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These slides are brought to you by: Generatingfunctionology

Generating <& ldea: Given a sequence ag,ay,a,, ..., associate Generating

Functions

Sealie & Lambie
Productions

each element with a distinct function or other
mathematical object.

<> Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

References DEfInItlon: References
& The generating function (g.f.) for a sequence {a,, }

is
oo
— )
= E a,,T
n=0

<& Roughly: transforms a vector in R into a
function defined on R1.

[ <& Related to Fourier, Laplace, Mellin, ... 1 B
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These slides are also brought to you by: oo Simple examples: oo
Special Guest Executive Producer R Rolling dice and flipping coins: Rinctions®

& p;@ = Pr(throwing a k) = 1/6 where k = 1,2, ..., 6. e

Component

6 @ o .
Z Dpk = (w—l—m +a3 4+t a5 +25). v

References

References & p(com) Pr(head) _ 1/2 pCOIn) r(ta”) — 1/2
(coin)( ..y _ (coin) 0 coimy 1 _ 1
FeoM(g) = po~ et +p1 e _2(1+m).

< A generating function for a probability distribution
is called a Probability Generating Function (p.g.f.).

< We'll come back to these simple examples as we
derive various delicious properties of generating - N

Ao @ functions. ooz B
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Example

&> Take a degree distribution with exponential decay:

Py, = ce Mk

where geometricsumfully, we havec =1 — ¢
<& The generating function for this distribution is

o0 c
- Nk gk —
*Zpkx Zce Tl _gze N
k=0

<o Notice that F(1) =¢/(1—e ) =1.
&% For probability distributions, we must always have
F(1) = 1since

o0
1))=Y Pk =
k=0

&> Check die and coin p.g.f.'s.

o0
dopo=1
k=0

Properties:
&> Average degree:

o0 oo
=Y kPy=)Y kPt
k=0 k=0

d
- dwF( 2

x=1

&% In general, many calculations become simple, if a little
abstract.

&% For our exponential example:

(1—e e

Fl@) =G genz
& SN
So: (k) = F'(1) = GET*)

& Check for die and coin p.g.f.'s.

Useful pieces for probability distributions:

& Normalization:
F(1)=1

& First moment:
(k) = F'(1)

&> Higher moments:

o= (o4 Fia)

& kth element of sequence (general):

r=1

1 d*

P = grger @)
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A beautiful, fundamental thing:

<& The generating function for the sum of two
random variables

W=U+V

Fy (z) = Fyy (o) Fy (o).

<> Convolve yourself with Convolutions:
Insert question from assignment 5 (.

< Try with die and coin p.g.f's.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.

Edge-degree distribution

< Recall our condition for a giant component:

o Let's re-express our condition in terms of
generating functions.

> We first need the g.f. for R,.

<= We'll now use this notation:

Fp(x)is the g.f. for P,.
Fpr(xz)isthe g.f. for R,

<> Giant component condition in terms of g.f. is:

(k) g = Fp(1) > 1.

& Now find how Fry, is related to Fp ...

Edge-degree distribution

<> We have

o (k+ 1 P

FR(I') Z Z VT ) kL 2k
k=0 k=0

Shiftindex to j = k + 1 and pull out k>'
1 & : 1 & d
T) = jPxi1l = P.—x7
rl@) =g 2P = g5 2 P,

1 d & ) 1 d
ZWEZPJ‘W:®E(FP($)*PU)=T

Finally, since (k) = Fp(1),
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Edge-degree distribution

<% Recall giant component condition is
(k) p = Fp(1) > 1.

&% Since we have F(z) = Fp(z)/Fp(1),
R 36
Fol®) = R,

& Setting = = 1, our condition becomes

Size distributions

To figure out the size of the largest component (S,),
we need more resolution on component sizes.
Definitions:

& ,, = probability that a random node belongs to a
finite component of size n < co.

&> p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < oc.

Local-global connection:
Pk‘Rk < Tns Pn

neighbors < components

Connecting probabilities:

P

<% Markov property of random networks connects
T Prs @Nd Py
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Connecting probabilities:

/’Q/kék o.ﬁg»mg

edgey

& Markov property of random networks connects p,,
and R,,.

G.f.'s for component size distributions:
&

F (z)= Z e and F,(z)
n=0

OO
=Y ppan
n=0

The largest component:

% Subtle key: F_(1) is the probability that a node
belongs to a finite component.

& Therefore: S; =1 — F,.(1).

Our mission, which we accept:

<& Determine and connect the four generating
functions

Fp,FR,F,, and F,.

Useful results we'll need for g.f.'s

Sneaky Result 1:
<& Consider two random variables U and V whose
values may be 0,1,2, ...

<> Write probability distributions as U,, and V,, and
gf/sas Fy and Fy,.

&% SR1: If a third random variable is defined as

U
W ="V witheach v £ v

=1

then

‘FW(I) = Fyr (Fy(2)) ‘
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Proof of SR1:

Write probability that variable W has value k as W,,.

W, = ZUj x Pr(sum of j draws of variable V = k)
7=0

4

<.
Il
[=}

U. Z V. V. V.

J K] T
(i1 1ig,mighl
iy tigtoti=k

Z =>.2.U;
k=0 k=0 j=0

2 ViV

{igig,ighl
iy tig bt =k

Mg

oo
U2 Vi, iVt Vit
7=0 k=0 {ij.ig....ij)l
1,1+i2+..4+ij:k
Proof of SR1:
With some concentration, observe:
S .
Rl =30, 5 ViVt Vo

j=0 k=0 {iy,ig,.,iz}l
i1 tiot.ti;=k

x* piece of (377 V,a:i')j

Vo) = (Py())

(
= ZU
Jj=0
= Iy (Fy(z))

<& Alternate, groovier proof in the accompanying
assignment.

Useful results we'll need for g.f.'s

Sneaky Result 2:

& Start with a random variable U with distribution
U, (k=0,1,2,...)
&5 SR2: If a second random variable is defined as

V =U+1 then |Fy(z) = 2Fy(x)

&% Reason: V,, =U,_, fork>1and V, =0.
&
= Z Vil = Z U, _,zF
k=0 k=1

OO
= xz Uja? = xFy(x).
7=0
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Useful results we'll need for g.f.'s

Generalization of SR2:
s MIfFV =U+ithen

Fy(z) = 2* Fy ().
& Q) IfV =U—ithen

Fy(z) = 27 Fy ()

e

=270 Z Ux®

k=0

Connecting generating functions:

&> Goal: figure out forms of the component
generating functions, F, and F,.

& Relate 7, to P, and p,, through one step of
recursion.

Connecting generating functions:

& 7, = probability that a random node belongs to a
finite component of size n

i pr( SUm of sizes of subcomponents
P at end of k random links = n — 1

Therefore: |F,(z)= z Fp(F,(z))
N

<& Extra factor of 2 accounts for random node itself.
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Connecting generating functions:

o
4

/’Q/ék oufg.mg

ke edgey

& Relate p,, to R, and p,, through one step of
recursion.

Connecting generating functions:
& p, =

subcomponent of size n.

&% Invoke one step of recursion:
p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

_ i R xpr( SUM of sizes of subcomponents
Tk at end of k random links =n — 1

Therefore: |F,(z)= z Fg(F,(z))
[ sR2 ] Py

<% Again, extra factor of z accounts for random node

itself.

Connecting generating functions:

<> We now have two functional equations connecting

our generating functions:
Fo(z)=xFp (F,(z)) and F,(z)=aFg (F,(z))

&> Taking stock: We know Fp(z) and
Fp(z) = Fp(z)/Fp(1).
& We first untangle the second equation to find F,

< We can do this because it only involves F, and Fp.
& The first equation then immediately gives us F,_ in

terms of F, and F,.

probability that a random link leads to a finite
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Component sizes

<> Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S; =1— F,(1).
& Setx = 1in our two equations:

F.(1)=Fp(F,(1)) and F,(1) =

Ei FR (Fp(l))
& Solve second equation numerically for F,(1).
<> Plug F,(1) into first equation to obtain F, (1).

Component sizes
Example: Standard random graphs.
& We canshow Fp(z) = ¢ (P12

= Fp(z) = Fp(x)/Fp(1)

= (K)e~RI0==) /() e RI=aN)|
= e~ R1-2) — [ (2) ...ahal

<> RHS's of our two equations are the same.

& SO F(1) = F,(v) = aFp(F,(v)) = 2Fp(Fr(2))

<& Consistent with how our dirty (but wrong) trick
worked earlier ...

& m, =p, justas P, = Ry,

Component sizes

&> We are down to

Fo(z) = 2Fp(Fy(z)) and Fy(z) = e~ (K01-2),

F,_(z) = ze~tRI(1-Fx(2)

&> We're first after S, =1— F, (1) sosetz = 1and

replace F, (1) by 1 — S;:
N

1— Sl = 6_(k>sl

k! og
1 1 0.
Or: (k) = —In
=g InT—5 04
02
0 1 2 3 4

< Just as we found with our dirty trick ...
<% Again, we (usually) have to resort to numerics ...
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A few simple random networks to contemplate
and play around with:

& Notation: The Kronecker delta function(4'4;; = 1
if i = j and 0 otherwise.

& P, =641

& Py, = 6o

& Py = 643

&> Py, = 6, for some fixed &’ > 0.

& Py = 5041 + 303

-3 P, =ady; + (1 —a)d,s, with0 <a < 1.
& Py, = 3041 + 304, for some fixed &’ > 2.

& P, =ab,; +(1—
0<a<l.

A joyful example (X

1 1
P, = §5k1 + §5k3~

& We find (two ways): Ry, = 26, + 36,,.

<& A giant component exists because:
(kYr=0x1/44+2x3/4=3/2>1.

&> Generating functions for P, and R,:

1 1 1 3
Fp(z) = 3% + 53:3 and Fr(z) = Z.CL’O + Zx2
& Check for goodness:
© Fg(w) = Fp(z)/Fp(l) and Fp(1) = Fg(1) = 1.
© Fp(1)=(k)p=2and Fr(1) = (k)p = 3.

& Things to figure out: Component size generating
functions for m,, and p,,, and the size of the giant
component.

Find F,(x) first:
& We know:

on

/R/ék oufﬁwmg

ke ed 9es

a)dyys for some fixed &’ > 2 with
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< Sticking things in things, we have:

<> Rearranging:
3¢ [F,(2)]” —4F,(2) + 2 = 0.

< Please and thank you:

Fp(x):% (1:|:U1—ix2>

Time for a Taylor series expansion.

The promise: non-negative powers of z with
non-negative coefficients.

First: which sign do we take?

& &

&

< Because p,, is a probability distribution, we know
F,(1)<1land F,(z) <1for0 <z <1.

<& Thinking about the limitz — 0 in

2 3
F (x) = LEZ

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

<& So we must have:

F,(2) = 32x (1—1/1—?1132),

< We can now deploy the Taylor expansion:

B (s Qe ()2

(142) =

<% Let's define a binomial for arbitrary § and k=0, 1,2, ...:

0y r(0+1)
(k) T T(k+ 10 —k+1)

& For 6 = 5, we have:

() r(3) INE)
ETETRN 07 VIR VT e A
:1+%Zféz +%237

where we've used I'(x + 1) = zI'(x) and noted that
r) =%

2 P

<& Note: (1+2)? ~ 1+ 6z always.
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Totally psyched, we go back to here:

F,(z)= 32x (1*\/1*%372).

Setting 2 = —2 2 and expanding, we have:

Giving:
Fy(z)=Y p,a" =
n=0

3 9 2 (3)’“ ((fl)k*lf(%)

1
—zt— oSt ——xt4.
Trea” 4) Th+1rE—k"

2k-1
4 64 512 3 *e

Do odd powers make sense?

COcoNuTS

We can now find F(z) with:

F‘l\’(x) = xFP (Fp(m))

Generating
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Delicious.

In principle, we can now extract all the 7.

But let’s just find the size of the giant component.
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This is the probability that a random edge leads to a
sub-component of finite size.

Next:

References

raw= e - () - LA (3 - 5

This is the probability that a random chosen node
belongs to a finite component.

Finally, we have

5 22
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Average component size

Next: find average size of finite components (n).
Using standard G.F. result: (n) = F.(1).

Try to avoid finding F,.(z) ...

Starting from F, (z) = 2Fp (F,(x)), we
differentiate:

Fl(z) = Fp (F,(x)) + zF,(z)Fp (F,(z))

While F,(z) = zFg (F,(z)) gives

F;(ar) =Fg (FP(I)) Jr:I:F;(ac)F}’a (Fp(r))

Now set z = 1 in both equations.

We solve the second equation for F (1) (we must
already have F,(1)).

Plug F,(1) and F,(1) into first equation to find
FL(1).

Average component size
Example: Standard random graphs.
Use fact that Fp = Fr and F,. = F,.
Two differentiated equations reduce to only one:

Fr(x) = Fp (Fr(x)) + 2Fr (@) Fp (Fr ()

Fp (Fr(z))
1 —aFp (Fr())

™

Rearrange: F.(x) =
Simplify denominator using Fp(z) = (k)Fp(z)
Replace Fp(F, . (z)) using F,.(z) = aFp(F,.(x)).
Setz =1 and replace F, (1) with 1 — S;.

(1-251)

End result: (n) 1—(k)(1—5,)

= F(1) =
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Average component size
Our result for standard random networks:

’ (1 — Sl)
=
Recall that (k) = 1 is the critical value of average
degree for standard random networks.
Look at what happens when we increase (k) to 1
from below.
We have S; =0forall (k) <1 so

This blows up as (k) — 1.

Reason: we have a power law distribution of
component sizes at (k) = 1.

Typical critical point behavior ...

Average component size

Limits of (k) = 0 and co make sense for
_ _ (1_31)

As (k) — 0,5, =0,and (n) — 1.

All nodes are isolated.

As (k) = o0, S; = 1 and (n) — 0.

No nodes are outside of the giant component.

Extra on largest component size:
For (k) =1, S, ~ N?/3/N.
For (k) <1, S, ~ (logN)/N.

Let's return to our example: P, = 16,; + 265.

We're after:
(n) = Fr(1) =
where we first need to compute

= (F,(1) + F{(1)FR (Fy(1)) .

Fp(F,(1) + Fy()Fp (F,(1))
Fi(1) =

Place stick between teeth, and recall that we have:

1 1 1 3
Fp(x) = ST+ 2:c and Fg(z) = Zxo + sz.

Differentiation gives us:

Fp(z) = % + gmz and F(z) = gr
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We bite harder and use F,(1) = 3 to find:

Fi(1) =

Q)

Fr (Fp(l)) + F)(1)Fg (Fp(l))

1\ 13 1
Finall F.(1 ( ) —F/ ( )
y: (n) = Fy(1) 5)+ 3
_11,11 13 +$1 S5, 1
T 23723 2 \2 237 3 27

So, kinda small.

Nutshell

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.

References |

[11 H. S. Wilf.
Generatingfunctionology.
A K Peters, Natick, MA, 3rd edition, 2006. pdfZ'

COcoNuTS

Generating
Functions

LI o]
UNIVERSITY |Q|
i |/ VERMONT 10}

va 57of 60
COcoNuTS

Generating
Functions

References

U\u\ ERSITY |9|
o VERMONT

v a (> 580f 60
COcoNuTS

Generating
Functions

L I o]
UNIVERSITY |Q|
& |/ VERMONT 1O}

> 60 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu
http://www.uvm.edu/pdodds
http://www.uvm.edu/pdodds/research/papers/others/2006/wilf2006a.pdf

	Generating Functions
	Definitions
	Basic Properties
	Giant Component Condition
	Component sizes
	Useful results
	Size of the Giant Component
	A few examples
	Average Component Size

	References

