♥❞✐t✐♦♥s ♦❢ s②♠♠❡✲
tr② ❛♥❞ ❜❛❧❛♥❝❡✳ ❖❢ t❤❡ ✽✺ ❦♥♦ts t❤❛t ❝❛♥
❜❡ t✐❡❞ ✇✐t❤ ❛ ❝♦♥✈❡♥t✐♦♥❛❧ t✐❡✱ ✇❡ r❡❝♦✈❡r
t❤❡ ❢♦✉r ❦♥♦ts t❤❛t ❛r❡ ✐♥ ✇✐❞❡s♣r❡❛❞ ✉s❡
❛♥❞ ✐♥tr♦❞✉❝❡ s✐① ♥❡✇ ❛❡st❤❡t✐❝❛❧❧② ♣❧❡❛s✲
✐♥❣ ❦♥♦ts✳
❆ t✐❡ ❦♥♦t ✐s st❛rt❡❞ ❜② ❜r✐♥❣✐♥❣ t❤❡ ✇✐❞❡

✭❛❝t✐✈❡✮ ❡♥❞ t♦ t❤❡ ❧❡❢t ❛♥❞ ❡✐t❤❡r ♦✈❡r ♦r
✉♥❞❡r t❤❡ ♥❛rr♦✇ ✭♣❛ss✐✈❡✮ ❡♥❞✱ ❞✐✈✐❞✐♥❣
t❤❡ s♣❛❝❡ ✐♥t♦ r✐❣❤t ✭❘✮✱ ❝❡♥tr❡ ✭❈✮ ❛♥❞ ❧❡❢t
✭▲✮ r❡❣✐♦♥s ✭❋✐❣✳ ✎❛✮✳ ❚❤❡ ❦♥♦t ✐s ❝♦♥t✐♥✉❡❞
❜② s✉❜s❡q✉❡♥t ❤❛❧❢✲t✉r♥s✱ ♦r ♠♦✈❡s✱ ♦❢ t❤❡
❛❝t✐✈❡ ❡♥❞ ❢r♦♠ ♦♥❡ r❡❣✐♦♥ t♦ ❛♥♦t❤❡r ✭❋✐❣✳
✎❜✮ s✉❝❤ t❤❛t ✐ts ❞✐r❡❝t✐♦♥ ❛❧t❡r♥❛t❡s
❜❡t✇❡❡♥ ♦✉t ♦❢ t❤❡ s❤✐rt ✭✭✮ ❛♥❞ ✐♥t♦ t❤❡
s❤✐rt ✭❫✮✳ ❚♦ ❝♦♠♣❧❡t❡ ❛ ❦♥♦t✱ t❤❡ ❛❝t✐✈❡
❡♥❞ ♠✉st ❜❡ ✇r❛♣♣❡❞ ❢r♦♠ t❤❡ r✐❣❤t ✭♦r
❧❡❢t✮ ♦✈❡r t❤❡ ❢r♦♥t t♦ t❤❡ ❧❡❢t ✭♦r r✐❣❤t✮✱
✉♥❞❡r♥❡❛t❤ t♦ t❤❡ ❝❡♥tr❡ ❛♥❞ ❢✐♥❛❧❧②
t❤r♦✉❣❤ ✭❞❡♥♦t❡❞ ❚ ❜✉t ♥♦t ❝♦♥s✐❞❡r❡❞ ❛
♠♦✈❡✮ t❤❡ ❢r♦♥t ❧♦♦♣ ❥✉st ♠❛❞❡✳
❊❧❡♠❡♥ts ♦❢ t❤❡ ♠♦✈❡ s❡t ④❘�✱ ❘✁✱ ❈�✱

❈✁✱ ▲�✱ ▲✁⑥ ❞❡s✐❣♥❛t❡ t❤❡ ♠♦✈❡s ♥❡❝❡ss❛r②
t♦ ♣❧❛❝❡ t❤❡ ❛❝t✐✈❡ ❡♥❞ ✐♥t♦ t❤❡ ❝♦rr❡s♣♦♥❞✲
✐♥❣ r❡❣✐♦♥ ❛♥❞ ❞✐r❡❝t✐♦♥✳ ❲❡ ❝❛♥ t❤❡♥
❞❡❢✐♥❡ ❛ t✐❡ ❦♥♦t ❛s ❛ s❡q✉❡♥❝❡ ♦❢ ♠♦✈❡s ✐♥✐✲
t✐❛t❡❞ ❜② ▲✁ ♦r ▲� ❛♥❞ t❡r♠✐♥❛t✐♥❣ ✇✐t❤ t❤❡
s✉❜s❡q✉❡♥❝❡ ❘�▲✁❈�❚ ♦r ▲�❘✁❈�❚✳ ❚❤❡
s❡q✉❡♥❝❡ ✐s ❝♦♥str❛✐♥❡❞ s✉❝❤ t❤❛t ♥♦ t✇♦
❝♦♥s❡❝✉t✐✈❡ ♠♦✈❡s ✐♥❞✐❝❛t❡ t❤❡ s❛♠❡ r❡❣✐♦♥
♦r ❞✐r❡❝t✐♦♥✳
❲❡ r❡♣r❡s❡♥t ❦♥♦t s❡q✉❡♥❝❡s ❛s r❛♥❞♦♠

✇❛❧❦s ♦♥ ❛ tr✐❛♥❣✉❧❛r ❧❛tt✐❝❡ ✭❋✐❣✳ ✎❝✮✳ ❚❤❡
❛①❡s ✕✚ ✛ ❛♥❞ ✜ ❝♦rr❡s♣♦♥❞ t♦ t❤❡ t❤r❡❡ ♠♦✈❡
r❡❣✐♦♥s ❘✱ ❈ ❛♥❞ ▲✱ ❛♥❞ t❤❡ ✉♥✐t ✈❡❝t♦rs ✢❫✱ ✣❫
❛♥❞ ✤❫ r❡♣r❡s❡♥t t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♠♦✈❡s❀
✇❡ ♦♠✐t t❤❡ ❞✐r❡❝t✐♦♥❛❧ ♥♦t❛t✐♦♥ ✭✱❫ ❛♥❞
t❤❡ t❡r♠✐♥❛❧ ❛❝t✐♦♥ ❚✳ ❇❡❝❛✉s❡ ❛❧❧ ❦♥♦t
s❡q✉❡♥❝❡s ❡♥❞ ✇✐t❤ ❈� ❛♥❞ ❛❧t❡r♥❛t❡
❜❡t✇❡❡♥ ✭ ❛♥❞ ❫✱ ❛❧❧ ❦♥♦ts ♦❢ ♦❞❞ ♥✉♠✲
❜❡rs ♦❢ ♠♦✈❡s ❜❡❣✐♥ ✇✐t❤ ▲�✱ ✇❤❡r❡❛s t❤♦s❡
♦❢ ❡✈❡♥ ♥✉♠❜❡rs ♦❢ ♠♦✈❡s ❜❡❣✐♥ ✇✐t❤ ▲✁✳

❖✉r s✐♠♣❧✐❢✐❡❞ r❛♥❞♦♠✲✇❛❧❦ ♥♦t❛t✐♦♥ ✐s
t❤❡r❡❢♦r❡ ✉♥✐q✉❡✳
❚❤❡ s✐③❡ ♦❢ ❛ ❦♥♦t✱ ❛♥❞ t❤❡ ♣r✐♠❛r②

♣❛r❛♠❡t❡r ❜② ✇❤✐❝❤ ✇❡ ❝❧❛ss✐❢② ✐t✱ ✐s t❤❡
♥✉♠❜❡r ♦❢ ♠♦✈❡s ✐♥ t❤❡ ❦♥♦t s❡q✉❡♥❝❡✱
❞❡♥♦t❡❞ ❜② t❤❡ ❤❛❧❢✲✇✐♥❞✐♥❣ ♥✉♠❜❡r ✑✳ ❚❤❡
✐♥✐t✐❛❧ ❛♥❞ t❡r♠✐♥❛❧ s❡q✉❡♥❝❡s ❞✐❝t❛t❡ t❤❛t
t❤❡ s♠❛❧❧❡st ❦♥♦t ✐s ❣✐✈❡♥ ❜② t❤❡ s❡q✉❡♥❝❡
▲�❘✁❈�❚✱ ✇✐t❤ ✑✹✸✳ Pr❛❝t✐❝❛❧ ❝♦♥s✐❞❡r❛✲
t✐♦♥s ✭♥❛♠❡❧② t❤❡ ❢✐♥✐t❡ ❧❡♥❣t❤ ♦❢ t❤❡ t✐❡✮✱ ❛s
✇❡❧❧ ❛s ❛❡st❤❡t✐❝ ♦♥❡s✱ s✉❣❣❡st ❛♥ ✉♣♣❡r
❜♦✉♥❞ ♦♥ ❦♥♦t s✐③❡✱ s♦ ✇❡ ❧✐♠✐t ♦✉r ❡①❛❝t
r❡s✉❧ts t♦ ✑➔✾✳
❚❤❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢

s✐③❡✱ ✥✭✑✮✱ ❝♦rr❡s♣♦♥❞s t♦ t❤❡ ♥✉♠❜❡r ♦❢
✇❛❧❦s ♦❢ ❧❡♥❣t❤ ✑ ❜❡❣✐♥♥✐♥❣ ✇✐t❤ ✤❫ ❛♥❞ ❡♥❞✲
✐♥❣ ✇✐t❤ ✢❫ ✤❫ ✣❫ ♦r ✤❫ ✢❫ ✣❫✳ ■t ♠❛② ❜❡ ✇r✐tt❡♥

✥✭✑✮✹✭✎✴✸✮✭✷✦✷✧✂✭✂✎✮✦✷✧✮

✇❤❡r❡ ✥✭✎✮✹✵✱ ❛♥❞ t❤❡ t♦t❛❧ ♥✉♠❜❡r ♦❢
❦♥♦ts ✐s ➲★✄✩✪ ✥✭✗✮✹✽✺✳

❚❤❡ s❤❛♣❡ ♦❢ ❛ ❦♥♦t ❞❡♣❡♥❞s ♦♥ t❤❡
♥✉♠❜❡r ♦❢ r✐❣❤t✱ ❝❡♥tr❡ ❛♥❞ ❧❡❢t ♠♦✈❡s ✐♥
t❤❡ t✐❡ s❡q✉❡♥❝❡✳ ❇❡❝❛✉s❡ s②♠♠❡tr② ❞✐❝t❛t❡s
t❤❛t t❤❡r❡ ❜❡ ❛♥ ❡q✉❛❧ ♥✉♠❜❡r ♦❢ r✐❣❤t ❛♥❞
❧❡❢t ♠♦✈❡s ✭s❡❡ ❜❡❧♦✇✮✱ t❤❡ s❤❛♣❡ ♦❢ ❛ ❦♥♦t
✐s ❝❤❛r❛❝t❡r✐③❡❞ ❜② t❤❡ ♥✉♠❜❡r ♦❢ ❝❡♥tr❡
♠♦✈❡s ❣✳ ❲❡ ✉s❡ ✐t t♦ ❝❧❛ss✐❢② ❦♥♦ts ♦❢ ❡q✉❛❧
s✐③❡ ✑❀ ❦♥♦ts ✇✐t❤ ✐❞❡♥t✐❝❛❧ ✑ ❛♥❞ ❣ ❜❡❧♦♥❣
t♦ t❤❡ s❛♠❡ ❝❧❛ss✳ ❆ ❧❛r❣❡ ❝❡♥tr❡ ❢r❛❝t✐♦♥ ❣✴✑
✐♥❞✐❝❛t❡s ❛ ❜r♦❛❞ ❦♥♦t ✭s✉❝❤ ❛s t❤❡ ❲✐♥❞✲
s♦r✮ ❛♥❞ ❛ s♠❛❧❧ ❝❡♥tr❡ ❢r❛❝t✐♦♥ s✉❣❣❡sts ❛
♥❛rr♦✇ ♦♥❡ ✭s✉❝❤ ❛s t❤❡ ❢♦✉r✲✐♥✲❤❛♥❞✮✱ ❜✉t
♥♦t ❛❧❧ ❝❡♥tr❡ ❢r❛❝t✐♦♥s ❛❧❧♦✇ ❛❡st❤❡t✐❝
❦♥♦ts✳ ❲❡ t❤❡r❡❢♦r❡ ❧✐♠✐t ♦✉r ❛tt❡♥t✐♦♥ t♦
✎✴✹➔ ❣✴✑➔ ✎✴✷✳
❚❤❡ ♥✉♠❜❡r ♦❢ ❦♥♦ts ✐♥ ❛ ❝❧❛ss✱ ✥✭✑✱ ❣✮✱

✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❡ ♥✉♠❜❡r ♦❢ ✇❛❧❦s ♦❢
❧❡♥❣t❤ ✑ t❤❛t s❛t✐s❢② t❤❡ ❜♦✉♥❞❛r② ❝♦♥❞✐✲
t✐♦♥s ❛♥❞ ❝♦♥t❛✐♥ ❣ st❡♣s ✣❫❀ ✐t ❛♣♣❡❛rs ❛s

✥✭✑✱ ❣✮✹✷☎✆✩✫✑✶❣✝✷✬
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▲ ✾ ▲

✿

❀

❁

✿ ❀

❁
➇ ➈

➉

✼

❂ ❃

❄❅❇❉❊ ● ➊➋➌➍➎➋➍ ➏➐ ➍ ➏➋ ➑➒➓➍➌
❤ ❍ ❍■❤ ❏❑❤▼ ❍◆ s ❖ ◗❙❯❱ ❲❱❳❨❱❩❬❱
❭ ❪ ❴❵❭❭ ❪ ❴ ❴ ❜❞❢❥❦❞♠
♥ ❪ ❴❵♦♣ ❪ q❪ ❪ t✈❨✇①③❩①④❙❩⑥ ❜❥❢❞ ❜❥❦❞♠
♣ ♦ ❴❵♥❴ ♦ q❪ ❴ ⑦✇❙⑧⑧ ⑨❩✈⑧ ❜❞❦❥❢❞❜❥❦❞ ♠
⑩ ♦ ❴❵❭❭ ♥ ❴ ❴ ❶❙❷❸①❹③❩⑥❺✈✇ ❜❥❢❞❦❥❜❞❢❥❦❞♠
❻ ♦ ❴❵♦❼ ⑩ q❪ ❪ ❜❞❢❥❜❞❦❥❢❞❜❥❦❞♠
❻ ❭ ❴❵♥❭ ♥ ❴ ❪ ❜❞❦❥❢❞❦❥❜❞ ❢❥❦❞ ♠
❽ ♦ ❴❵♦♣ ❽ ❴ ♦ ❜❥❢❞ ❜❥❦❞❢❥❜❞❢❥❦❞♠
❽ ❭ ❴❵❭❽ ❪♦ q❪ ❴ ❹③❩⑥❺✈✇ ❜❥❦❞❢❥❜❞❦❥❢❞❜❥❦❞♠
❼ ❭ ❴❵❭❭ ♦♥ ❴ ❴ ❜❞❢❥❦❞❜❥❢❞❦❥❜❞❢❥❦❞♠
❼ ♥ ❴❵♥♥ ❽ q❪ ♦ ❜❞❦❥❢❞❦❥❜❞❦❥❢❞ ❜❥❦❞♠
❾❿➀➁➂ ➃➄➅ ➆➇➃➄➃➆➁➅➄➈➉➅➊ ➋➌ ➇➃➍➎➏➐➈❿➊➈❿➑ ❿➒➓➋➅➄ →➣ ➆➅❿➁➄➅ ❿➒➓➋➅➄ ↔➣ ➆➅❿➁➄➅ ➎➄➃➆➁➈➀❿ ↔↕→➣ ➙❿➀➁➂ ➛➅➄ ➆➍➃➂➂ ➜➝→➣ ↔➞➣
➂➌➓➓➅➁➄➌ ➟➣ ➋➃➍➃❿➆➅ ➠➣ ❿➃➓➅ ➃❿➊ ➂➅➡➒➅❿➆➅➢

“Designing tie knots by random walks”
Fink and Mao,
Nature, 398, 31–32, 1999. [1]

FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 

a, The two ways of beginning a knot, L! and L". For knots beginning with L!, the tie must begin 

inside-out. b, The four-in-hand, denoted by the sequence L"  R!  L"  C! T. c, A knot may be represented 

by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the

walk ll
^̂
rr^̂ ll

^̂
cc^̂.

Passive end Active end

L · L !

L

R

C

L
R
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a c

b

c

l r

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/fink1999a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/fink1999a.pdf
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Applied knot theory:
Table 1 Aesthetic tie knots

h # #/h K(h, #) s b Name Sequence

3 1 0.33 1 0 0 L! R" C! T

4 1 0.25 1 $1 1 Four-in-hand L" R! L" C! T

5 2 0.40 2 $1 0 Pratt knot L! C" R! L" C! T

6 2 0.33 4 0 0 Half-Windsor L" R! C" L! R" C! T

7 2 0.29 6 $1 1 L! R" L! C" R! L" C! T

7 3 0.43 4 0 1 L! C" R! C" L! R" C! T

8 2 0.25 8 0 2 L" R! L" C! R" L! R" C! T

8 3 0.38 12 $1 0 Windsor L" C! R" L! C" R! L" C! T

9 3 0.33 24 0 0 L! R" C! L" R! C" L! R" C! T

9 4 0.44 8 $1 2 L! C" R! C" L! C" R! L" C! T

Knots are characterized by half-winding number h, centre number #, centre fraction #/h, knots per class K(h, #),

symmetry s, balance b, name and sequence.

 ℎ = number of
moves

 𝛾 = number of
center moves

 𝐾(ℎ, 𝛾) =2𝛾−1(ℎ−𝛾−2𝛾−1 )
 𝑠 = ∑ℎ𝑖=1 𝑥𝑖 where 𝑥 = -1

for 𝐿 and +1 for 𝑅.

 𝑏 = 12 ∑ℎ−1𝑖=2 |𝜔𝑖+𝜔𝑖−1|
where 𝜔 = ±1
represents winding
direction.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Irregular verbs
Cleaning up the code that is English:

LETTERS

Quantifying the evolutionary dynamics of language
Erez Lieberman1,2,3*, Jean-Baptiste Michel1,4*, Joe Jackson1, Tina Tang1 & Martin A. Nowak1

Human language is based on grammatical rules1–4. Cultural evolu-
tion allows these rules to change over time5. Rules compete with
each other: as new rules rise to prominence, old ones die away. To
quantify the dynamics of language evolution, we studied the regu-
larization of English verbs over the past 1,200 years. Although an
elaborate system of productive conjugations existed in English’s
proto-Germanic ancestor, Modern English uses the dental suffix,
‘-ed’, to signify past tense6. Here we describe the emergence of this
linguistic rule amidst the evolutionary decay of its exceptions,
known to us as irregular verbs. We have generated a data set of
verbs whose conjugations have been evolving for more than a
millennium, tracking inflectional changes to 177 Old-English
irregular verbs. Of these irregular verbs, 145 remained irregular
in Middle English and 98 are still irregular today. We study how
the rate of regularization depends on the frequency of word usage.
The half-life of an irregular verb scales as the square root of its
usage frequency: a verb that is 100 times less frequent regularizes
10 times as fast. Our study provides a quantitative analysis of the
regularization process by which ancestral forms gradually yield to
an emerging linguistic rule.

Natural languages comprise elaborate systems of rules that enable
one speaker to communicate with another7. These rules serve to
simplify the production of language and enable an infinite array of
comprehensible formulations8–10. However, each rule has exceptions,
and even the rules themselves wax and wane over centuries and
millennia11,12. Verbs that obey standard rules of conjugation in their
native language are called regular verbs13. In the Modern English
language, regular verbs are conjugated into the simple past and
past-participle forms by appending the dental suffix ‘-ed’ to the
root (for instance, infinitive/simple past/past participle: talk/talked/
talked). Irregular verbs obey antiquated rules (sing/sang/sung) or, in
some cases, no rule at all (go/went)14,15. New verbs entering English
universally obey the regular conjugation (google/googled/googled),
and many irregular verbs eventually regularize. It is much rarer for
regular verbs to become irregular: for every ‘sneak’ that ‘snuck’ in16,
there are many more ‘flews’ that ‘flied’ out.

Although less than 3% of modern verbs are irregular, the ten most
common verbs are all irregular (be, have, do, go, say, can, will, see,
take, get). The irregular verbs are heavily biased towards high fre-
quencies of occurrence17,18. Linguists have suggested an evolutionary
hypothesis underlying the frequency distribution of irregular verbs:
uncommon irregular verbs tend to disappear more rapidly because
they are less readily learned and more rapidly forgotten19,20.

To study this phenomenon quantitatively, we studied verb inflec-
tion beginning with Old English (the language of Beowulf, spoken
around AD 800), continuing throughMiddle English (the language of
Chaucer’s Canterbury Tales, spoken around AD 1200), and ending
withModern English, the language as it is spoken today. Themodern
‘-ed’ rule descends from Old English ‘weak’ conjugation, which

applied to three-quarters of all Old English verbs21. The excep-
tions—ancestors of the modern irregular verbs—were mostly
members of the so-called ‘strong’ verbs. There are seven different
classes of strong verbs with exemplars among the Modern English
irregular verbs, each with distinguishing markers that often include
characteristic vowel shifts. Although stable coexistence of multiple
rules is one possible outcome of rule dynamics, this is not what
occurred in English verb inflection22. We therefore define regularity
with respect to the modern ‘-ed’ rule, and call all these exceptional
forms ‘irregular’.

We consulted a large collection of grammar textbooks describing
verb inflection in these earlier epochs, and hand-annotated every
irregular verb they described (see Supplementary Information).
This provided us with a list of irregular verbs from ancestral
forms of English. By eliminating verbs that were no longer part of
Modern English, we compiled a list of 177 Old English irregular
verbs that remain part of the language to this day. Of these 177 Old
English irregulars, 145 remained irregular in Middle English and 98
are still irregular in Modern English. Verbs such as ‘help’, ‘grip’ and
‘laugh’, which were once irregular, have become regular with the
passing of time.

Next we obtained frequency data for all verbs by using the CELEX
corpus, which contains 17.9million words from a wide variety of
textual sources23. For each of our 177 verbs, we calculated the fre-
quency of occurrence among all verbs. We subdivided the frequency
spectrum into six logarithmically spaced bins from 1026 to 1.
Figure 1a shows the number of irregular verbs in each frequency
bin. There are only two verbs, ‘be’ and ‘have’, in the highest frequency
bin, with mean frequency .1021. Both remain irregular to the pre-
sent day. There are 11 irregular verbs in the second bin, with mean
frequency between 1022 and 1021. These 11 verbs have all remained
irregular fromOld English toModern English. In the third bin, with a
mean frequency between 1023 and 1022, we find that 37 irregular
verbs of Old English all remained irregular in Middle English, but
only 33 of them are irregular in Modern English. Four verbs in this
frequency range, ‘help’, ‘reach’, ‘walk’ and ‘work’, underwent regu-
larization. In the fourth frequency bin, 1024 to 1023, 65 irregular
verbs of Old English have left 57 inMiddle and 37 inModern English.
In the fifth frequency bin, 1025 to 1024, 50 irregulars of Old English
have left 29 in Middle and 14 in Modern English. In the sixth fre-
quency bin, 1026 to 1025, 12 irregulars of Old English decline to 9 in
Middle and only 1 in Modern English: ‘slink’, a verb that aptly
describes this quiet process of disappearance (Table 1).

Plotting the number of irregular verbs against their frequency
generates a unimodal distribution with a peak between 1024 and
1023. This unimodal distribution again demonstrates that irregular
verbs are not an arbitrary subset of all verbs, because a random subset
of verbs (such as all verbs that contain the letter ‘m’) would follow
Zipf’s law, a power law with a slope of 20.75 (refs 24,25).

*These authors contributed equally to this work

1Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, 2Department of Applied Mathematics, Harvard University,

Cambridge, Massachusetts 02138, USA. 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
4Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
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language”
Lieberman et al.,
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 Exploration of how verbs
with irregular conjugation
gradually become regular
over time.

 Comparison of verb
behavior in Old, Middle, and
Modern English.

http://www.uvm.edu
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Irregular verbs
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 Universal tendency towards regular conjugation
 Rare verbs tend to be regular in the first place

http://www.uvm.edu
http://www.uvm.edu/pdodds


COcoNuTS

Random

Randomness

References

.
.
.
.
.

.
13 of 47

Irregular verbs

b

–0.51

–0.48

10–5 10–4 10–3

Frequency

10–2 10–1

10–1

Old to Modern English
Middle to Modern English

R
e
g

u
la

ri
z
a
ti
o

n
 r

a
te

1

 Rates are relative.
 The more common a verb is, the more resilient it

is to change.
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Irregular verbs

Table 1 | The 177 irregular verbs studied

Frequency

10−1
−1

10−2
−10−1

10−3
−10−2

10−4
−10−3

10−5
−10−4

10−6
−10−5

Verbs

be, have

come, do, find, get, give, go, know, say, see, take, think

begin, break, bring, buy, choose, draw, drink, drive, eat, fall, 

fight, forget, grow, hang, help, hold, leave, let, lie, lose, 

reach, rise, run, seek, set, shake, sit, sleep, speak, stand, 

teach, throw, understand, walk, win, work, write

arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, 

carve, chew, climb, cling, creep, dare, dig, drag, flee, float, 

flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, 

ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide, 

slip, smoke, spin, spring, starve, steal, step, stretch, strike, 

stroke, suck, swallow, swear, sweep, swim, swing, tear, 

wake, wash, weave, weep, weigh, wind, yell, yield

bark, bellow, bid, blend, braid, brew, cleave, cringe, crow, 

dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, 

milk, mourn, mow, prescribe, redden, reek, row, scrape, 

seethe, shear, shed, shove, slay, slit, smite, sow, span, 

spurn, sting, stink, strew, stride, swell, tread, uproot, wade, 

warp, wax, wield, wring, writhe

bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew, 

sup, wreak

Regularization (%)

0

0

10

43

72

91

Half-life (yr)

38,800

14,400

5,400

2,000

700

300

177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each

bin that have regularized. The half-life is shown in years. Verbs that have regularized are indicated in red. As wemove down the list, an increasingly large fraction of the verbs are red; the frequency-

dependent regularization of irregular verbs becomes immediately apparent.

 Red = regularized
 Estimates of half-life for regularization (∝ 𝑓1/2)
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 ‘Wed’ is next to go.
 -ed is the winning rule...
 But ‘snuck’ is sneaking up on sneaked. [3]
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Personality distributions:

A Theory of the Emergence,
Persistence, and Expression of
Geographic Variation in
Psychological Characteristics
Peter J. Rentfrow,1 Samuel D. Gosling,2 and Jeff Potter3

1University of Cambridge, 2University of Texas at Austin, and 3Atof Inc., Cambridge, MA

ABSTRACT—Volumes of research show that people in differ-

ent geographic regions differ psychologically. Most of that

work converges on the conclusion that there are geographic

differences in personality and values, but little attention has

been paid to developing an integrative account of how those

differences emerge, persist, and become expressed at the

geographic level. Drawing from research in psychology and

other social sciences, we present a theoretical account of

the mechanisms through which geographic variation in

psychological characteristics emerge and persist within

regions, and we propose a model for conceptualizing

the processes through which such characteristics become

expressed in geographic social indicators. The proposed

processes were examined in the context of theory and

research on personality traits. Hypotheses derived from the

model were tested using personality data from over half a

million U.S. residents. Results provided preliminary sup-

port for the model, revealing clear patterns of regional

variation across the U.S. and strong relationships between

state-level personality and geographic indicators of crime,

social capital, religiosity, political values, employment, and

health. Overall, this work highlights the potential insights

generated by including macrolevel perspectives within

psychology and suggests new routes to bridging theory and

research across several disciplines in the social sciences.

The past decade has witnessed an outpouring of exploratory

investigations concerned with national differences in person-

ality, values, subjective well-being, and self. Results from that

work converge on the conclusion that psychological character-

istics are geographically clustered across the globe. To facilitate

further progress in the field, we build on that work by developing

a theoretical account of how geographic psychological differ-

ences emerge and persist over time. Drawing on theory and

research in the social sciences, we also propose a framework for

conceptualizing the processes through which psychological

characteristics prevalent within regions become expressed on

geographic social indicators. Ultimately, this work seeks to (a)

advance theory and research on geographic psychological

differences by providing a model for developing and testing

hypotheses about such differences, (b) illuminate how studying

psychological characteristics at macro levels of analysis can

inform our understanding of basic psychological processes, and

(c) bridge theory and research on this topic across the social

sciences. As a first attempt toward achieving this ambitious goal,

we explore these general ideas in the context of theory and

research in personality.

GEOGRAPHIC VARIATION IN PERSONALITY

Variation Across Nations

Originally inspired by anthropological research on the psycho-

logical characteristics of individuals in preindustrialized and

industrialized societies (Benedict, 1934; Mead, 1935), psy-

chologists have long been interested in the psychological

characteristics that define and differentiate members of various

nations (e.g., Adorno, Frenkel-Brunswik, Levinson, & Sanford,

1950; Inkeles, Hanfmann, & Beier, 1958; Lewin, 1936). The

dominant theoretical framework underlying much of that work

was rooted in a psychoanalytic view in which personality was

seen as emanating from early life experiences and unconscious

motives. It was believed that core psychological characteristics

Address correspondence to Peter J. Rentfrow, Faculty of Social and

Political Sciences, University of Cambridge, Free School Lane,

Cambridge CB2 3RQ, United Kingdom; e-mail: pjr39@cam.ac.uk.

PERSPECTIVES ON PSYCHOLOGICAL SCIENCE
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“A Theory of the Emergence, Persistence, and
Expression of Geographic Variation in
Psychological Characteristics”
Rentfrow, Gosling, and Potter,
Perspectives on Psychological Science, 3,
339–369, 2008. [5]

Five Factor Model (FFM):

 Extraversion [E]

 Agreeableness [A]

 Conscientiousness [C]

 Neuroticism [N]

 Openness [O]

“...a robust and widely
accepted framework for
conceptualizing the
structure of personality...
Although the FFM is not
universally accepted in the
field...” [5]

A concern: self-reported
data.
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nations (e.g., Adorno, Frenkel-Brunswik, Levinson, & Sanford,

1950; Inkeles, Hanfmann, & Beier, 1958; Lewin, 1936). The

dominant theoretical framework underlying much of that work

was rooted in a psychoanalytic view in which personality was

seen as emanating from early life experiences and unconscious

motives. It was believed that core psychological characteristics

Address correspondence to Peter J. Rentfrow, Faculty of Social and

Political Sciences, University of Cambridge, Free School Lane,

Cambridge CB2 3RQ, United Kingdom; e-mail: pjr39@cam.ac.uk.

PERSPECTIVES ON PSYCHOLOGICAL SCIENCE

Volume 3—Number 5 339Copyrightr 2008 Association for Psychological Science

“A Theory of the Emergence, Persistence, and
Expression of Geographic Variation in
Psychological Characteristics”
Rentfrow, Gosling, and Potter,
Perspectives on Psychological Science, 3,
339–369, 2008. [5]

Five Factor Model (FFM):

 Extraversion [E]

 Agreeableness [A]

 Conscientiousness [C]

 Neuroticism [N]

 Openness [O]

“...a robust and widely
accepted framework for
conceptualizing the
structure of personality...
Although the FFM is not
universally accepted in the
field...” [5]

A concern: self-reported
data.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/everything/rentfrow2008a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/rentfrow2008a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/rentfrow2008a.pdf
http://www.uvm.edu/pdodds/research/papers/others/everything/rentfrow2008a.pdf
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Agreeableness:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Conscientiousness:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Extraversion:

http://www.uvm.edu
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Openness

http://www.uvm.edu
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Neuroticism:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Limits of testability and happiness in Science:
From A Fight for the soul of Science in Quanta
Magazine (2016/02):

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://www.quantamagazine.org/20151216-physicists-and-philosophers-debate-the-boundaries-of-science/
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Europe:

 Many errors called out in comments. Why hasn’t
this been done well?

http://www.uvm.edu
http://www.uvm.edu/pdodds
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John Conway’s Doomsday rule for determining
a date’s day of the week:

 Works for Gregorian (1582–, haphazardly) and the
increasingly inaccurate Julian calendars (400 and 28
years cycles).

 Apparently inspired by Lewis Carroll’s work on a
perpetual calendar.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Doomsday_rule
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Outline:
 Determine “anchor day” for a given century, then find

Doomsday for a given year in that century.

 Remember special Doomsday dates and work from
there.

 Naturally: Load this year’s Doomsday into brain.

Century’s anchor day (Gregorian, Sunday ≡ 0):5 × (⌊𝑌 𝑌 𝑌 𝑌100 ⌋ mod 4) mod 7 + Tuesday

Offset:(365𝑌 𝑌 + ⌊𝑌 𝑌4 ⌋) mod 7 = (𝑌 𝑌 + ⌊𝑌 𝑌4 ⌋) mod 7

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Memorable Doomsdays:

 Pi day (March 14), July 4, Halloween, and Boxing Day
are always Doomsdays.

http://www.uvm.edu
http://www.uvm.edu/pdodds
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The bissextile year
“The Julian calendar, which was developed in 46 BC by Julius
Caesar, and became effective in 45 BC, distributed an extra
ten days among the months of the Roman Republican
calendar. Caesar also replaced the intercalary month by a
single intercalary day, located where the intercalary month
used to be. To create the intercalary day, the existing ante
diem sextum Kalendas Martias (February 24) was doubled,
producing ante diem bis sextum Kalendas Martias. Hence,
the year containing the doubled day was a bissextile (bis
sextum, ”twice sixth”) year. For legal purposes, the two
days of the bis sextum were considered to be a single day,
with the second half being intercalated; but in common
practice by 238, when Censorinus wrote, the intercalary day
was followed by the last five days of February, a. d. VI, V, IV,
III and pridie Kal. Mart. (the days numbered 24, 25, 26, 27,
and 28 from the beginning of February in a common year),
so that the intercalated day was the first half of the doubled
day. Thus the intercalated day was effectively inserted
between the 23rd and 24th days of February.”

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Leap_year#Leap_day
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The Teletherm, an early conception:
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 Hibernal Teletherm ≈ February 4.
 Halfway between Winter Solstice and Spring

Equinox
 Bonus: Groundhog Day, Imbolc, …
 Aesteval Teletherm ≈ July 19 (164 days later).

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://en.wikipedia.org/wiki/Groundhog_Day
http://en.wikipedia.org/wiki/Imbolc
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In review: “Tracking the Teletherms: The spatiotemporal
dynamics of the hottest and coldest days of the year”,
Dodds, Mitchell, Reagan, and Danforth.

A. Hottest Summer Teletherm: B. Coldest Winter Teletherm:
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 2 × 1218 similar figures for the US.

 6000ish pages of Supplementary Information (all
figures)

 Interactive website.

http://www.uvm.edu
http://www.uvm.edu/pdodds
http://arxiv.org/abs/1508.05938
http://arxiv.org/abs/1508.05938
http://panometer.org/instruments/teletherms/
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A. Earliest Summer Teletherm: B. Earliest Winter Teletherm:
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C. Latest Summer Teletherm: D. Latest Winter Teletherm:
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A. Summer Teletherms for 1853–2012:
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B. Winter Teletherms for 1853–2011:
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A. 50 year Summer Teletherm shifts for 1963–2012 relative to 1913–1962:
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B. 50 year Winter Teletherm shifts for 1962–2011 relative to 1912–1961:
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Homo nonprobabilisticus, continued:
 Important detour: The final digits of primes are not

entirely random (how did we not know this?).

 Start flipping a coin ...

 Two tosses: What are the probabilities of flipping (1)𝐻𝐻 and (2) 𝐻𝑇 ?

 Flip a coin 𝑛 ≥ 2 times: What are the probabilities that
the last two tosses are (1) 𝐻𝐻 or (2) 𝐻𝑇 ?

 Estimate: On average, how many flips does it take to
first see the sequence 𝐻𝑇 ?

 Estimate: On average, how many flips does it take to
first see the sequence 𝐻𝐻?

 What’s the probability of first flipping a 𝐻𝑇 sequence
on the 𝑛 − 1th and 𝑛th flips?

 What’s the probability of first flipping two heads in a
row (𝐻𝐻) on the (𝑛 − 1)th and 𝑛th flips?

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://www.quantamagazine.org/20160313-mathematicians-discover-prime-conspiracy/
https://www.quantamagazine.org/20160313-mathematicians-discover-prime-conspiracy/
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 Start flipping a coin ...

 Two tosses: What are the probabilities of flipping (1)𝐻𝐻 and (2) 𝐻𝑇 ?

 Flip a coin 𝑛 ≥ 2 times: What are the probabilities that
the last two tosses are (1) 𝐻𝐻 or (2) 𝐻𝑇 ?

 Estimate: On average, how many flips does it take to
first see the sequence 𝐻𝑇 ?

 Estimate: On average, how many flips does it take to
first see the sequence 𝐻𝐻?

 What’s the probability of first flipping a 𝐻𝑇 sequence
on the 𝑛 − 1th and 𝑛th flips?

 What’s the probability of first flipping two heads in a
row (𝐻𝐻) on the (𝑛 − 1)th and 𝑛th flips?

http://www.uvm.edu
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Homo nonprobabilisticus, continued:

2 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

Number of flips
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b
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HH

HT

Average number of flips: 4 and 6.
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Universal numbers

From here.

 Accidents of evolution1 give us
5 + 5 = 10 fingers and hence
base 10.

 We could be happy with base 6,
8, 12, …

 We like these:
 60 seconds in a minute
 60 minutes in an hour.
 2 × 12 = 24 hours in a day.
 360 degrees in a circle.

1Maybe 5 fingers are not an accident

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Maggie_Simpson
http://www.science20.com/mark_changizi/why_do_we_have_ten_fingers
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We’ve liked these kinds of numbers for a long
time:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

 2000 BC: Babylonian base 60/Sexagesimal system.

 Other bases (or radices): 2, 10, 12
(duodecimal/dozenal), 6 (senary), 8, 16, 20
(vigesimal), 60.

By Josell7 — File:Babylonian_numerals.jpg, GFDL,

https://commons.wikimedia.org/w/index.php?curid=9862983

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Babylonian_numerals
https://en.wikipedia.org/wiki/Babylonian_numerals
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Duodecimal
https://commons.wikimedia.org/w/index.php?curid=9862983
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Highly composite numbers:

0 10 20
n

divisors 0 10 20
n

30 divisors1246

10 12

20 24

30 36

40
48

50
60

60

70 72

8080 84
9090
96

100100
108

110 112

120
120

126

130 132

140140 144

150150
156
160160

168
170

180
180

190 192

200
210210
216

220

230
240

240

250 252

260 264

270270
280280

288

290
300300

310 312

320320 324

330330
336

340

350
360

360

370

380

390
396

400

410
420420

430 432

440
450450

460
468

470
480480

490

500

504

510

520
528

530
540540

550
560560

570
576

580
588

590
600600

610 612

620 624

630630

640
648

650
660660

670 672

680 684

690
700700

710
720

720

730

740

750
756

760

770
780780

790 792

800

810

820

830
840

840

850

860 864

870

880

890
900900

910

920 924

930
936

940

950
960960

970

980
990990

1000

 HCN = natural
number with
more divisors
than any smaller
natural number.

 2, 4, 6, 12, 24, 36,
48, 60, 120, 180,
240, 360, 720, 840,
1260, 1680, 2520,
5040 (Plato’s
optimal city
population), …

 OEIS sequence
A002182

By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Highly_composite_number
https://en.wikipedia.org/wiki/5040_(number)#Philosophy
https://en.wikipedia.org/wiki/5040_(number)#Philosophy
https://oeis.org/A002182
https://oeis.org/A002182
https://commons.wikimedia.org/w/index.php?curid=31684018
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Superior highly composite numbers:

 SHCN = natural number 𝑛 whose number of divisors
exceeds that of any other number when scaled relative
to itself in a sneaky way:𝑑(𝑛)𝑛𝜖 ≥ 𝑑(𝑗)𝑗𝜖 and

𝑑(𝑛)𝑛𝜖 > 𝑑(𝑘)𝑘𝜖
for 𝑗 < 𝑛 < 𝑘 and some 𝜖 > 0.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Superior_highly_composite_number
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There’s more: Superabundant numbers

 𝑛 is superabundant if:𝜎1(𝑛)𝑛 > 𝜎1(𝑗)𝑗
for 𝑗 < 𝑛 and where 𝜎𝑥(𝑛) = ∑𝑑|𝑛 𝑑𝑥 is the divisor
function.

 449 numbers are both superabundant and highly
composite.

Yet more: Colossally abundant numbers:

 𝑛 is colossally abundant if for all 𝑗 and some 𝜖 > 0:𝜎1(𝑛)𝑛1+𝜖 ≥ 𝜎1(𝑗)𝑗1+𝜖
 Infinitely many but only 22 less than 1018.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Superabundant_number
https://en.wikipedia.org/wiki/Colossally_abundant_number


COcoNuTS

Random

Randomness

References

.
.
.
.
.

.
42 of 47

Some very, very silly units of measurement
courtesy of the Imperial system:
 22 yards in a chain = 1 cricket pitch, 100 links in a

chain, 10 chains in a furlong, 80 chains in a mile.
 1 acre = 1 furlong × 1 chain = 43,560 square feet.
 160 fluid ounces in a gallon.
 14 pounds in a stone.
 Hundredweight = 112 pounds.

Also:
 Fahrenheit, Celcius, and Kelvin.
 The entire metric system.

http://www.uvm.edu
http://www.uvm.edu/pdodds
https://en.wikipedia.org/wiki/Imperial_units
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Training with stories as fuel:

http://www.uvm.edu
http://www.uvm.edu/pdodds
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Randomness:
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