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| GeneratinngnctionoIogyW

Idea: Given a sequence ag,a,,a,, ..., associate
each element with a distinct function or other
mathematical object.

Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

The generating function (g.f.) for a sequence {a,,}
is

E{z) = i &z
n=0

Roughly: transforms a vector in R*° into a
function defined on R1.

Related to Fourier, Laplace, Mellin, ...
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COcoNuTS

- Simple exarhples:

Generating
Functions

p;@ = Pr(throwing a k) = 1/6 where k = 1,2, ..., 6. &

S @
FO (g Zpk - :E—i—x + 23+t +2° +25).
p&°M = pr(head) = 1/2, p'©°™ = Pr(tail) = 1/2. biva i
: i i 1
F(com)(x) = pgcom)xo —|—p(1c°'n)a:1 o §<1 I x)

A generating function for a probability distribution =+,

is called a Probability Generating Function (p.g.f.). bl

We'll come back to these simple examples as we it

derlvg various delicious properties of generating o

functions. Aoz B
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Example

Take a degree distribution with exponential decay:

SZE =N
= ce

where geometricsumfully, we have ¢ = 1 — e

The generating function for this distribution is

(o] o
T g Bk — E ce Atk
k=0 k=0

Notice that F(1) = ¢/(1 — e
For probability distributions, we must always have

F(1) = 1 since
Z P 1k =

Check die and coin p.g.f.’s.

(¢

i

ZPk_l

1—ze >’
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COcoNuTS

Properties:

Average degree:

Z kP, = Z ol ke

Generating
Functions

T
d
= = F(x) = F’(1)
soaRaipy et
In general, many calculations become simple, ifalittle
abstract.
For our exponential example:
1 - e A)erA T 1
iy ' [
() (1—ze *)2 || %%
i
< # e—A | S a
0: (k)=F'(1) = ———.
(k) (1) e
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&= Normalization:

&% First moment:

<& Higher moments:

= (=) Fee)

Gl
<> kth element of sequence (general):
1
Pk = dek F(:B)
a5=0}

" Useful pieces for probability distributions:
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The generating function for the sum of two
random variables

W=U+V

Fy () = Fy(z)Fy ().

Convolve yourself with Convolutions:
Insert question from assignment 5 (4.

Try with die and coin p.g.f.s.
1. Add two coins (tail=0, head=1).
2. Add two dice.
3. Add a coin flip to one die roll.
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Edge-degree distribution
Recall our condition for a giant component:

(k2) — (k)
Ry i
< >R <k> i
Let's re-express our condition in terms of
generating functions.

We first need the g.f. for R,..

We'll now use this notation:

Fp(z)is the g.f. for P,.
Fp(x)is the g.f. for R,.

Giant component condition in terms of g.f. is:

Ry = Fh(l) > 1,

Now find how FF, is related to Fp ...
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| E‘dge—degreeﬂdistribution

We have

e
k=0

Shift index to j =

1 : 5 1
Fp(z) = @jzljpjld s "

1 d &
W 2

Finally, since (k) =

o0

1 d

Fz’v(l),

i k—|—1Pk+1 k

k+ 1 and pull out

o0

F=

e )

L.

(k)"

1

ol =

d

J

{L"

1

()

Poz)
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Edge-degr'ee' distribution

Recall giant component condition is

) =Fpd) >,

Since we have Fg(z) = Fp(z)/Fp(1),
_ Fpl@)

ADE

Setting « = 1, our condition becomes

A
FA(1)

=
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Size distributions

To figure out the size of the largest component (S, ),
we need more resolution on component sizes.

7,, = probability that a random node belongs to a
finite component of size n < oc.

p,, = probability that a random end of a random

link leads to a finite subcomponent of size n < .

PkﬁRk < Ty Pn

neighbors < components
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Zﬂ'l‘ andF Z

Subtle key: F_(1) is the probability that a node
belongs to a finite component.

Therefore: S; =1—F_(1).

Determine and connect the four generating
functions

Py eyl and

T
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- Useful results we'll need for g.f's

Consider two random variables U and V whose
values may be 0, 1,2, ...

Write probability distributions as U,, and V. and
g.f'sas F; and F,.

SR1: If a third random variable is defined as

i

U
W = Z V() with each V® £ v
pe=at

then

| Fw(2) = Fy (Fy(@))]
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W= g,\ﬂ.)’;
v FibYFL (R )
{‘m—i’fJ o 4
THE RANDOM SuM
OF RANDOMNESS




Proof of SR1 ': e

Write probability that variable W has value k as 17/,..

Generating
Functions

W, = Z U, x Pr(sum of j draws of variable V' = k)

g0

o

<
Il
o

Uy Y Y
{1,095
iy tigt..ti;=k

oo R 8
. S k — k
k=0 k=0 j=0 {102,753 r \
iytigt..+i;=k 1| 58
‘ ok
o0 oo b : ;
5 Uj Vilx 1%21 2 VijJ“ J i d
j=0 k=0 ' {i1,ig, iz}
e R 8
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Proof of SR1:

With some concentration, observe:

Fo@=30;% Y ViyahVgen v

7=0 k=0 ({iy,ig, i}
i1tist+..ti;=k

=0

z° plereaf{> Vi/a;i')j

Alternate, groovier proof in the accompanying
assignment.
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- Useful results we'll need for g.f's

Start with a random variable U with distribution
U, (k=0,1,2,...)
SR2: If a second random variable is defined as

V=U+1 then | Fy(z) = 2Fy(a)]

Reason: V,, =U,_; fork > 1and V; = 0.
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l Generalization of SR2:
. & (NIfV =U+ithen

FV<SU> =5 :EZFU<$)
& QIfV =U—ithen

Fy(z) =2 " Fy(z)

o0

i Z Ugnk

k=0
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~ Connecting generating functions: Ty

Goal: figure out forms of the component |
generating functions, F, and F,. Genepgung
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Relate 7,, to P, and p,, through one step of 4 (SR |
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- Connecting generating functions:

w,, = probability that a random node belongs to a
finite component of size n

o i p wpr( SYM of sizes of subcomponents
G at end of &k random links = n — 1

Therefore: | F,.(z)= gz Fp(F,(2))

Extra factor of x accounts for random node itself.
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N SR -

- Connecting generating functions: TR

Generating
Functions
Definitions
Basic Properties

Giant Component
Condition
Component sizes
Useful results
SEeCOlETN

Afew examples

Average Component Size

References

TS Ouf-g;mg
edgey

1

<% Relate p,, to R, and p,, through one step of
recursion.

UNIVERSI' TY I |
o VERMONT

D> 340f 60



http://www.uvm.edu
http://www.uvm.edu/pdodds

Connecting generating functions:

p,, = probability that a random link leads to a finite
subcomponent of size n.

Invoke one step of recursion:

p,, = probability that in following a random edge,
the outgoing edges of the node reached lead to
finite subcomponents of combined size n — 1,

= i nospr( SYM of sizes of subcomponents
=k at end of k random links = n — 1

Therefore: L F () = & Ep (F . (z))

Again, extra factor of x accounts for random node
itself.
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COcoNuTS

- Connecting generating functions:

Generating
Functions
Defi

We now have two functional equations connecting
our generating functions:

F. (z)=aFp (Fils)) and F,(5) = aFg(F,(x))

Taking stock: We know F(x) and
Fg(x) = Fp(z)/Fp(1).
We first untangle the second equation to find F,

We can do this because it only involves F,, and F'g.

The first equation then immediately gives us F_ in ' i
N
terms of I, and Fg,. P4
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- Component sizes

Remembering vaguely what we are doing:

Finding F. to obtain the fractional size of the
largest component S§; =1 — F,(1).
Set x = 1 in our two equations:

FAl)= Fp (F, (1)) and "Fi(1) = Fg (F (1))

Solve second equation numerically for F (1).
Plug F,(1) into first equation to obtain F, (1).
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- Component sizes
Example: Standard random graphs.
We can show Fp(z) = e~ (F)(1=2)

= Fr(z) = Fp(2)/Fp(1)

- <k>e—<k>(1—m)/<k>e—<k>(1—m’>|$,:1

—re At R () ...aha!

RHS's of our two equations are the same.

S0 Fo(z) = F,(2) = xFg(F,(x)) = vFgr(Fr(z))
Consistent with how our dirty (but wrong) trick

worked earlier ...
Ty =g Justas Py = R, .
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- Component sizes
We are down to
F (z)=zFg(F.(x)) and Fg(z) = e~ (k) (1-z)

e

~F (x) = x€‘<k>(1*Fﬂ—(w>)

iy

We're first after S; =1— F, (1) sosetz =1 and

replace F_(1) by 1 — S;:
% -

1 — Sl i 67<k>sl 1

1 1 08
Or: (k) '= STlnl %, 3

Just as we found with our dirty trick ...
Again, we (usually) have to resort to numerics ...

COcoNuTS

Generating
Functions

Definitions

The O
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

D> 39 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

A few simple random networks to contemplate
and play around with:

gb

R R R R R R

Notation: The Kronecker delta function(%'§;; = 1
if i = j and 0 otherwise.

by

Py = 0.

Py, = Oy3.

P, = 6, for some fixed &/ > 0.

Py, = 5041 + 30k3-

P, =adp; + (1 —a)dgs, With0 <a < 1.

Py, = 16,1 + 26, for some fixed k¥’ > 2.

P, = ad,; + (1 — a)d,,, for some fixed £’ > 2 with

0<a<l.

RS S
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1 1
P, = §5k1 A 551@3'

We find (two ways): R;, = 6,0 + 26,..
A giant component exists because:
(K)p =x T/AEIRZIA=—3/2 >1.
Generating functions for P, and R;:
Holr) — %x + %x?’ and F(x) = ixo + 2382
Check for goodness:
Fp(z) = Fp(z)/Fp(1) and Fp(1) = F(1) =
Fp(1) = (k)p =2and Fp(1) = (k)g = §
Things to figure out: Component size generating
functions for 7,, and p,,, and the size of the giant
component.
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Find F,(x) first:
& We know:

-k Ouf-gnmg
edgeg
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Sticking things in things, we have:

F(z)=x (i +z [Fp(a:)]2) L

Rearranging:
3x [Fp(m)]2 —AF () Fr =1

Please and thank you:

@)= 2 (10 41-32)

Time for a Taylor series expansion.

The promise: non-negative powers of x with
non-negative coefficients.

First: which sign do we take?
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Because p,, is a probability distribution, we know
B diand Fi{z) <A1 ford-<c a-< 1

Thinking about the limit z — 0in

Fp(m):% (11\/1—zm2> :

we see that the positive sign solution blows to
smithereens, and the negative one is okay.

So we must have:

Fp(m):% (1\/13:62) L

We can now deploy the Taylor expansion:

a9 = Qs ()4 (o (oo
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Let's define a binomial for arbitrary 6 and k =0, 1, 2, ....

Ne r+1)
(k:) - Tkk+1DIT(@—k+1)

=1-|-lz—1 2+iz 2

2 8 16
where we've used I'(z + 1) = zI'(z) and noted that
L) =%

PRSI PE

Note: (1 + 2)? ~ 1 + 6z always.
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Totally psyched, we go back to here:

Fp(m):% (1—\/12:02).

Setting z = — 222 and expanding, we have:

Giving:
(o]
Fy(z) =) pna" =
n=0
B Sidgee G 2 (3>k (—1)**11(3)
itfeal Emn Us\A) roiars

Do odd powers make sense?

<k 1 £



COcoNuTS

We can now find Fﬂ.<£L‘) with: Generating

Functions

Definitions

F (zx)=x2Fp (Fp(ac))

Delicious.

In principle, we can now extract all the ,,.

But let's just find the size of the giant component.

The O
ﬁ UNIVERSITY |§|
il ¥ VERMONT 1O

D Q> 48 of 60


http://www.uvm.edu
http://www.uvm.edu/pdodds

COcoNuTS

First, we need F',(1):

2 3 1 Generating
= i 162 e =il Functions
Fp(x)|mzl 3 1 (1 1 41 ) YT 3 Definitions i

This is the probability that a random edge leads to a
sub-component of finite size.

Next:

Fo(1) = 1Fp (Fy0) = Fp(5) =35+

belongs to a finite component.

This is the probability that a random chosen node ﬁq \

B

Finally, we have

Gl F ()10 22 o B

D> 49 of 60
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- Average component size
Next: find average size of finite components (n).
Using standard G.F. result: (n) = F/(1).
Try to avoid finding F_(x) ...
Starting from F, () = 2 Fp (F,(z)), we
differentiate:

Filp) = Fo (F, (x)) + 2k (x) F (F ()]
While F,(z) = zFg (F,(z)) gives
Fl(x) = Fg (F,(z)) + £F)(z)Fg (F,(z))

Now set z = 1 in both equations.

We solve the second equation for F/ (1) (we must
already have FEL):

Plug F/(1) and F,(1) into first equation to find

E 1)
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- Average component size
Example: Standard random graphs.

Use factthat Fp = Fpand F,. = F,.

Two differentiated equations reduce to only one:

Fi(z) = Fp (F(2)) + oF (2)Fp (Fr(2))

Fp (Fr(2))
1 —2Fp (Fr(2))

7T

Rearrange: F/(z)=

Simplify denominator using Fy(z) = (k) Fp(x)

Replace Fp(F, (z)) using F._(z) = 2Fp(F, (x)).

Set z = 1 and replace F.(1) with 1 — 5.

(1-5,)

End result: (n) = F; (1) = 1 B =S,
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COcoNuTS

| Average component Size
Our result for standard random networks:

Generating

(1-5;) o

) D) Lkl
1— (k)1 —5;)

Recall that (k) = 1 is the critical value of average
degree for standard random networks.

Look at what happens when we increase (k) to 1 EEEGIT
from below. b
We have S; =0forall (k) <1 so
1 4
n) = (e
e
This blows up as (k) — 1. %J&
Reason: we have a power law distribution of
component sizes at (k) = 1. B (3

Typical critical point behavior ... A
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 Average component size

Limits of (k) = 0 and oo make sense for

(1-5,)

6 Sra s

As (k) - 0,5, =0,and (n) — 1.
All nodes are isolated.
As (k) - 00, S — 1and (n) — 0.

No nodes are outside of the giant component.

FOF- () =15 N2/3 LN,
For (k) <1, S; ~ (logN)/N.
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Let's return to our example: P, = 26,, + 14,5.

We're after:
(n) = Fr(1) = Fp (F,(1)) + Fi(1)Fp (F,(1))
where we first need to compute

F1) = Hp (F, (1)) + B.(L)FE (Fa(1)) .

Place stick between teeth, and recall that we have:
1 1 1 3
F = — Zx3and F O Z 2
b(x) 2ZL‘+2ZE and Fg(x) iy —|—4:1c

Differentiation gives us:

1553 3
L) = b 51:2 and FL(x) = 5T
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COcoNuTS

We bite harder and use F,(1) = 1 to find:

Fé(l) = FR (Fp(l)) + Fé(l)Fl,% (F (1)) Generating

P Functions

Definitions

After some reallocation of objects, we have F (1) = 43.

Finally: (n) = F.(1) = Fp (é) ?FI/D (%)

11 1371 31 B.la 120
2:30, 12

" 3oy Eonit - oy

W

n
LD

So, kinda small. P
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| Nutshell COCONUTS ,

Generating
Functions
Definitions

Basic Properties

Giant Compone

Generating functions allow us to strangely
calculate features of random networks.

They're a bit scary and magical.

We'll find generating functions useful for
contagion.

But we'll also see that more direct, physics-bearing
calculations are possible.
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