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Idea: Given a sequence a,a;,a,, ..., associate
each element with a distinct function or other
mathematical object.

COcoNuTS

Generating
Functions
R

References

e te)
ﬁ UNIVERSITY |g|
3/ VERMONT |0

DA 8of60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

| GeneratinngnctionoIogyW

Idea: Given a sequence a,a;,a,, ..., associate Generating
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| GeneratinngnctionoIogy“1

Idea: Given a sequence ag,a,,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

Fifp) = i Oz
=)
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| GeneratinngnctionoIogyW

Idea: Given a sequence ag,a,,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

E{z) = i &z
n=0

Roughly: transforms a vector in R*° into a
function defined on R1.
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| GeneratinngnctionoIogyW

Idea: Given a sequence ag,a,,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

E{z) = i &z
n=0

Roughly: transforms a vector in R*° into a
function defined on R1.

Related to Fourier, Laplace, Mellin, ...
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- Simple exarﬁpllfes:

(J
o

6
ik
FO(z) = Zp;@)xk 6<x+x2+$3+$4+x5+$6>'
k=1

(coin) __

Y2

— Pr(head) = 1/2, p{°™ = Pr(tail) = 1/2.
F(coin)(x> = p(ocoin)wo +p(1coin)m1 o %(1 I x)

= Pr(throwing a k) = 1/6 where k = 1,2, ...

, 6.
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py = Pr(throwinga k) =1/6 where k =1,2,...,6.

6
FO (g Zpk@)a}k ZL’+£E + 23+t +2° +25).

References

pSe" — Pr(head) = 1/2, p!™™ = Pr(tail) = 1/2.
‘ - i 1

frlcoin) _ coin) .0 (coin),.1 _ ~q f

(Eli=pac = Fm . '@ 2( + x)

A generating function for a probability distribution =+, |
is called a Probability Generating Function (p.g.f.).
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Generating
Functions

p;@ = Pr(throwing a k) = 1/6 where k = 1,2, ..., 6. &

S @
FO (g Zpk - :E—i—x + 23+t +2° +25).
p&°M = pr(head) = 1/2, p'©°™ = Pr(tail) = 1/2. biva i
: i i 1
F(com)(x) = pgcom)xo —|—p(1c°'n)a:1 o §<1 I x)

A generating function for a probability distribution =+,

is called a Probability Generating Function (p.g.f.). bl

We'll come back to these simple examples as we it

derlvg various delicious properties of generating o

functions. Aoz B
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Example

Take a degree distribution with exponential decay:

=i =Nk
= ce

where geometricsumfully, we have ¢ = 1 — e

The generating function for this distribution is

(o] o
Elrfi— Z Bk — Z cerE pkl
k=0 k=0

Notice that F(1) = ¢/(1 —e ) = 1.
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Take a degree distribution with exponential decay:
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Functions

B ce % Definitions

where geometricsumfully, we have ¢ = 1 — e & ;
The generating function for this distribution is ot ot

(o] o0 2 : “ & y,‘" ‘h“w 4
F('T) . E Pk;xk = E Cei>\kxk = ﬁ References
k=0 k=0 €Te

Notice that F(1) = ¢/(1 —e ) = 1.
For probability distributions, we must always have  »
F(1) = 1 since
Rl = N Pk sl
k=0
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Example

Take a degree distribution with exponential decay:

where geometricsumfully, we have ¢ = 1 — e
The generating function for this distribution is

(o] o
T g Bk — E ce Atk
k=0 k=0

Notice that F(1) = ¢/(1 — e
For probability distributions, we must always have

F(1) = 1 since

SZE =N
= ce

ZPklk
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Example

Take a degree distribution with exponential decay:

SZE =N
= ce

where geometricsumfully, we have ¢ = 1 — e

The generating function for this distribution is

(o] o
T g Bk — E ce Atk
k=0 k=0

Notice that F(1) = ¢/(1 — e
For probability distributions, we must always have

F(1) = 1 since
Z P 1k =

Check die and coin p.g.f.’s.
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Properties:

Average degree:

gt

In general, many calculations become simple, if a little
abstract.
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Properties:

Average degree:

(k) = f: kP, = i kP, xk-!
k=0 k=0

A=t

In general, many calculations become simple, if a little
abstract.

For our exponential example:

5 - (= e-Meir
e (1—ze )2’
A
So: (k) =F'(1) = e
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soaRaipy et
In general, many calculations become simple, ifalittle
abstract.
For our exponential example:
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&= Normalization:

&% First moment:

<& Higher moments:

= (=) Fee)

Gl
<> kth element of sequence (general):
1
Pk = dek F(:B)
a5=0}

" Useful pieces for probability distributions:
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (4.

Try with die and coin p.g.f.s.
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (4.

Try with die and coin p.g.f.s.
1. Add two coins (tail=0, head=1).
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (4.

Try with die and coin p.g.f.s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (4.

Try with die and coin p.g.f.s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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E‘dge—degr.eeﬂ distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.
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Edge-degr'ee' distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for ;.
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| Edge—degfeé distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R, .
We'll now use this notation:
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Edge—degfeé distribution

Recall our condition for a giant component:

(k2) — (k)
tky g = —=—— >1.
- ()
Let's re-express our condition in terms of
generating functions.
We first need the g.f. for R, .

We'll now use this notation:
Fp(x) is the g.f. for P,.
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Edge—degfeé distribution

Recall our condition for a giant component:

(k2) — (k)
AR 1.
< >R <k‘> 2
Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R, .

We'll now use this notation:

Fp(x) is the g.f. for P,.
Fr(z)is the g.f. for R,.
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Edge—degfeé distribution

Recall our condition for a giant component:

Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fp(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

Ry = Fh(l) > 1,
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Edge-degree distribution
Recall our condition for a giant component:

(k2) — (k)
Ry i
< >R <k> i
Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fp(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

Ry = Fh(l) > 1,

Now find how FF, is related to Fp ...
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| Edge—degreeﬂdistribution

We have

N . ]{;—|-1Pk+1 k.
= Ryx

Shift index to j = k + 1 and pull out =:

(k)"
= 1 d
EOLE R
j= j=1

COcoNuTS

Generating
Functions

Definitions

References

<Q )
e O
ﬁ UNIVERSITY |9|
#l V VERMONT IO

“Da 17 of 60



http://www.uvm.edu
http://www.uvm.edu/pdodds

| Edge—degreeﬂdistribution

We have

N . ]{;—|-1Pk+1 k.
= Ryx

Shift index to j = k + 1 and pull out =:

(k)"
= 1 d
EOLE R
j= j=1
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| Edge—degreeﬂdistribution

We have

N . ]{;—|-1Pk+1 k.
= Ryx

Shift index to j = k + 1 and pull out =:

)

1 2 2 =1 _ 1 S d J
FR(;U):W;JPJ.;U 1_632133%9:
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Edge-degree distribution N

We have
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Shift index to j = k + 1 and pull out =:

(k)
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| E‘dge—degreeﬂdistribution

We have

e
k=0

Shift index to j =

1 : 5 1
Fp(z) = @jzljpjld s "

1 d &
W 2

Finally, since (k) =

o0

1 d

Fz’v(l),

i k—|—1Pk+1 k

k+ 1 and pull out

o0

F=

e )

L.

(k)"

1

ol =

d

J

{L"

1
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5 Edge-de‘g'réé: distribution coconurs
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Recall giant component condition is

Basic Properties
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| Edge—degreeﬂdistribution

Recall giant component condition is
) =Fpd) >,
Since we have Fg(z) = Fp(z)/Fp(1),
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Edge-degree distribution N

Generating
Functions

Recall giant component condition is B
(k) p = Fg(1) > 1.
Since we have Fg(z) = Fp(z)/Fp(1),
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Edge-degr'ee' distribution

Recall giant component condition is

) =Fpd) >,

Since we have Fg(z) = Fp(z)/Fp(1),
_ Fpl@)

ADE

Setting « = 1, our condition becomes

A
FA(1)

=
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Outline
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' Size distributions coronts

To figure out the size of the largest component (S, ), Generating
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- Size distributions T

To figure out the size of the largest component (S, ), Geneiging
we need more resolution on component sizes. pefitors

Condit
Component sizes

7,, = probability that a random node belongs to a
finite component of size n < oc.
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Size distributions

To figure out the size of the largest component (S, ),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .
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Size distributions

To figure out the size of the largest component (S, ),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .

PkﬁRk < Ty Pn

neighbors < components

COcoNuTS

Generating
Functions

Condition

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

D> 20 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

N SR -

- Connecting probabilities: ' TR

Generating
Functions

Definitions

N (\OJES

Basic Properties
Giant Component
Condition
Useful results

Size of the Giant
Component

Afew examples

Average Component Size

References

<% Markov property of random networks connects ’
T P and Pk: : .UNIV}:RSITYl | :

o VERMONT

“Da > 21 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

o PSR

' Connecting probabilities: i

Generating
Functions
Definitions
Basic Properties

Glant Component
Condition

Component sizes

Size of the Giant

Component

Afew examples

Average Component Size

References

k ou}gnlﬂg
edoeg

<= Markov property of random networks connects p,,
and R,.

!n‘ UNIVERSII’Y I |
o VERMONT

D 22 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

ntS|ze dlstrlbutlons

Functlons li:
Definitions
' Basic Properties

Giant Component -
Condition

Useful results
Size of the Giant
Component * |
Aféflvexémples' ;i

' Average Component Size-

References Sy i



http://www.uvm.edu
http://www.uvm.edu/pdodds

wa andF

Generating
Functions
Definitions
Basic Properties
Giant Component
Condition

Useful resulis |

Size of the Giant
Component

A few examples

Average Component Size .

References

1 B3 O
i UNIVERSITY | &
Psll ¥ VERMONT

o 230f 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

[ : G f’s for component Size dlstrlbut|ons
& -
- and F,(

Z Ta" =2

The largest component:

<> Subtle key: F_(1) is the probability that a node
belongs to a finite component.
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G IERS for component Size dlstrlbunons

&

(o)

wa and F,( Z

The largest component:

<> Subtle key: F_(1) is the probability that a node
belongs to a finite component.

& Therefore: S; =1—F,(1).
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Zﬂ'l‘ andF Z

Subtle key: F_(1) is the probability that a node
belongs to a finite component.

Therefore: S; =1—F_(1).

Determine and connect the four generating
functions

Py eyl and

T
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Outline

Generating Functions

Useful results
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Snﬂeaky Result 1:
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- Useful results we'll need for g.f.s

Sneaky Result 1:

Consider two random variables U and V whose
values may be 0, 1,2, ...

RSO 2 v i
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- Useful results we'll need for g.f's

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.

COcoNuTS

Generating
Functions
Defini

Comp:

Useful results

Average Component Size

References

1he O
é UNIVERSITY |9|
il ¥ VERMONT 1O

D> 25o0f 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

- Useful results we'll need for g.f's
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Consider two random variables U and V whose
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Write probability distributions as U,, and V. and
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- Useful results we'll need for g.f's

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.

SR1: If a third random variable is defined as

i

U
W = Z V() with each V® £ v
pe=at

then

| Fw(2) = Fy (Fy(@))]
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- Proof of SR1:
Write probability that variable W has value k as 1W/,..
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Proof of SR1:
Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V = k)

g0
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Proof of SR1:
Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

g0

2> S v

j=0 {i1,i2,051
Gyt ti =k
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Proof of SR1:
Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

g0

2> S v

j=0 {i1,i2,051
Gyt ti =k

k=0
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Proof of SIR1 ':

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

g0

o

3
Il
o

e S Lk

{1,095
iy tigt..ti;=k

Fule) = S oWt = S 30,
k=0

k=0 j=0

{1,027}
iytigtoti;=k
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Proof of SIR1 ':

Write probability that variable W has value k as 17/,..

W, = Z U, x Pr(sum of j draws of variable V' = k)

g0

o

<
Il
o

e S Lk

{1,095
iy tigt..ti;=k

i W5 = i i U;
k=0

k=0 5=0

~Fyy ()

{1,027}
iytigtoti;=k
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Proof of SR1 ': e

Write probability that variable W has value k as 17/,..
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Proof of SR1 ': e

With some concentration, observe:
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Proof of SR1: e

With some concentration, observe:
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Proof of SIR1 ':

With some concentration, observe:

FW(:E) = iUJ Z Z ‘/vilmil‘/viQ'/Eiz “.‘/Vijxij
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Proof of SIR1 ':

With some concentration, observe:
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Proof of SR1:

With some concentration, observe:

Fo@=30;% Y ViyahVgen v

7=0 k=0 ({iy,ig, i}
i1tist+..ti;=k

=0

z° plereaf{> Vi/a;i')j

Alternate, groovier proof in the accompanying
assignment.
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- Useful results we'll need for e B
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Start with a random variable U with distribution
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- Useful results we'll need for e B
Sneal

Start with a random variable U with distribution
U, (k=0,1,2,...)

SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]
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- Useful results we'll need for g.f's
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V=U+1 then | Fy(z) = 2Fy(a)]
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- Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,...)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork > 1and V; = 0.

“Fy(z) = Z kak
k=0
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- Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,...)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork > 1and V; = 0.

bl
k=0 k=1
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- Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,...)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]
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Start with a random variable U with distribution
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Reason: V,, =U,_; fork > 1and V; = 0.

COcoNuTS

Generating
Functions
Defir ns

References

Sled

[eeenauic
= =

The (o]
ﬁ UNIVERSITY |9|
il ¥ VERMONT 1O

D> 29 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

Il need fbr g.f's

Useful results we

T

; Gene;'ating
% Functions
Generalization of SR2: S

Giant Component
Condition
Component sizes
Useful resuits
Size of the Giant
Component

Afew examples

Average Component Size

References

:
\
2
e

1 B3 O
i UNIVERSITY |
Psll ¥ VERMONT 1O

va > 30 of 60



http://www.uvm.edu
http://www.uvm.edu/pdodds

. Generalization of SR2:
& (MIfV =U+ithen

Fy(z)
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. Generalization of SR2:
& (MIfV =U+ithen
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Fy(z) =2 " Fy(z)
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l Generalization of SR2:
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~ Connecting generating functions: Ty
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 Connecting geherating functions:

7,, = probability that a random node belongs to a
finite component of size n
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- Connecting generating functions:

7,, = probability that a random node belongs to a
finite component of size n

:ikaPr<
k=0

sum of sizes of subcomponents
at end of kK random links =n —1
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w,, = probability that a random node belongs to a
finite component of size n

o i p wpr( SYM of sizes of subcomponents
G at end of &k random links = n — 1
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Functions
Defi

w,, = probability that a random node belongs to a
finite component of size n

o i p wpr( SYM of sizes of subcomponents
G at end of &k random links = n — 1
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COcoNuTS

- Connecting generating functions:

Generating
Functions
Defi

w,, = probability that a random node belongs to a
finite component of size n

o i p wpr( SYM of sizes of subcomponents
G at end of &k random links = n — 1

Therefore: | F,.(z)= gz Fp(F,(2))
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- Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

o i p wpr( SYM of sizes of subcomponents
G at end of &k random links = n — 1

Therefore: | F,.(z)= gz Fp(F,(2))

Extra factor of x accounts for random node itself.
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- Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i R wpr( SYM of sizes of subcomponents
< at end of k random links = n — 1
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i nospr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: || F (z).—
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i nospr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: |F,(x)= Fp (F,(x))
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 Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i nospr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: L F () = & Ep (F . (z))
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Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i nospr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: L F () = & Ep (F . (z))

Again, extra factor of x accounts for random node
itself.
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- Connecting generating functions: o

Generating
Functions
Definitions

We now have two functional equations connecting
our generating functions:
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F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))
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- Connecting generating functions:

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))

Taking stock: We know F(x) and
Fg(x) = Fp(z)/Fp(1).
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- Connecting generating functions:
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Functions
Defil

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))

Taking stock: We know F(x) and
Fp(z) = Fp(2)/Fp(1).
We first untangle the second equation to find F,
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- Connecting generating functions:

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))

Taking stock: We know F(x) and

Fg(x) = Fp(z)/Fp(1).

We first untangle the second equation to find F,
We can do this because it only involves F,, and F'g.
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COcoNuTS

- Connecting generating functions:

Generating
Functions
Defi

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))

Taking stock: We know F(x) and
Fg(x) = Fp(z)/Fp(1).
We first untangle the second equation to find F,

We can do this because it only involves F,, and F'g.

The first equation then immediately gives us F_ in ' i
N
terms of I, and Fg,. P4
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Component sizes

Remembering vaguely what we are doing:
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
Set x = 1 in our two equations:
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
Set x = 1 in our two equations:

FAl)= Fp (F, (1)) and "Fi(1) = Fg (F (1))
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
Set x = 1 in our two equations:

FAl)= Fp (F, (1)) and "Fi(1) = Fg (F (1))

Solve second equation numerically for F (1).
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
Set x = 1 in our two equations:

FAl)= Fp (F, (1)) and "Fi(1) = Fg (F (1))

Solve second equation numerically for F (1).
Plug F,(1) into first equation to obtain F, (1).

COcoNuTS

Generating
Functions
Defi

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

D> 37 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

- Component sizes GO
Example: Standard random graphs. S
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- Component sizes coronts

Example: Standard random graphs.

Generating

We can show Fp(ﬁ) — 67<k>(1*w) Functions

Definitions

= Fr(z) = Fp(2)/Fp(1)

Useful results
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- Component sizes coronTs

Example: Standard random graphs.
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= Fr(x) = Fp(x)/Fp(1) i co
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Useful results
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- Component sizes coronTs

Example: Standard random graphs.

Geme(atmg
We can show Fp(x) — e*<k>(1*w) F[i:’ftwoms
= Fr(z) = Fp(2)/Fp(1) Soth

Component sizes
Useful results
Size of the Giant

Comporie

Average Component Size.

o <k>6_<k>(1—m)/<k>e—(k)(1—gg’)|$,:1
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- Component sizes coronTs

Example: Standard random graphs.

Generating
We can ShOW Fp(ﬁ) — 6*("2)(1*:2) F[u:wctiohs
= Fr(x) = Fp(x)/Fp(1) i co

Component sizes
Useful results
Size of the Giant

Comporie

Aerage Component Size

e <k>e—<k>(1—m)/<k>e—<k>(1—w’>|$,=1
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F)(1=2)

= Fr(x) = Fp(x)/Fp(1)
= (kye (R1-2) [\ e—(R)1—2)) ,

—-erdiintl k() ...ahal

RHS's of our two equations are the same.
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- Component sizes S
Example: Standard random graphs. B
We can show Fp(x) = 6*<k>(1*x) Fu::ct‘woms

= Fr(z) = Fp(2)/Fp(1)

- <k>e—<k>(1—m)/<k>e—<k>(1—w’>|$,_1

References

—-erdiintl k() ...aha!

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F)(1=2)

= Fr(z) = Fp(2)/Fp(1)

- <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1

—re At R () ...aha!

RHS's of our two equations are the same.

S0 F (1) = F,(2) = 2FR(F, () = 2Fg(F, ()

Consistent with how our dirty (but wrong) trick
worked earlier ...
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F)(1=2)

= Fr(z) = Fp(2)/Fp(1)

- <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1

—re At R () ...aha!

RHS's of our two equations are the same.

S0 Fo(z) = F,(2) = xFg(F,(x)) = vFgr(Fr(z))
Consistent with how our dirty (but wrong) trick

worked earlier ...
Ty =g Justas Py = R, .
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- Component sizes coronts
| We are down to |
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Component sizes
We are down to

B ) S ob (P iz))and Fo(x) = e P2
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- Component sizes
We are down to
F’/r(x) i mFR(Fﬂ.(x)) and FR(‘T) == @_<k><1_$).

F (.CC) = x€*<k>(17F7r(I))

We're first after S; =1— F, (1) sosetz =1 and
replace F_(1) by 1 — S;:
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- Component sizes
We are down to
F (z)=zFg(F.(x)) and Fg(z) = e—{k)(1-z)

e

F (.CC) = x€*<k>(17F7r(w>)

iy

We're first after S; =1— F, (1) sosetz =1 and

replace F (1) by 1 — 8;:
& &

1—51 :ei<k>sl 1

1 1 04
Or: (k) = STIn1 —5 )
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- Component sizes
We are down to
F (z)=zFg(F.(x)) and Fg(z) = e—{k)(1-z)

e

~F (x) = x€‘<k’>(1*F7r(w>)

iy

We're first after S; =1— F, (1) sosetz =1 and

replace F_(1) by 1 — S;:
R .

1 — Sl == 67<k>sl 1

1 1 0.6}
Or: (k) '= STInl %, 3

Just as we found with our dirty trick ...
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- Component sizes
We are down to
F (z)=zFg(F.(x)) and Fg(z) = e~ (k) (1-z)

e

~F (x) = x€‘<k>(1*Fﬂ—(w>)

iy

We're first after S; =1— F, (1) sosetz =1 and

replace F_(1) by 1 — S;:
% -

1 — Sl i 67<k>sl 1

1 1 08
Or: (k) '= STlnl %, 3

Just as we found with our dirty trick ...
Again, we (usually) have to resort to numerics ...
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Outline

Generating Functions

A few examples
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f A few simple random networks to contemplate
and play around with:

- & Notation: The Kronecker delta function(#'6, . = 1

if i = j and 0 otherwise.
; & Pk == 6’61'
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and play around with:

. & Notation: The Kronecker delta function(#' 4,
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and play around with:

. & Notation: The Kronecker delta function(#' 4,

if i = j and 0 otherwise.
& Py = 0po

& Py = 0Op3.
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A few simple random networks to contemplate
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&R P, =04,
& P, =0,
= & P =g
& P, =6, for some fixed &’ > 0.
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Notation: The Kronecker delta function'4,; = 1
if i = j and 0 otherwise.
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B 04,

iy

P, = 6, for some fixed &/ > 0.
Pk = %5k1 + %6k3‘
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~ & Notation: The Kronecker delta function('4;; =1 = =
i if i = j and 0 otherwise. Wi
Useful results
B r=i0ur: s
few examples

; RER e
s Pk: 8 6k References
| =0

P, = 6, for some fixed &/ > 0.

Pk: = %5k1 + %61@3‘

Pk = a6k1 + (1 —a)(5k3, Wlth 0 S a S ]..
Py, = 16,1 + 26, for some fixed k¥’ > 2.
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A few simple random networks to contemplate
and play around with:

gb

R R R R R R

Notation: The Kronecker delta function(%'§;; = 1
if i = j and 0 otherwise.

by

Py = 0.

Py, = Oy3.

P, = 6, for some fixed &/ > 0.

Py, = 5041 + 30k3-

P, =adp; + (1 —a)dgs, With0 <a < 1.

Py, = 16,1 + 26, for some fixed k¥’ > 2.

P, = ad,; + (1 — a)d,,, for some fixed £’ > 2 with

0<a<l.
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1 1
P, = §5k1 + §5k3-

& We find (two ways): R, = 26,0 + 20,5.
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COcoNuTS

1 1
& o T eregiive

Definitions

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:

(kg =0x 1/ 4 253/4=3/2>1.
Generating functions for P, and R;: BERL.

1 1 1 3
Fp(z) = 5% 4+ 5353 and F(x) = ELL’O + 1382
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1 1
P, = 551@1 A §5k3'

We find (two ways): Ry, = 36,0 + 205.

A giant component exists because:
s — O Tt 250314 =819~
Generating functions for P, and R;:

1 1

Check for goodness:

1 3
=-2%+ -z

4

4

2
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1 1
P, = 551@1 A §5k3'

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(K)p =x T/AEIRZIA=—3/2 >1.
Generating functions for P, and R,

1 1 1 3
Holr) — 3% + 51’3 and F(x) = Zxo + 1382

Check for goodness:

Fp(e) = Fp(a)/Fp(1) and Fp(1) = Fp(1) = 1.
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1 1
P, = 551@1 A §5k3'

We find (two ways): Ry, = 36,0 + 205.
A giant component exists because:
(K)p =x T/AEIRZIA=—3/2 >1.
Generating functions for P, and R,
1 5

1 1
Holr) — 3% + 51’3 and F(x) = Zxo + 1%

Check for goodness:

Fr(z) = Fp(z)/Fp(1) and Fp(1) = Fg(
BoBp L D and B g

1) =1.
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1 1
P, = §5k1 A 551@3'

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(K)p =x T/AEIRZIA=—3/2 >1.
Generating functions for P, and R;:
Holr) — %x + %x?’ and F(x) = ixo + 2382
Check for goodness:
Fp(z) = Fp(z)/Fp(1) and Fp(1) = F(1) =
Fp(1) = (k)p =2and Fp(1) = (k)g = §
Things to figure out: Component size generating
functions for 7,, and p,,, and the size of the giant
component.
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Find F,(x) first:
& We know:
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COcoNuTS = *

: Sticking things in things, we have:

1 3 2 eneratin,
‘ | Fp(;[j) =X (Z + 1 [Fp(l’)] ) . Eumctiotnsg
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Rearranging:

3¢ [F,(2)]" — 4F,(2) + & = 0.
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Sticking things in things, we have:
=3

F(z)=x (Z -+ T [Fp(x)]2> L

Rearranging:

3¢ [F,(x)]" — 4F,(2) + 2 = 0.

Please and thank you:
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Sticking things in things, we have:
=3

F(z)=x (Z + T [Fp(:c)]2> L

Rearranging:

3z [Fp(a:)]Q —AF () Fr =1

Please and thank you:

@)= 2 (10 41-32)

Time for a Taylor series expansion.
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Sticking things in things, we have:

F(z)=x (i +z [Fp(x)]2> L

Rearranging:
3x [Fp(m)]2 —AF () Fr =1

Please and thank you:

@)= 2 (10 41-32)

Time for a Taylor series expansion.

The promise: non-negative powers of x with
non-negative coefficients.
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Sticking things in things, we have:

F(z)=x (i +z [Fp(a:)]2) L

Rearranging:
3x [Fp(m)]2 —AF () Fr =1

Please and thank you:

@)= 2 (10 41-32)

Time for a Taylor series expansion.

The promise: non-negative powers of x with
non-negative coefficients.

First: which sign do we take?
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Because p,, is a probability distribution, we know

B diand Fi{z) <A1 ford-<c a-< 1
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Because p,, is a probability distribution, we know
B diand Fi{z) <A1 ford-<c a-< 1

Thinking about the limit z — 0in

Fp(m):% (11\/1—z$2> :

we see that the positive sign solution blows to
smithereens, and the negative one is okay.
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Because p,, is a probability distribution, we know
B diand Fi{z) <A1 ford-<c a-< 1

Thinking about the limit z — 0in

Fp(m):% <1i“1_2$2> :

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:
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Because p,, is a probability distribution, we know
B diand Fi{z) <A1 ford-<c a-< 1

Thinking about the limit z — 0in

Fp(m):% (11\/1—zm2> :

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

Fp(m):% (1\/13:62) L

We can now deploy the Taylor expansion:

a9 = Qs ()4 (o (oo
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COcoNuTS

Let's define a binomial for arbitrary#and k= 0,1, 2, ...:

(0) 2 T+1) Rt
k/  T(k+1)(0—k+1) Dt

For 6 = %, we have:

= N[
NSRS

)+ ()=

)zQ it

QOwl=

(1+@%:(
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Let's define a binomial for arbitrary#and k= 0,1, 2, ...:

9

T(6+1)

T(k+ 1)@ —k~+1)

1 1 1
@+2%=(3)e+(5)=+(3) +
SERE) PG| BTG
e I'(2)0(3) TEEE 5
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

Ne r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(z + 1) = zI'(z) and noted that
L) =%

2

COcoNuTS

Generating
Functions

Definitions

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

D> 46 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

Ne r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(z + 1) = zI'(z) and noted that
L) =%

PRSI PE

Note: (1 + 2)? ~ 1 + 6z always.
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Totally psyched, we go back to here:



Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:



Totally psyched, we go back to here:

Setting z =

3
4 64

Fp(:c):% (1—\/12:02).

32 R .
—5x* and expanding, we have:

512

1 R 2 (3>k (—1)**11(3)
Lrle— a:+...+3 1 F(

k+ 102 —k)

<k 1 £



Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:

Giving:
(o]
Fy(z) =) pna" =
n=0
B Sidgee G 2 (3>k (—1)**11(3)
itfeal Emn Us\A) roiars

Do odd powers make sense?

<k 1 £



<> We can now find F (x) with:

B — vFp (B ()
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COcoNuTS

We can now find F_(z) with: Generating

Functions

Definitions

B — vFp (B ()
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COcoNuTS

We can now find Fﬂ_(:L‘) with: Generating
Functions
Definitions

B — vFp (B ()

Delicious.
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COcoNuTS

We can now find F_(z) with: Generating

Functions

Definitions

B — vFp (B ()

U

References

Delicious.

In principle, we can now extract all the ,,.
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COcoNuTS

We can now find Fﬂ.<£L‘) with: Generating

Functions

Definitions

F (zx)=x2Fp (Fp(ac))

Delicious.

In principle, we can now extract all the ,,.

But let's just find the size of the giant component.
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First, we need F',(1):

2 3 1 Generatmg
= e J i [t i k) Eoael Functions
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This is the probability that a random edge leads to a
sub-component of finite size.
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First, we need F',(1):

This is the probability that a random edge leads to a

2
w=1_ 3.1

(59

sub-component of finite size.
Next:

F

™

(1) =1-Fp (F,(1))
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COcoNuTS

First, we need F',(1):

2 ) 1 Generatmg
W G Sl 1P Eoael Functions
Fp(x)|m:1 3 1 (1 V 1 41 ) 3 Definitions i

This is the probability that a random edge leads to a
sub-component of finite size.

Next: Ve el
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COcoNuTS

First, we need F',(1):

2 ) 1 Generatmg
W G Sl 1P Eoael Functions
Fp(x)|m:1 3 1 (1 V 1 41 ) 3 Definitions i

This is the probability that a random edge leads to a
sub-component of finite size.

Next: Ve el
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COcoNuTS

First, we need F',(1):

2 3 1 Generatmg
(45 2 S =il Functions
FP (x) |£L‘ 1 3 1 (1 v 1 4 1 ) 3 2 Dtmw,i ¢

This is the probability that a random edge leads to a
sub-component of finite size.

Next: Ve el

References

Fo(1) = 1Fp (Fy0) = Fp(5) =35+

The le]
g UNIVERSITY |§|
il ¥ VERMONT 1O

D> 49 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

First, we need F',(1):

2 = 1
faEs 2 S g Eoael
Bl =35 (1 a1 ) S

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (Fy0) = Fp(5) =35+

This is the probability that a random chosen node
belongs to a finite component.
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COcoNuTS

First, we need F',(1):

2 3 1 Generating
= i 162 e =il Functions
Fp(x)|mzl 3 1 (1 1 41 ) YT 3 Definitions i

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (Fy0) = Fp(5) =35+

belongs to a finite component.

This is the probability that a random chosen node ﬁq \

B

Finally, we have

Gl F ()10 22 o B
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Outline :

Generating Functions

Average Component Size
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| Next: find average size of finite components (n).
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Next: find average size of finite components (n). 2
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Using standard G.F. result: (n) = F/(1). Functions

Condition

Component sizes

UNIV]ZRhIn | |
o VERMONT

Q> 52 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

 Average compOnent Size
Next: find average size of finite components (n).

Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
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- Average component size

| Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2Fp (F,(z)), we
differentiate:

Flr) = FpF, (x)) + aF,(2)F 5 (F(z))
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 Average component size

Next: find average size of finite components (n).

Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...

Starting from F, (z) = 2Fp (F,(z)), we
differentiate:

Filp) = Fo (F, (x)) + 2k (x) F (F ()]
While F,(z) = zFg (F,(z)) gives

Fl(x) = Fg (F,(z)) + £F)(z)Fg (F,(z))
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2 Fp (F,(z)), we
differentiate:

Filp) = Fo (F, (x)) + 2k (x) F (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(x) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.
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- Average component size

Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2 Fp (F,(z)), we
differentiate:

Filp) = Fo (F, (x)) + 2k (x) F (F ()]
While F,(z) = zFg (F,(z)) gives

Fl(x) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have F,(1)).
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2 Fp (F,(z)), we
differentiate:

Filp) = Fo (F, (x)) + 2k (x) F (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(x) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have FEL):

Plug F/(1) and F,(1) into first equation to find

E 1)
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Average component size

Example: Standard random graphs.
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- Average component Size
Example: Standard random graphs.
Use factthat Fp = Fpand F,. = F,.
Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))
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- Average component size
Example: Standard random graphs.
Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

7T

Rearrange: F/(z)=
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- Average component size
Example: Standard random graphs.
Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

Rearrange: F/(z)=

7T

Simplify denominator using Fy(z) = (k) Fp(x)
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- Average component size
Example: Standard random graphs.
Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

Rearrange: F/(z)=

7T

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F._(z) = 2Fp(F, (x)).
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- Average component size
Example: Standard random graphs.
Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

Rearrange: F/(z)=

7T

Simplify denominator using Fy(z) = (k) Fp(x)
Replace Fp(F, (z)) using F._(z) = 2Fp(F, (x)).
Set z = 1 and replace F.(1) with 1 — 5.
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- Average component size
Example: Standard random graphs.

Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

7T

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)

Replace Fp(F, (z)) using F._(z) = 2Fp(F, (x)).

Set z = 1 and replace F.(1) with 1 — 5.

(1-5,)

End result: (n) = F; (1) = 1 B =S,
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| Average compbnent Size
Our result for standard random networks:
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 Average component size

Our result for standard random networks:

i 4] (1_Sl>
EE S EEE

Recall that (k) = 1 is the critical value of average
degree for standard random networks.
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 Average component size sl

Our result for standard random networks:

Generating

S e el Bt
o T

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 BEkE
from below.
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 Average component size sl

Our result for standard random networks:

Generating

S e el Bt
o T

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 BEkE
from below.

We have S; =0forall (k) <1
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 Average component size

Our result for standard random networks:

i 4] (1_S1>
EE S EEE

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.
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 Average component size

Our result for standard random networks:

i 4] (1_Sl>
EE S EEE

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1
from below.

We have S; =0forall (k) <1 so

This blows up as (k) — 1.
Reason: we have a power law distribution of
component sizes at (k) = 1.
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| Average component Size
Our result for standard random networks:

Generating

(1-5;) o

) D) Lkl
1— (k)1 —5;)

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 EEEGIT
from below. b
We have S; =0forall (k) <1 so
1 4
n) = (e
e
This blows up as (k) — 1. %J&
Reason: we have a power law distribution of
component sizes at (k) = 1. B (3

Typical critical point behavior ... A
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- Average component size

Limits of (k) = 0 and oo make sense for

(1-5,)

6 Sra s

As (k) - 0,5, =0,and (n) — 1.
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- Average component size

Limits of (k) = 0 and oo make sense for

CI-(®mI=-8)

As (k) - 0,5, =0,and (n) — 1.
All nodes are isolated.
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- Average component size

Limits of (k) = 0 and oo make sense for

1—57)
:F/ 1 ] ( 1

(n) = Fr(1) = (DL 5)
As (k) - 0,5, =0,and (n) — 1.

All nodes are isolated.

As (k) - 00, S — 1and (n) — 0.
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 Average component size

Limits of (k) = 0 and oo make sense for

2y e Y] (1_‘9)

As (k) - 0,5, =0,and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.
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 Average component size

Limits of (k) = 0 and oo make sense for

(1-5,)

6 Sra s

As (k) - 0,5, =0,and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

FOF- () =15 N2/3 LN,
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 Average component size

Limits of (k) = 0 and oo make sense for

(1-5,)

6 Sra s

As (k) - 0,5, =0,and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

FOF- () =15 N2/3 LN,
For (k) <1, S; ~ (logN)/N.
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& Let's return to our example: P, = £6,, + 36,5.
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Let's return to our example: P, = 26,1 + 16,5. \
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COcoNuTS
Let's return to our example: P, = 26,1 + 16,5.

We're after:

Generating
Functions

(n) = FL(1) = Fp (F,(1)) + F4(1)Fp (F,(1))
where we first need to compute

F1) = Fg/(F,(1)) + E,(1)Fg (F,(1)) .
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Let's return to our example: P, = 26,, + 14,5.

We're after:
(n) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

F1) = Hp (F, (1)) + B.(L)FE (Fa(1)) .

Place stick between teeth, and recall that we have:

1 1 1 3
Fp(x) = 5% + §$3 and Fp(z) = 1:1:0 + ZZEQ.
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Let's return to our example: P, = 26,, + 14,5.

We're after:
(n) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

F1) = Hp (F, (1)) + B.(L)FE (Fa(1)) .

Place stick between teeth, and recall that we have:
1 1 1 3
F = — Zx3and F O Z 2
b(x) 2ZL‘+2ZE and Fg(x) iy —|—4:1c

Differentiation gives us:

1553 3
L) = b 51:2 and FL(x) = 5T
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We bite harder and use F,(1) = 1 to find:

A= By (1)) + FL R (R (1)
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COcoNuTS

We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

P Functions

Definitions

/
+ Fp ( 1) PR Average Component Size

After some reallocation of objects, we have F (1) = 43.
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We bite harder and use F,(1) = 1 to find:
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After some reallocation of objects, we have F; (1) = 13
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We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

2 Functions

Definitions

y s
+ F (1) iy Average Component Size

After some reallocation of objects, we have F; (1) = 13

Finally: (n) = F.(1) = Fp (é) %FI/D (%)
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We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

2 Functions

Definitions

y s
+ F (1) iy Average Component Size

After some reallocation of objects, we have F; (1) = 13

Finally: (n) = F.(1) = Fp (é) %FI/D (%)
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We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

2 Functions

Definitions

After some reallocation of objects, we have F; (1) = 13

Finally: (n) = F.(1) = Fp (é) ?FI/D (%)
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COcoNuTS

We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

P Functions

Definitions

After some reallocation of objects, we have F (1) = 43.

Finally: (n) = F.(1) = Fp (é) ?FI/D (%)
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Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.
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- Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.
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| Nutshell COCONUTS ,

Generating
Functions
Definitions

Basic Properties

Giant Compone

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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