Generating Functions and Networks

Last updated: 2018/03/23, 19:15:27

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

References

UNIVERSITY VERMONT 夕 Q № 1 of 60

COcoNuTS

Outline

Generating Functions

Definitions **Basic Properties Giant Component Condition** Component sizes Useful results Size of the Giant Component A few examples Average Component Size

References

COcoNuTS

少 q (~ 4 of 60

COcoNuTS

These slides are brought to you by:

References

UNIVERSITY OF 少 Q (~ 2 of 60

Generatingfunctionology [1]

& Idea: Given a sequence $a_0, a_1, a_2, ...$, associate each element with a distinct function or other mathematical object.

Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Definition:

 \clubsuit The generating function (g.f.) for a sequence $\{a_n\}$ is

$$F(x) = \sum_{n=0}^{\infty} a_n x^n.$$

 \Re Roughly: transforms a vector in R^{∞} into a function defined on \mathbb{R}^1 .

Related to Fourier, Laplace, Mellin, ...

References

COcoNuTS

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett the cat

COcoNuTS

References

Simple examples:

Rolling dice and flipping coins:

$$F^{(\bigcirc)}(x) = \sum_{k=1}^6 p_k^{(\bigcirc)} x^k = \frac{1}{6} (x + x^2 + x^3 + x^4 + x^5 + x^6).$$

 $p_0^{\text{(coin)}} = \mathbf{Pr}(\text{head}) = 1/2, p_1^{\text{(coin)}} = \mathbf{Pr}(\text{tail}) = 1/2.$

$$F^{({\rm coin})}(x) = p_0^{({\rm coin})} x^0 + p_1^{({\rm coin})} x^1 = \frac{1}{2} (1+x).$$

- A generating function for a probability distribution is called a Probability Generating Function (p.g.f.).
- & We'll come back to these simple examples as we derive various delicious properties of generating functions.

少 Q ← 9 of 60

Example

Take a degree distribution with exponential decay:

$$P_k = ce^{-\lambda k}$$

where geometric sumfully, we have $c=1-e^{-\lambda}$

The generating function for this distribution is

$$F(x) = \sum_{k=0}^{\infty} P_k x^k = \sum_{k=0}^{\infty} c e^{-\lambda k} x^k = \frac{c}{1-xe^{-\lambda}}.$$

- \Re Notice that $F(1) = c/(1 e^{-\lambda}) = 1$.
- \mathcal{E} For probability distributions, we must always have F(1)=1 since

$$F(1) = \sum_{k=0}^{\infty} P_k 1^k = \sum_{k=0}^{\infty} P_k = 1.$$

Check die and coin p.g.f.'s.

COcoNuTS

Generating Functions Definitions Basic Properties Giant Component

Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples

Average Component Size

References

THE EARLY ANY OF SOME PARTY OF

少 Q (~ 10 of 60

A beautiful, fundamental thing:

The generating function for the sum of two random variables

$$W=U+V$$

is

$$F_{W}(x) = F_{U}(x)F_{V}(x).$$

- Convolve yourself with Convolutions: Insert question from assignment 5 2.
- Try with die and coin p.g.f.'s.
 - 1. Add two coins (tail=0, head=1).
 - 2. Add two dice.
 - 3. Add a coin flip to one die roll.

COcoNuTS

Generating Functions

少∢(~ 14 of 60

COcoNuTS

Properties:

Average degree:

$$\begin{split} \langle k \rangle &= \sum_{k=0}^{\infty} k P_k = \sum_{k=0}^{\infty} k P_k x^{k-1} \Bigg|_{x=1} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}x} F(x) \right|_{x=1} = \frac{F'(\mathbf{1})}{} \end{split}$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$F'(x) = \frac{(1 - e^{-\lambda})e^{-\lambda}}{(1 - xe^{-\lambda})^2}.$$

8

So:
$$\langle k \rangle = F'(1) = \frac{e^{-\lambda}}{(1-e^{-\lambda})}.$$

Check for die and coin p.g.f.'s.

COcoNuTS

Functions

Definitions

Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component
A few examples

References

少∢(~ 12 of 60

Edge-degree distribution

Recall our condition for a giant component:

$$\langle k \rangle_R = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} > 1.$$

- Let's re-express our condition in terms of generating functions.
- & We first need the g.f. for R_k .
- We'll now use this notation:

 $F_P(x)$ is the g.f. for P_k . $F_R(x)$ is the g.f. for R_k .

& Giant component condition in terms of g.f. is:

$$\langle k \rangle_R = F_R'(1) > 1.$$

 $\red {\mathbb R}$ Now find how F_R is related to F_P ...

Useful pieces for probability distributions:

Normalization:

$$F(1) = 1$$

First moment:

$$\langle k \rangle = F'(1)$$

A Higher moments:

$$\langle k^n \rangle = \left. \left(x \frac{\mathrm{d}}{\mathrm{d}x} \right)^n F(x) \right|_{x=1}$$

& kth element of sequence (general):

$$P_k = \frac{1}{k!} \frac{\mathsf{d}^k}{\mathsf{d}x^k} F(x) \bigg|_{x=0}$$

COcoNuTS

Definitions
Basic Properties
Giant Component
Condition
Component sizes
Useful results
Size of the Giant
Component

Component
A few examples
Average Component Si
References

少 q (~ 13 of 60

Edge-degree distribution

We have

$$F_R(x) = \sum_{k=0}^{\infty} \frac{R_k x^k}{\langle k \rangle} = \sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k \rangle} x^k.$$

Shift index to j = k + 1 and pull out $\frac{1}{\langle k \rangle}$:

$$F_R(x) = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} j P_j x^{j-1} = \frac{1}{\langle k \rangle} \sum_{j=1}^{\infty} P_j \frac{\mathrm{d}}{\mathrm{d}x} x^j$$

$$=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\sum_{j=1}^{\infty}P_{j}x^{j}=\frac{1}{\langle k\rangle}\frac{\mathrm{d}}{\mathrm{d}x}\left(F_{P}(x)-\textcolor{red}{P_{0}}\right)\\=\frac{1}{\langle k\rangle}F_{P}'(x).$$

Finally, since $\langle k \rangle = F_P'(1)$,

$$F_R(x) = \frac{F_P'(x)}{F_P'(1)}$$

少Q № 17 of 60

Edge-degree distribution

- Recall giant component condition is $\langle k \rangle_R = F_R'(1) > 1.$
- \Re Since we have $F_R(x) = F_P'(x)/F_P'(1)$,

$$F'_{R}(x) = \frac{F''_{P}(x)}{F'_{P}(1).}$$

Setting x=1, our condition becomes

$$\frac{F_P''(1)}{F_P'(1)} > 1$$

COcoNuTS

Giant Componen Condition

•9 q (~ 18 of 60

Connecting probabilities:

& Markov property of random networks connects ρ_n and R_k .

COcoNuTS

References

少 Q (~ 22 of 60

COcoNuTS

Size distributions

To figure out the size of the largest component (S_1) , we need more resolution on component sizes.

Definitions:

- $\underset{\sim}{\&} \pi_n$ = probability that a random node belongs to a finite component of size $n < \infty$.
- ρ_n = probability that a random end of a random link leads to a finite subcomponent of size $n < \infty$.

Local-global connection:

 $P_k, R_k \Leftrightarrow \pi_n, \rho_n$ neighbors ⇔ components

COcoNuTS

References

G.f.'s for component size distributions:

$$F_{\pi}(x) = \sum_{n=0}^{\infty} \pi_n x^n \text{ and } F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n$$

The largest component:

- & Subtle key: $F_{\pi}(1)$ is the probability that a node belongs to a finite component.
- $\mathfrak{F}_1 = 1 F_{\pi}(1)$.

Our mission, which we accept:

Determine and connect the four generating functions

$$F_P, F_R, F_{\pi}$$
, and F_o .

References

COcoNuTS

Connecting probabilities:

Markov property of random networks connects π_n , ρ_n , and P_k .

COcoNuTS

Useful results we'll need for g.f.'s

Sneaky Result 1:

- Consider two random variables and whose values may be 0, 1, 2, ...
- \mathbb{R} Write probability distributions as U_k and V_k and g.f.'s as F_U and F_V .
- & SR1: If a third random variable is defined as

$$W = \sum_{i=1}^{U} V^{(i)}$$
 with each $V^{(i)} \stackrel{d}{=} V$

then

$$F_W(x) = F_U\left(F_V(x)\right)$$

References

少 q (~ 25 of 60

Proof of SR1:

Write probability that variable W has value k as W_k .

$$W_k = \sum_{j=0}^{\infty} U_j \times \operatorname{Pr}(\operatorname{sum\ of}\ j\ \operatorname{draws\ of\ variable}\ V = k)$$

$$= \sum_{j=0}^{\infty} U_j \sum_{\stackrel{\{i_1,i_2,\dots,i_j\}|}{i_1+i_2+\dots+i_i=k}} V_{i_1} V_{i_2} \cdots V_{i_j}$$

COcoNuTS

•9 q (~ 27 of 60

Useful results we'll need for g.f.'s

Generalization of SR2:

$$\clubsuit$$
 (1) If $V = U + i$ then

$$F_V(x) = x^i F_U(x).$$

$$\clubsuit$$
 (2) If $V = U - i$ then

$$F_V(x) = x^{-i} F_U(x)$$

$$= x^{-i} \sum_{k=0}^{\infty} U_k x^k$$

COcoNuTS

•9 q (~ 30 of 60

Proof of SR1:

With some concentration, observe:

COcoNuTS

UNIVERSITY OF 少 q (~ 28 of 60

COcoNuTS

Connecting generating functions:

Goal: figure out forms of the component generating functions, F_{π} and F_{ρ} .

 $\ensuremath{\&}$ Relate π_n to P_k and ho_n through one step of

COcoNuTS

References

COcoNuTS

Useful results we'll need for g.f.'s

Sneaky Result 2:

- Start with a random variable U with distribution U_{k} (k = 0, 1, 2, ...)
- SR2: If a second random variable is defined as

$$V = U + 1$$
 then $F_V(x) = xF_U(x)$

& Reason: $V_k = U_{k-1}$ for $k \ge 1$ and $V_0 = 0$.

$$\begin{split} \dot{\cdot} F_V(x) &= \sum_{k=0}^\infty V_k x^k = \sum_{k=1}^\infty \textcolor{red}{U_{k-1}} x^k \\ &= x \sum_{i=0}^\infty \textcolor{red}{U_j} x^j = x F_U(x). \end{split}$$

References

•9 a (~ 29 of 60

Connecting generating functions:

 $\Re \pi_n$ = probability that a random node belongs to a finite component of size n

$$=\sum_{k=0}^{\infty}P_k\times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents}\\ \text{at end of }k \text{ random links}=n-1 \end{array}\right)$$

Therefore:

$$F_{\pi}(x) = \underbrace{x}_{\text{SR2}} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text{SR1}}$$

Extra factor of x accounts for random node itself.

Connecting generating functions:

 $\red{Relate}
ho_n$ to R_k and ho_n through one step of recursion.

COcoNuTS

•9 q (~ 34 of 60

Component sizes

- Remembering vaguely what we are doing: Finding F_{π} to obtain the fractional size of the largest component $S_1 = 1 - F_{\pi}(1)$.
- Set x=1in our two equations:

$$F_{\pi}(1) = F_{P}\left(F_{\rho}(1)\right) \text{ and } F_{\rho}(1) = F_{R}\left(F_{\rho}(1)\right)$$

- \mathfrak{S} Solve second equation numerically for $F_o(1)$.
- \Re Plug $F_o(1)$ into first equation to obtain $F_{\pi}(1)$.

COcoNuTS

少 Q (~ 37 of 60

COcoNuTS

Connecting generating functions:

- ρ_n = probability that a random link leads to a finite subcomponent of size n.
- Invoke one step of recursion: ρ_n = probability that in following a random edge, the outgoing edges of the node reached lead to finite subcomponents of combined size n-1,

$$=\sum_{k=0}^{\infty}R_k\times \Pr\left(\begin{array}{c} \text{sum of sizes of subcomponents}\\ \text{at end of }k \text{ random links}=n-1 \end{array}\right)$$

 \mathbb{A} Again, extra factor of x accounts for random node itself.

COcoNuTS

Generating Functions

References

•9 q (~ 35 of 60

Component sizes

Example: Standard random graphs.

$$\Leftrightarrow \text{ We can show } F_P(x)=e^{-\langle k\rangle(1-x)}$$

$$\Rightarrow F_R(x)=F_P'(x)/F_P'(1)$$

$$=\langle k\rangle e^{-\langle k\rangle(1-x)}/\langle k\rangle e^{-\langle k\rangle(1-x')}|_{x'=1}$$

- RHS's of our two equations are the same.
- Consistent with how our dirty (but wrong) trick worked earlier ...
- $\Re \pi_n = \rho_n$ just as $P_k = R_k$.

References

COcoNuTS

Connecting generating functions:

We now have two functional equations connecting our generating functions:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right) \text{ and } F_{\rho}(x) = x F_{R}\left(F_{\rho}(x)\right)$$

- $\red{solution}$ Taking stock: We know $F_{\mathcal{P}}(x)$ and $F_R(x) = F_P'(x)/F_P'(1).$
- & We first untangle the second equation to find F_{ρ}
- & We can do this because it only involves F_{ρ} and F_{R} .
- \red{lem} The first equation then immediately gives us F_π in terms of F_{ρ} and F_{R} .

COcoNuTS

•9 q (~ 36 of 60

Component sizes

- We are down to $F_{\pi}(x) = xF_{R}(F_{\pi}(x))$ and $F_{R}(x) = e^{-\langle k \rangle(1-x)}$.
- $..F_{\pi}(x) = xe^{-\langle k \rangle (1-F_{\pi}(x))}$
- \clubsuit We're first after $S_1=1-F_\pi(1)$ so set x=1 and replace $F_{\pi}(1)$ by $1 - S_1$:

- Just as we found with our dirty trick ...
- Again, we (usually) have to resort to numerics ...

•9 q (~ 39 of 60

A few simple random networks to contemplate and play around with:

- & Notation: The Kronecker delta function $\ensuremath{\mathbb{Z}} \delta_{ij} = 1$ if i = j and 0 otherwise.
- $P_k = \delta_{k1}.$
- $\Re P_k = \delta_{k2}$.
- $\Re P_k = \delta_{k3}$.
- $\Re P_k = \delta_{kk'}$ for some fixed $k' \ge 0$.
- $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$.
- $P_k = a\delta_{k1} + (1-a)\delta_{k3}$, with $0 \le a \le 1$.
- $\Re P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{kk'}$ for some fixed $k' \geq 2$.
- $\Re P_k = a\delta_{k1} + (1-a)\delta_{kk'}$ for some fixed $k' \geq 2$ with $0 \le a \le 1$.

COcoNuTS

Generating Functions

References

•9 q (~ 41 of 60

A joyful example \square :

$$P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}.$$

- & We find (two ways): $R_k = \frac{1}{4}\delta_{k0} + \frac{3}{4}\delta_{k2}$.
- A giant component exists because: $\langle k \rangle_R = 0 \times 1/4 + 2 \times 3/4 = 3/2 > 1.$
- & Generating functions for P_k and R_k :

$$F_P(x)=\frac{1}{2}x+\frac{1}{2}x^3$$
 and $F_R(x)=\frac{1}{4}x^0+\frac{3}{4}x^2$

Check for goodness:

Find $F_{\rho}(x)$ first:

We know:

- $\begin{array}{ll} & F_R(x) = F_P'(x)/F_P'(1) \text{ and } F_P(1) = F_R(1) = 1. \\ & F_P'(1) = \langle k \rangle_P = 2 \text{ and } F_R'(1) = \langle k \rangle_R = \frac{3}{2}. \end{array}$
- Things to figure out: Component size generating functions for π_n and ρ_n , and the size of the giant component.

COcoNuTS

少 Q (~ 42 of 60

COcoNuTS

 $F_{\rho}(x) = xF_{R}(F_{\rho}(x)).$

•9 q (~ 43 of 60

Sticking things in things, we have:

$$F_{\rho}(x) = x \left(\frac{1}{4} + \frac{3}{4} \left[F_{\rho}(x)\right]^2\right).$$

Rearranging:

$$3x \left[F_{\rho}(x) \right]^2 - 4F_{\rho}(x) + x = 0.$$

Please and thank you:

$$F_{\rho}(x)=\frac{2}{3x}\left(1\pm\sqrt{1-\frac{3}{4}x^2}\right)$$

- Time for a Taylor series expansion.
- \clubsuit The promise: non-negative powers of x with non-negative coefficients.
- First: which sign do we take?

COcoNuTS

•9 q (~ 44 of 60

COcoNuTS

& Because ho_n is a probability distribution, we know $F_{\rho}(1) \leq 1$ and $F_{\rho}(x) \leq 1$ for $0 \leq x \leq 1$.

 \clubsuit Thinking about the limit $x \to 0$ in

$$F_{\rho}(x) = \frac{2}{3x} \left(1 \pm \sqrt{1-\frac{3}{4}x^2}\right), \label{eq:free_point}$$

we see that the positive sign solution blows to smithereens, and the negative one is okay.

So we must have:

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right),$$

We can now deploy the Taylor expansion:

$$(1+z)^\theta = {\theta \choose 0} z^0 + {\theta \choose 1} z^1 + {\theta \choose 2} z^2 + {\theta \choose 3} z^3 + \dots$$

References

& Let's define a binomial for arbitrary θ and k = 0, 1, 2, ...:

$${\theta \choose k} = \frac{\Gamma(\theta+1)}{\Gamma(k+1)\Gamma(\theta-k+1)}$$

 \Re For $\theta = \frac{1}{2}$, we have:

$$(1+z)^{\frac{1}{2}} = {\frac{1}{2} \choose 0} z^0 + {\frac{1}{2} \choose 1} z^1 + {\frac{1}{2} \choose 2} z^2 + \dots$$

$$\begin{split} &=\frac{\Gamma(\frac{3}{2})}{\Gamma(1)\Gamma(\frac{3}{2})}z^0+\frac{\Gamma(\frac{3}{2})}{\Gamma(2)\Gamma(\frac{1}{2})}z^1+\frac{\Gamma(\frac{3}{2})}{\Gamma(3)\Gamma(-\frac{1}{2})}z^2+\dots\\ &=1+\frac{1}{2}z-\frac{1}{8}z^2+\frac{1}{16}z^3-\dots \end{split}$$

where we've used $\Gamma(x+1)=x\Gamma(x)$ and noted that $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$.

Note: $(1+z)^{\theta} \sim 1 + \theta z$ always.

COcoNuTS

•9 q (~ 46 of 60

Totally psyched, we go back to here:

$$F_{\rho}(x)=\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right).$$

Setting $z = -\frac{3}{4}x^2$ and expanding, we have:

$$F_{*}(x) =$$

$$\frac{2}{3x} \left(1 - \left[1 + \frac{1}{2} \left(-\frac{3}{4} x^2\right)^1 - \frac{1}{8} \left(-\frac{3}{4} x^2\right)^2 + \frac{1}{16} \left(-\frac{3}{4} x^2\right)^3\right] + \ldots\right)$$

Giving:

$$F_{\rho}(x) = \sum_{n=0}^{\infty} \rho_n x^n =$$

$$\frac{1}{4}x + \frac{3}{64}x^3 + \frac{9}{512}x^5 + \ldots + \frac{2}{3}\left(\frac{3}{4}\right)^k \frac{(-1)^{k+1}\Gamma(\frac{3}{2})}{\Gamma(k+1)\Gamma(\frac{3}{2}-k)}x^{2k-1} + \ldots$$

Do odd powers make sense?

COcoNuTS

& We can now find $F_{\pi}(x)$ with:

$$F_{\pi}(x) = x F_{P}\left(F_{\rho}(x)\right)$$

$$=x\frac{1}{2}\left(\left(F_{\rho}(x)\right)^{1}+\left(F_{\rho}(x)\right)^{3}\right)$$

$$=x\frac{1}{2}\left[\frac{2}{3x}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)+\frac{2^3}{(3x)^3}\left(1-\sqrt{1-\frac{3}{4}x^2}\right)^3\right]$$

- Delicious.
- \mathcal{L} In principle, we can now extract all the π_n .
- But let's just find the size of the giant component.

UNIVERSITY OF VERMONT

•9 q (~ 48 of 60

COcoNuTS

 \Re First, we need $F_o(1)$:

$$\left. F_{\rho}(x) \right|_{x=1} = \frac{2}{3 \cdot 1} \left(1 - \sqrt{1 - \frac{3}{4} 1^2} \right) = \frac{1}{3}.$$

- This is the probability that a random edge leads to a sub-component of finite size.
- Next:

$$F_{\pi}(1) = 1 \cdot F_{P} \left(F_{\rho}(1) \right) = F_{P} \left(\frac{1}{3} \right) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \left(\frac{1}{3} \right)^{3} = \frac{5}{27} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{$$

- This is the probability that a random chosen node belongs to a finite component.
- Finally, we have

少 q (~ 49 of 60

COcoNuTS

UNIVERSITY OF

•9 q (~ 51 of 60

Average component size

- \aleph Next: find average size of finite components $\langle n \rangle$.
- & Using standard G.F. result: $\langle n \rangle = F'_{\pi}(1)$.
- \Re Try to avoid finding $F_{\pi}(x)$...
- \mathfrak{S} Starting from $F_{\pi}(x) = xF_{P}(F_{\rho}(x))$, we differentiate:

$$F'_{\pi}(x) = F_P\left(F_o(x)\right) + xF'_o(x)F'_P\left(F_o(x)\right)$$

 \Re While $F_o(x) = xF_B(F_o(x))$ gives

$$F_{\rho}'(x) = F_{R}\left(F_{\rho}(x)\right) + xF_{\rho}'(x)F_{R}'\left(F_{\rho}(x)\right)$$

\$ Now set x = 1 in both equations.

Average component size

Example: Standard random graphs.

- \aleph We solve the second equation for $F'_{\varrho}(1)$ (we must already have $F_o(1)$).
- \Re Plug $F'_{\rho}(1)$ and $F_{\rho}(1)$ into first equation to find

COcoNuTS

Average Component Size eferences

COcoNuTS

\clubsuit Use fact that $F_P = F_R$ and $F_\pi = F_\rho$.

Two differentiated equations reduce to only one:

$$F_{\pi}'(x) = F_{P}\left(F_{\pi}(x)\right) + xF_{\pi}'(x)F_{P}'\left(F_{\pi}(x)\right)$$

Rearrange:
$$F_{\pi}'(x) = \frac{F_P\left(F_{\pi}(x)\right)}{1 - xF_P'\left(F_{\pi}(x)\right)}$$

- \Leftrightarrow Simplify denominator using $F_P'(x) = \langle k \rangle F_P(x)$
- $\ensuremath{\&}$ Replace $F_P(F_\pi(x))$ using $F_\pi(x) = x F_P(F_\pi(x))$.
- \mathfrak{S} Set x=1 and replace $F_{\pi}(1)$ with $1-S_1$.

End result:
$$\langle n \rangle = F'_{\pi}(1) = \frac{(1-S_1)}{1-\langle k \rangle(1-S_1)}$$

•9 q (~ 53 of 60

Average component size

Our result for standard random networks:

$$\langle n \rangle = F_\pi'(1) = \frac{(1-S_1)}{1-\langle k \rangle (1-S_1)}$$

- $\ensuremath{\mathfrak{R}}$ Recall that $\langle k \rangle = 1$ is the critical value of average degree for standard random networks.
- & Look at what happens when we increase $\langle k \rangle$ to 1 from below.
- \clubsuit We have $S_1=0$ for all $\langle k \rangle < 1$ so

$$\langle n \rangle = \frac{1}{1 - \langle k \rangle}$$

- \clubsuit This blows up as $\langle k \rangle \to 1$.
- Reason: we have a power law distribution of component sizes at $\langle k \rangle = 1$.
- Typical critical point behavior ...

Average component size

Limits of $\langle k \rangle = 0$ and make sense for

$$\langle n \rangle = F_\pi'(1) = \frac{(1 - S_1)}{1 - \langle k \rangle (1 - S_1)}$$

- \Re As $\langle k \rangle \to 0$, $S_1 = 0$, and $\langle n \rangle \to 1$.
- All nodes are isolated.
- \clubsuit As $\langle k \rangle \to \infty$, $S_1 \to 1$ and $\langle n \rangle \to 0$.
- No nodes are outside of the giant component.

Extra on largest component size:

- \Re For $\langle k \rangle = 1$, $S_1 \sim N^{2/3}/N$.
- \Leftrightarrow For $\langle k \rangle < 1$, $S_1 \sim (\log N)/N$.
- & Let's return to our example: $P_k = \frac{1}{2}\delta_{k1} + \frac{1}{2}\delta_{k3}$.
- We're after:

$$\langle n \rangle = F_{\pi}'(1) = F_{P}\left(F_{o}(1)\right) + F_{o}'(1)F_{P}'\left(F_{o}(1)\right)$$

where we first need to compute

$$F'_{\rho}(1) = F_{R}(F_{\rho}(1)) + F'_{\rho}(1)F'_{R}(F_{\rho}(1)).$$

Place stick between teeth, and recall that we have:

$$F_P(x) = \frac{1}{2} x + \frac{1}{2} x^3 \text{ and } F_R(x) = \frac{1}{4} x^0 + \frac{3}{4} x^2.$$

Differentiation gives us:

$$F_P'(x) = \frac{1}{2} + \frac{3}{2} x^2 \text{ and } F_R'(x) = \frac{3}{2} x.$$

COcoNuTS

Average Component Siz References

•9 q (~ 54 of 60

COcoNuTS

Average Component Size References

少 Q (~ 55 of 60

COcoNuTS

少 Q ← 56 of 60

 \Re We bite harder and use $F_o(1) = \frac{1}{3}$ to find:

$$\begin{split} F_{\rho}'(1) &= F_R\left(F_{\rho}(1)\right) + F_{\rho}'(1)F_R'\left(F_{\rho}(1)\right) \\ &= F_R\left(\frac{1}{3}\right) + F_{\rho}'(1)F_R'\left(\frac{1}{3}\right) \\ &= \frac{1}{4} + \frac{\cancel{3}}{4}\frac{1}{\cancel{32}} + F_{\rho}'(1)\frac{\cancel{3}}{2}\frac{1}{\cancel{3}}. \end{split}$$

After some reallocation of objects, we have $F'_{\rho}(1) = \frac{13}{2}$.

Generating functions allow us to strangely calculate features of random networks.

We'll find generating functions useful for

But we'll also see that more direct, physics-bearing

A K Peters, Natick, MA, 3rd edition, 2006. pdf

They're a bit scary and magical.

calculations are possible.

Generatingfunctionology.

🗞 So, kinda small.

contagion.

References I

[1] H. S. Wilf.

Nutshell

COcoNuTS

•9 q (~ 57 of 60

COcoNuTS

Average Component Size References

COcoNuTS

References

