Curious and Interesting Things

Last updated: 2018/03/23, 20:59:06

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Random References

COCONUTS

Dac 1 of 47

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS

Random Randomness References

990 2 of 47

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

Random Randomness References

COCONUTS

990 3 of 47

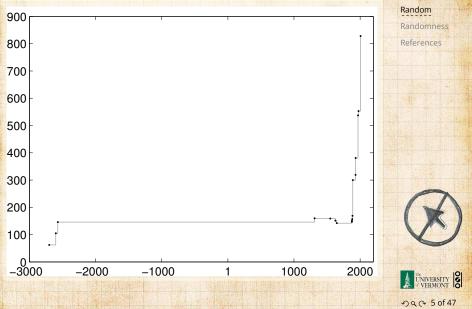
Outline

COcoNuTS

Random Randomness References

Random

Randomness


References

A CIT

990 4 of 47

What's this?

COcoNuTS

Advances in sociotechnical algorithms:

"Mastering the game of Go with deep neural networks and tree search" Silver and Silver, Nature, **529**, 484–489, 2016.^[6] COcoNuTS

Random Randomness

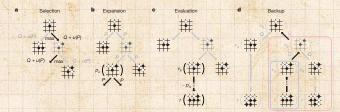
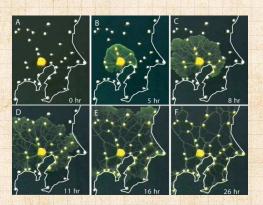


Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation traverses the tree by selecting the day with anximum action value Q, plus a bonus *u*(P) that depends on a stored prior probability P for that degle, b, The leaf node may be expanded; the new node is processed once by the policy network p₀ and the output probabilities are stored as prior probabilities P for each action c, the end of a simulation, the leaf node is evaluated in two ways: using the value network v_{0} and by running a rollout to the end of the game with the fast rollout policy p_{n} , then computing the winner with function r, **d**, Action values Q are updated to track the mean value of all evaluations r(3) and $v_{0}(3)$ in the subtree below that action.

Nature News (2016): Digital Intuition
 Wired (2012): Network Science of the game of Go



THE UNKNOWN MECHANISM And an and a second sec

"Rules for Biologically Inspired Adaptive Network Design" Tero et al., Science, **327**, 439-442, 2010.^[7] COcoNuTS

Random Randomness

References

Urban deslime in action: https://www.youtube.com/watch?v=GwKuFREOgmo

HE UNKNOWN

Dac 7 of 47

"Citations to articles citing Benford's law: A Benford analysis" Tariq Ahmad Mir, Preprint available at http://arxiv.org/abs/1602.01205, 2016.^[4]

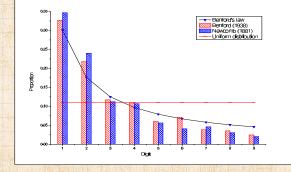


Fig. 1: The observed proportions of first digits of citations received by the articles citing FB and SN on September 30, 2012. For comparison the proportions expected from BL and uniform distributions are also shown.

COcoNuTS

Random Randomness References

990 8 of 47

Applied knot theory:

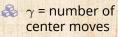
"Designing tie knots by random walks" C Fink and Mao, Nature, **398**, 31–32, 1999.^[1]

Figure 1 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. **a**, The two ways of beginning a knot, $L_{\rm o}$ and $L_{\rm o}$. For knots beginning with $L_{\rm or}$, the tie must begin inside-out. **b**, The fourin-hand, denoted by the sequence $L_{\rm o}$ R_o $L_{\rm o}$ C₀ T. **c**, A knot may be represented by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the walk 1116. COcoNuTS

Random Randomness References

9 a @ 9 of 47

Applied knot theory:


Table 1 Aesthetic tie knots

h	γ	γ/h	K(h, γ)	S	b	Name	Sequence	
3	1	0.33	1	0	0		L _☉ R _⊗ C _☉ T	
4	1	0.25	1	- 1	1	Four-in-hand	L _o R _o L _o C _o T	
5	2	0.40	2	- 1	0	Pratt knot	$L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
6	2	0.33	4	0	0	Half-Windsor	$L_{\otimes}R_{\odot}C_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
7	2	0.29	6	- 1	1		$L_{\odot}R_{\otimes}L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
7	3	0.43	4	0	1		$L_{\odot}C_{\otimes}R_{\odot}C_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
8	2	0.25	8	0	2		$L_{\otimes}R_{\odot}L_{\otimes}C_{\odot}R_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
8	3	0.38	12	- 1	0	Windsor	$L_{\otimes}C_{\odot}R_{\otimes}L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	
9	3	0.33	24	0	0		$L_{\odot}R_{\otimes}C_{\odot}L_{\otimes}R_{\odot}C_{\otimes}L_{\odot}R_{\otimes}C_{\odot}T$	
9	4	0.44	8	- 1	2		$L_{\odot}C_{\otimes}R_{\odot}C_{\otimes}L_{\odot}C_{\otimes}R_{\odot}L_{\otimes}C_{\odot}T$	

Knots are characterized by half-winding number h, centre number γ , centre fraction γ/h , knots per class $K(h, \gamma)$, symmetry s, balance b, name and sequence.

h = number of moves

22

 $K(h,\gamma) = \frac{1}{2^{\gamma-1} \binom{h-\gamma-2}{\gamma-1}}$

 $s = \sum_{i=1}^{h} x_i \text{ where } x = -1$ for *L* and +1 for *R*.

 $b = \frac{1}{2} \sum_{i=2}^{h-1} |\omega_i + \omega_{i-1}|$ where $\omega = \pm 1$ represents winding
direction.

COcoNuTS

Random Randomness References

990 10 of 47

Cleaning up the code that is English:

WODD

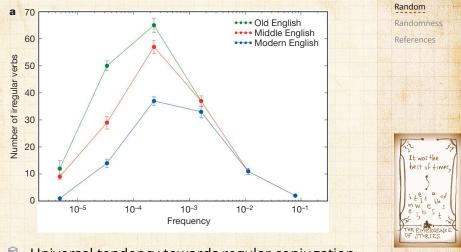
"Quantifying the evolutionary dynamics of language" Lieberman et al., Nature, 449, 713-716, 2007. [2]

Random References

it was the best of times

UNIVERSITY

over time. Non-toxic DNA


Exploration of how verbs with irregular conjugation gradually become regular

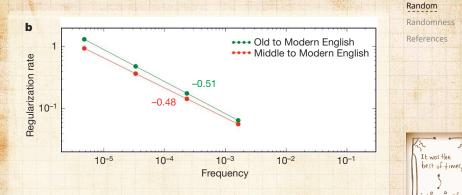
🚳 Comparison of verb behavior in Old, Middle, and Modern English.

DQ @ 11 of 47

COCONUTS

COcoNuTS

Universal tendency towards regular conjugation
 Rare verbs tend to be regular in the first place


VERMONT

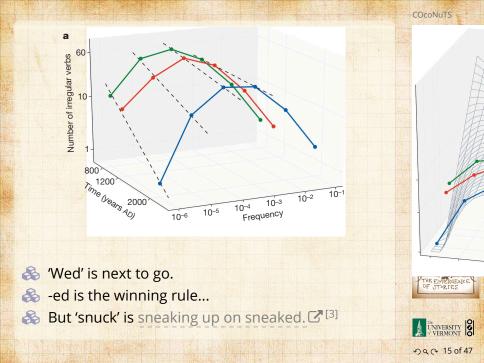
200 12 of 47

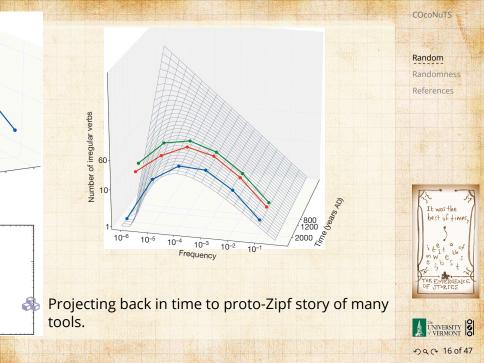
COcoNuTS

STORIES.

VERMONT SITY

🗞 Rates are relative.


The more common a verb is, the more resilient it is to change.


Table 1 | The 177 irregular verbs studied

Frequency	Verbs	Regularization (%)	Half-life (yr)	
10-1-1	be, have	0	38,800	
10-2-10-1	come, do, find, get, give, go, know, say, see, take, think	0	14,400	
10-3-10-2	begin, break, bring, buy, choose, draw, drink, drive, eat, fall, fight, forget, grow, hang, help, hold, leave, let, lie, lose,	10	5,400	
	reach, rise, run, seek, set, shake, sit, sleep, speak, stand, teach, throw, understand, walk, win, work, write			
10-4-10-3	arise, bake, bear, beat, bind, bite, blow, bow, burn, burst, carve, chew, climb, cling, creep, dare, dig, drag, flee, float,	43	2,000	
	flow, fly, fold, freeze, grind, leap, lend, lock, melt, reckon, ride, rush, shape, shine, shoot, shrink, sigh, sing, sink, slide,			
	slip, smoke, spin, spring, starve, steal, step, stretch, strike, stroke, suck, swallow, swear, sweep, swim, swing, tear,			
10-5-10-4	wake, wash, weave, weep, weigh, wind, yell, yield bark, bellow, bid, blend, braid, brew, cleave, cringe, crow,	72	700	
	dive, drip, fare, fret, glide, gnaw, grip, heave, knead, low, milk, mourn, mow, prescribe, redden, reek, row, scrape,			
	seethe, shear, shed, shove, slay, slit, smite, sow, span, spurn, sting, stink, strew, stride, swell, tread, uproot, wade,			
10-6-10-5	warp, wax, wield, wring, writhe bide, chide, delve, flay, hew, rue, shrive, slink, snip, spew,	91	300	

177 Old English irregular verbs were compiled for this study. These are arranged according to frequency bin, and in alphabetical order within each bin. Also shown is the percentage of verbs in each bin that have regularized. The hall-life is shown in years. Verbs that have regularized are indicated in red. As we move down the list, an increasingly large fraction of the verbs are red; the frequencydependent regularization of irregular verbs becomes immediately appornt.

Red = regularized Estimates of half-life for regularization ($\propto f^{1/2}$)

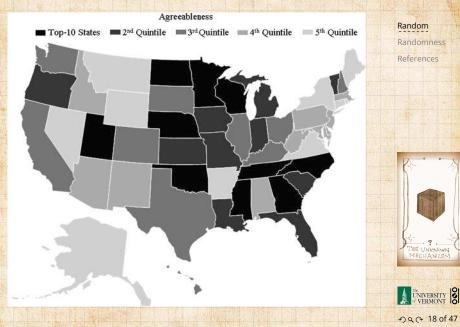
Personality distributions:

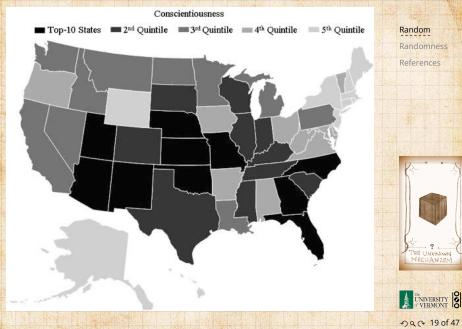
A Theory of the Emergence, Percience, and Expression of Groupspike Variation in Percience and the Section of Section Percent and Section of Section of Section Section of Section of Section of Section of Section of Section Section of Section o "A Theory of the Emergence, Persistence, and Expression of Geographic Variation in Psychological Characteristics" Rentfrow, Gosling, and Potter, Perspectives on Psychological Science, **3**, 339–369, 2008. ^[5]

Five Factor Model (FFM): Extraversion [E] Agreeableness [A] Conscientiousness [C] Neuroticism [N] Openness [O] "...a robust and widely accepted framework for conceptualizing the structure of personality... Although the FFM is not universally accepted in the field..."^[5]

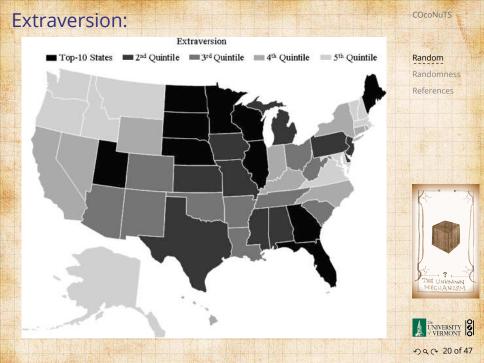
A concern: self-reported data.

COcoNuTS

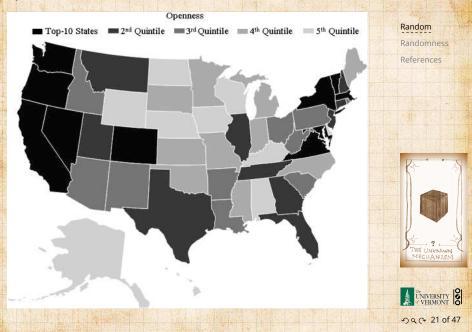

Random Randomness References



Agreeableness:



Conscientiousness:



COcoNuTS



Openness

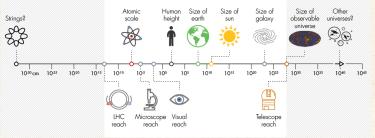
Neuroticism:

COcoNuTS

Randomness

References

Limits of testability and happiness in Science: From A Fight for the soul of Science I in Quanta Magazine (2016/02):


Random Randomness

COCONUTS

References

The Ends of Evidence

Humans can probe the universe over a vast range of scales (white area), but many modern physics theories involve scales outside of this range (grey).

Europe:

COcoNuTS

Random Randomness

References

Many errors called out in comments. Why hasn't this been done well?

na a 24 of 47

John Conway's Doomsday rule C for determining a date's day of the week:

Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.	Sun.
1898	1899	1900	1901	1902	1903		1904	1905	1906	1907	→	1908	1909
1910	1911	→	1912	1913	1914	1915		1916	1917	1918	1919	→	1920
1921	1922	1923	->	1924	1925	1926	1927	→	1928	1929	1930	1931	->
1932	1933	1934	1935		1936	1937	1938	1939	→	1940	1941	1942	1943
→	1944	1945	1946	1947		1948	1949	1950	1951	->	1952	1953	1954
1955	→	1956	1957	1958	1959	-	1960	1961	1962	1963	->	1964	1965
1966	1967	→	1968	1969	1970	1971	→	1972	1973	1974	1975	→	1976
1977	1978	1979	→	1980	1981	1982	1983	→	1984	1985	1986	1987	
1988	1989	1990	1991	-	1992	1993	1994	1995	-	1996	1997	1998	1999
→	2000	2001	2002	2003		2004	2005	2006	2007		2008	2009	2010
2011	→	2012	2013	2014	2015		2016	2017	2018	2019	→	2020	2021
2022	2023	→	2024	2025	2026	2027	→	2028	2029	2030	2031	→	2032
2033	2034	2035	→	2036	2037	2038	2039	→	2040	2041	2042	2043	→
2044	2045	2046	2047		2048	2049	2050	2051		2052	2053	2054	2055
→	2056	2057	2058	2059	→	2060	2061	2062	2063	→	2064	2065	2066
2067	→	2068	2069	2070	2071		2072	2073	2074	2075	→	2076	2077
2078	2079	→	2080	2081	2082	2083	→	2084	2085	2086	2087	→	2088
2089	2090	2091		2092	2093	2094	2095		2096	2097	2098	2099	2100

Works for Gregorian (1582–, haphazardly) and the increasingly inaccurate Julian calendars (400 and 28 years cycles).

Apparently inspired by Lewis Carroll's work on a perpetual calendar. COcoNuTS

Random Randomness

References

DQ @ 25 of 47

Outline:

- Determine "anchor day" for a given century, then find Doomsday for a given year in that century.
- Remember special Doomsday dates and work from there.
- 🚳 Naturally: Load this year's Doomsday into brain.

Century's anchor day (Gregorian, Sunday \equiv 0):

 $5 \times \left(\left\lfloor \frac{YYYY}{100} \right\rfloor \mod 4 \right) \mod 7 + \mathsf{Tuesday}$

Offset:

 $\left(365YY + \left\lfloor \frac{YY}{4} \right\rfloor\right) \mod 7 = \left(YY + \left\lfloor \frac{YY}{4} \right\rfloor\right) \mod 7$

COcoNuTS

Random Randomness References

26 of 47

COcoNuTS

Memorable Doomsdays:

Month	Memorable date	Month/Day	Mnemonic ^[6]
January	January 3 (common years), January 4 (leap years)	1/3 or 1/4	the 3rd 3 years in 4 and the 4th in the 4th
February	February 28 (common years), February 29 (leap years)	2/28 or 2/29	last day of February
March	"March 0"	3/0	last day of February
April	April 4	4/4	4/4, 6/6, 8/8, 10/10, 12/12
Мау	May 9	5/9	9-to-5 at 7-11
June	June 6	6/6	4/4, 6/6 , 8/8, 10/10, 12/12
July	July 11	7/11	9-to-5 at 7-11
August	August 8	8/8	4/4, 6/6, 8/8 , 10/10, 12/12
September	September 5	9/5	9-to-5 at 7-11
October	October 10	10/10	4/4, 6/6, 8/8, 10/10 , 12/12
November	November 7	11/7	9-to-5 at 7-11
December	December 12	12/12	4/4, 6/6, 8/8, 10/10, 12/12

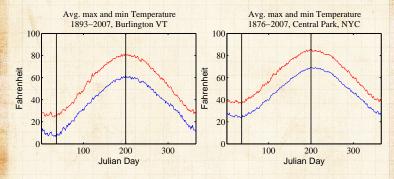
Pi day (March 14), July 4, Halloween, and Boxing Day are always Doomsdays.

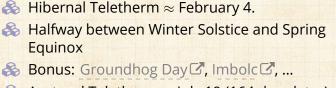
Dac 27 of 47

The bissextile year

"The Julian calendar, which was developed in 46 BC by Julius Caesar, and became effective in 45 BC, distributed an extra ten days among the months of the Roman Republican calendar. Caesar also replaced the intercalary month by a single intercalary day, located where the intercalary month used to be. To create the intercalary day, the existing ante diem sextum Kalendas Martias (February 24) was doubled, producing ante diem bis sextum Kalendas Martias. Hence, the year containing the doubled day was a bissextile (bis sextum, "twice sixth") year. For legal purposes, the two days of the bis sextum were considered to be a single day, with the second half being intercalated; but in common practice by 238, when Censorinus wrote, the intercalary day was followed by the last five days of February, a. d. VI, V, IV, III and pridie Kal. Mart. (the days numbered 24, 25, 26, 27, and 28 from the beginning of February in a common year), so that the intercalated day was the first half of the doubled day. Thus the intercalated day was effectively inserted between the 23rd and 24th days of February."

COcoNuTS


Random Randomness References

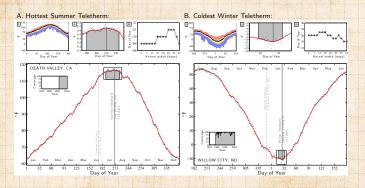


VERMONT

うへへ 28 of 47

The Teletherm, an early conception:

Aesteval Teletherm \approx July 19 (164 days later).



COcoNuTS

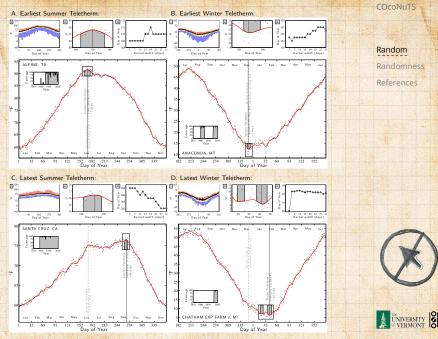
Random

References

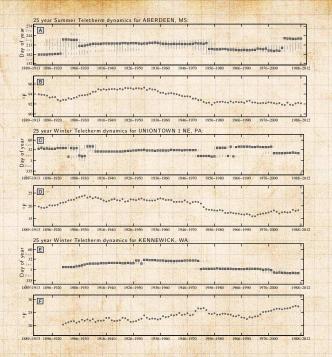
In review: "Tracking the Teletherms: The spatiotemporal dynamics of the hottest and coldest days of the year", Dodds, Mitchell, Reagan, and Danforth.

 $\gtrsim 2 \times 1218$ similar figures for the US.

6000ish pages of Supplementary Information (all figures)


Interactive website.

COcoNuTS


Random Randomnes

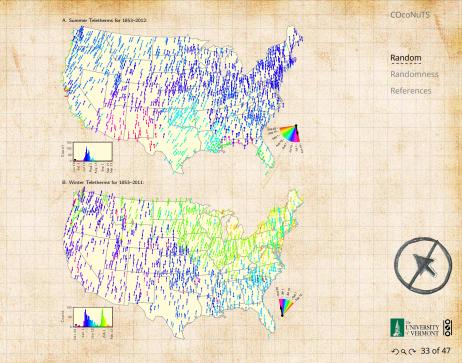
References

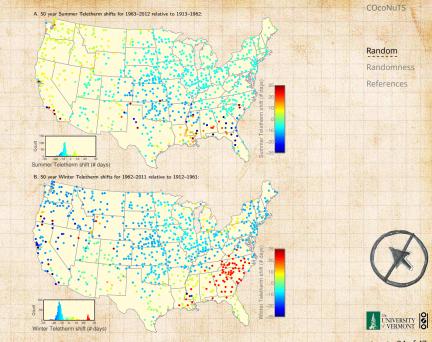
990 31 of 47

NEAR LEVE

COcoNuTS

Random


Randomness


References

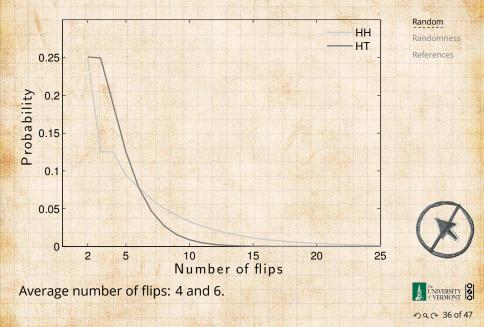
DQ @ 32 of 47

Dac 34 of 47

Homo nonprobabilisticus, continued:

- Important detour: The final digits of primes are not entirely random C (how did we not know this?).
- 🚳 Start flipping a coin ...
- Two tosses: What are the probabilities of flipping (1) HH and (2) HT?
- Flip a coin $n \ge 2$ times: What are the probabilities that the last two tosses are (1) HH or (2) HT?
- Estimate: On average, how many flips does it take to first see the sequence HT?
- Estimate: On average, how many flips does it take to first see the sequence HH?
- What's the probability of first flipping a HT sequence on the n - 1th and nth flips?
- What's the probability of first flipping two heads in a row (HH) on the (n-1)th and nth flips?

COcoNuTS


Random Randomness References

Homo nonprobabilisticus, continued:

COcoNuTS

Universal numbers

COcoNuTS

Random Randomness References

From here

Accidents of evolution¹ give us 5 + 5 = 10 fingers and hence base 10.

We could be happy with base 6, 8, 12, ...

We like these:

- 60 seconds in a minute
- 60 minutes in an hour.
- $2 \times 12 = 24$ hours in a day.
- ♥ 360 degrees in a circle.

ク へ C 37 of 47

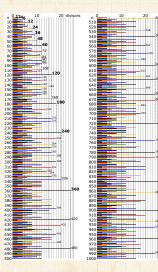
¹Maybe 5 fingers are not an accident

We've liked these kinds of numbers for a long time:

7 1	{7 1	1 41 7	21	*** 7	31	149	41	148	51
77 2	177 12	2 4199	22	*** 77	32	12 17	42	10 17	52
YYY 3	₹??? 13	3 41777	23	***	33		43	AN THE	53
2 4	1 14	+ 40	24	業留	34	核每	44	奏每	54
XX 5	1	5 €€\$	25	***	35	夜報	45	续辑	55
6	1 日 10	5 **	26	業報	36	検報	46	续報	56
2 7	1	~ 全田	27	类做	37	夜母	47	续報	57
8	1	· **	28	業報	38	夜報	48	续報	58
# 9	(辞 19	業を	29	義報	39	夜報	49	续辑	59
∢ 10	4 2	· +++	30	**	40	the second	50		

COcoNuTS

Random Randomness References



2000 BC: Babylonian base 60/Sexagesimal system.

Other bases (or radices): 2, 10, 12 (duodecimal/dozenal), 6 (senary), 8, 16, 20 (vigesimal), 60.

Highly composite numbers:

HCN = natural number with more divisors than any smaller natural number.

2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040 (Plato's optimal city population), ...
 OEIS sequence

A002182

Random Randomness References

COCONUTS

By Cmglee - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=31684018

うへで 39 of 47

Superior highly composite numbers:

# prime factors	SHCN n	prime factorization	prime exponents	# divisors d(n)		primorial factorization
1	2	2	1	2	2	2
2	6	2 · 3	1,1	2 ²	4	6
3	12	$2^2 \cdot 3$	2,1	3×2	6	2 · 6
4	60	$2^2 \cdot 3 \cdot 5$	2,1,1	3×2 ²	12	2 · 30
5	120	$2^3 \cdot 3 \cdot 5$	3,1,1	4×2 ²	16	$2^2 \cdot 30$
6	360	$2^3 \cdot 3^2 \cdot 5$	3,2,1	4x3x2	24	$2 \cdot 6 \cdot 30$
7	2520	$2^3\cdot 3^2\cdot 5\cdot 7$	3,2,1,1	4×3×2 ²	48	2 · 6 · 210
8	5040	$2^4\cdot 3^2\cdot 5\cdot 7$	4,2,1,1	5×3×2 ²	60	$2^2 \cdot 6 \cdot 210$
9	55440	$2^4\cdot 3^2\cdot 5\cdot 7\cdot 11$	4,2,1,1,1	5×3×2 ³	120	$2^2 \cdot 6 \cdot 2310$
10	720720	$2^4\cdot 3^2\cdot 5\cdot 7\cdot 11\cdot 13$	4,2,1,1,1,1	5×3×2 ⁴	240	$2^2 \cdot 6 \cdot 30030$

COcoNuTS

Random Randomness References

SHCN = natural number n whose number of divisors exceeds that of any other number when scaled relative to itself in a sneaky way:

$$\frac{d(n)}{n^{\epsilon}} \geq \frac{d(j)}{j^{\epsilon}} \text{ and } \frac{d(n)}{n^{\epsilon}} > \frac{d(k)}{k^{\epsilon}}$$

for j < n < k and some $\epsilon > 0$.

There's more: Superabundant numbers

 $\underset{\sim}{\otimes} n$ is superabundant if:

$$\frac{\sigma_1(n)}{n} > \frac{\sigma_1(j)}{j}$$

for j < n and where $\sigma_x(n) = \sum_{d \mid n} d^x$ is the divisor function.

449 numbers are both superabundant and highly composite.

Yet more: Colossally abundant numbers: 🖸

 $\Re n$ is colossally abundant if for all j and some $\epsilon > 0$:

$$\frac{\sigma_1(n)}{n^{1+\epsilon}} \geq \frac{\sigma_1(j)}{j^{1+\epsilon}}$$

Infinitely many but only 22 less than 10^{18} .

COcoNuTS

Random Randomness References

COcoNuTS

Some very, very silly units of measurement courtesy of the Imperial system 2:

- 22 yards in a chain = 1 cricket pitch, 100 links in a chain, 10 chains in a furlong, 80 chains in a mile.
- & 1 acre = 1 furlong \times 1 chain = 43,560 square feet.
- left fluid ounces in a gallon.
- 🚳 14 pounds in a stone.
- 🗞 Hundredweight = 112 pounds.

Also:

- 🗞 Fahrenheit, Celcius, and Kelvin.
- 🚳 The entire metric system.

Training with stories as fuel:

COcoNuTS

Random

Randomness

References

20 A 43 of 47

Randomness:

COcoNuTS

Random

Randomness

References

990 44 of 47

References I

[1] T. M. Fink and Y. Mao. Designing tie knots by random walks. Nature, 398:31–32, 1999. pdf Random Randomness

COCONUTS

References

[2] E. Lieberman, J.-B. Michel, J. Jackson, T. Tang, and M. A. Nowak. Quantifying the evolutionary dynamics of language. Nature, 449:713–716, 2007. pdf 2

[3] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B. Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak, and E. A. Lieberman. Quantitative analysis of culture using millions of digitized books. Science Magazine, 2010. pdf

20 A 45 of 47

References II

[4] T. A. Mir.
Citations to articles citing Benford's law: A Benford analysis, 2016.
Preprint available at http://arxiv.org/abs/1602.01205. pdf^C
[5] P. J. Rentfrow, S. D. Gosling, and J. Potter.

[5] P. J. Rentfrow, S. D. Gosling, and J. Potter. A theory of the emergence, persistence, and expression of geographic variation in psychological characteristics.

Perspectives on Psychological Science, 3:339–369, 2008. pdf

[6] D. Silver et al. Mastering the game of Go with deep neural networks and tree search. <u>Nature</u>, 529:484–489, 2016. pdf 2

COcoNuTS

Random

References

References III

COcoNuTS

Random

Randomness

References

 [7] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki. Rules for biologically inspired adaptive network design. Science, 327(5964):439–442, 2010. pdf

DQC 47 of 47