Generalized Contagion

Last updated: 2018/03/23, 12:08:15

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

990 1 of 65

These slides are brought to you by:

Sealie & Lambie Productions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

UNIVERSITY VERMONT

20f65

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 3 of 65

Outline

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 4 of 65

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 5 of 65

"Universal Behavior in a Generalized Model of Contagion" Dodds and Watts, Phys. Rev. Lett., **92**, 218701, 2004.^[5]

"A generalized model of social and biological contagion" Dodds and Watts, J. Theor. Biol., **232**, 587–604, 2005.^[6]

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

990 6 of 65

Basic questions about contagion

How many types of contagion are there? How can we categorize real-world contagions? Can we connect models of disease-like and soc contagion?

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

VERMONT

200 6 of 65

Basic questions about contagion
 How many types of contagion are there?
 How can we categorize real-world contagion
 Can we connect models of disease-like and scontagion?
 Focus: mean field models.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 6 of 65

Basic questions about contagion

- How many types of contagion are there?
- low can we categorize real-world contagions?
 - Can we connect models of disease-like and socia contagion? Focus: mean field models.

Basic questions about contagion

How many types of contagion are there?
How can we categorize real-world contagions?
Can we connect models of disease-like and social contagion?

us: mean field models.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Basic questions about contagion

- low many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?
- Focus: mean field models.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

The standard SIR model ^[11] = basic model of disease contag

> S(t) + I(t) + R(t) = 1Presumes random interactions (mass-action principle) Interactions are independent (no memory) Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

🚳 = basic model of disease contagion

S(t) + I(t) + R(t) = 1Presumes random interactions (mass-action principle) Interactions are independent (no memory)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

= basic model of disease contagion
 Three states:

S(t) + I(t) + R(t) = 1Presumes random interactions (mass-action principle)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🗞 = basic model of disease contagion
- 🚓 Three states:
 - 1. S = Susceptible

Presumes random interactions (mass-actio principle)

Interactions are independent (no memor Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- 🚓 Three states:
 - S = Susceptible
 I = Infective/Infectious

S(t) + I(t) + R(t) = 1Presumes random interactions (mass-actio principle) Interactions are independent (no memory)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- 🚳 Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

Presumes random interactions (mass-actio principle) Interactions are independent (no memory)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- 🚳 Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

Presumes random interactions (mass-actic principle) Interactions are independent (no memory)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- 🚓 Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$$S(t) + I(t) + R(t) = 1$$

Presumes random interactions (mass-actio principle)

Interactions are independent (no memory

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- \lambda Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$${ { l } {$$

 Presumes random interactions (mass-action principle)

Interactions are independent (no memor Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- \lambda Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

Presumes random interactions (mass-action principle)

lnteractions are independent (no memory)

Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

The standard SIR model [11]

- 🚳 = basic model of disease contagion
- \lambda Three states:
 - 1. S = Susceptible
 - 2. I = Infective/Infectious
 - 3. R = Recovered or Removed or Refractory

$${ { l } {$$

- Presumes random interactions (mass-action principle)
- lnteractions are independent (no memory)
 - Discrete and continuous time versions

COcoNuTS

Introduction

Independent Interaction models

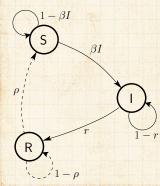
- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Discrete time automata example:



COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

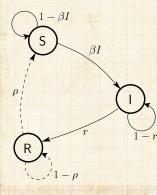
Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Discrete time automata example:



Transition Probabilities:

Introduction

COcoNuTS

Independent Interaction models

Interdependent interaction models

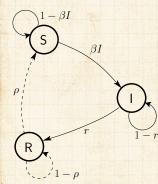
Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

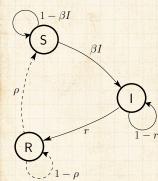
Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected r for recovery

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

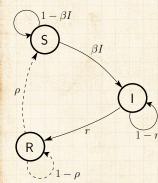
Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

Discrete time automata example:



Transition Probabilities:

 β for being infected given contact with infected r for recovery ρ for loss of immunity

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

Original models attributed to

1920's: Reed and Frost 1920's/1930's: Kermack and McKendrick Coupled differential equations with a massprinciple

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 9 of 65

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 9 of 65

Original models attributed to

🚳 1920's: Reed and Frost

1920's/1930's: Kermack and McKendrick Coupled differential equations with a mass-a principle

Original models attributed to

1920's: Reed and Frost
 1920's/1930's: Kermack and McKendrick ^[8, 10, 9]
 Coupled differential equations with a mass-action

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 9 of 65

Original models attributed to

- 🚳 1920's: Reed and Frost
- 1920's/1930's: Kermack and McKendrick^[8, 10, 9]
- Coupled differential equations with a mass-action principle

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Differential equations for continuous model

$$\frac{d}{dt}S = -\beta IS + \rho R$$
$$\frac{d}{dt}I = \beta IS - rI$$
$$\frac{d}{dt}R = rI - \rho R$$

 β , r, and ρ are now rates.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

Differential equations for continuous model

$$\frac{d}{dt}S = -\beta IS + \rho R$$
$$\frac{d}{dt}I = \beta IS - rI$$
$$\frac{d}{dt}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

 R_0 = expected number of infected individuals resulting from a single initial infective Epidemic threshold: If $R_0 > 1$, 'epidemic' occu

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Differential equations for continuous model

$$\frac{d}{dt}S = -\beta IS + \rho R$$
$$\frac{d}{dt}I = \beta IS - rI$$
$$\frac{d}{dt}R = rI - \rho R$$

 β , r, and ρ are now rates.

Reproduction Number R_0 :

R₀ = expected number of infected individuals resulting from a single initial infective

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Differential equations for continuous model

- $\frac{d}{dt}S = -\beta IS + \rho R$ $\frac{d}{dt}I = \beta IS rI$ $\frac{d}{dt}R = rI \rho R$
- β , r, and ρ are now rates.

Reproduction Number R_0 :

R₀ = expected number of infected individuals resulting from a single initial infective
 Epidemic threshold: If R₀ > 1, 'epidemic' occurs.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Reproduction Number R_0

Discrete version:

Set up: One Infective in a randomly mixing population of Susceptibles

At time t = 0, single infective randomly bumps in a Susceptible

Probability of transmission = β At time t = 1, single infective remains infected v probability $1 - \tau$

At time t=k, single Infective remains infected with probability $(1-r)^k$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

990 11 of 65

Reproduction Number R_0

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective randomly bumps into a Susceptible
 - Probability of transmission = β At time t = 1, single infective remains infected with probability 1 - r
 - At time t = k, single infective remains infected with probability $(1 - r)^k$

COcoNuTS

Introduction

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version
- Nutshell
- Appendix
- References

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective randomly bumps into a Susceptible
- \mathfrak{F} Probability of transmission = β
 - At time t = 1, single infective remains infected with probability 1 + r
 - At time t = k, single infective remains infected with probability $(1 - r)^k$

COcoNuTS

Introduction

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version
- Nutshell
- Appendix
- References

Reproduction Number R₀

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective randomly bumps into a Susceptible
- \mathfrak{S} Probability of transmission = β
- At time t = 1, single Infective remains infected with probability 1 r

At time t = k, single infective remains infected with probability $(1 - r)^k$ COcoNuTS

Introduction

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

Reproduction Number R₀

Discrete version:

- Set up: One Infective in a randomly mixing population of Susceptibles
- At time t = 0, single infective randomly bumps into a Susceptible
- \mathfrak{S} Probability of transmission = β
- At time t = 1, single Infective remains infected with probability 1 r
- At time t = k, single Infective remains infected with probability $(1 - r)^k$

COcoNuTS

Introduction

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 12 of 65

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta\left(1+(1-r)+(1-r)^2+(1-r)^3+\ldots\right)$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 12 of 65

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1-r) + (1-r)^2 + (1-r)^3 + \dots \right)$$
$$= \beta \frac{1}{1 - (1-r)}$$

Similar story for continuous mode

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 12 of 65

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$=\beta\left(1+(1-r)+(1-r)^2+(1-r)^3+\ldots\right)$$

$$=\beta\frac{1}{1-(1-r)}=\beta/r$$

Similar story for continuous mode

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Discrete version:

Expected number infected by original Infective:

$$R_0 = \beta + (1-r)\beta + (1-r)^2\beta + (1-r)^3\beta + \dots$$

$$= \beta \left(1 + (1-r) + (1-r)^2 + (1-r)^3 + \dots \right)$$
$$= \beta \frac{1}{1-(1-r)} = \beta/r$$

🚳 Similar story for continuous model.

COcoNuTS

Introduction

Independent Interaction models

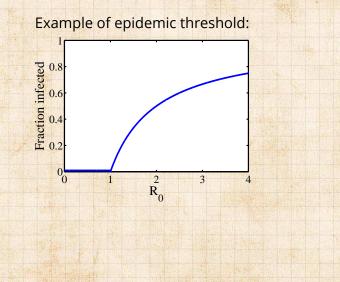
Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Independent Interaction models



Introduction

COcoNuTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

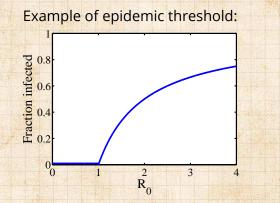
Nutshell

Appendix

References

200 13 of 65

Independent Interaction models



Introduction

COcoNuTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

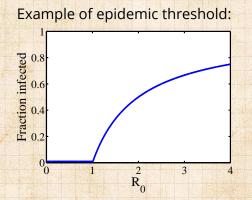
References

Poccs Principles of Complex Systems @pocsvox What's the Story?

🚳 Continuous phase transition.

200 13 of 65

Independent Interaction models



Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Continuous phase transition.
 Fine idea from a simple model.

200 13 of 65

Valiant attempts to use SIR and co. elsewhere: Adoption of ideas/beliefs (Goffman & Newell, 1964) Spread of rumors (Daley & Kendall, 1964, 1965) Diffusion of innovations (Bass, 1969) Spread of fanatical behavior (Castillo-Chávez &

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[7]
 - Spread of rumors (Daley & Kendall, 1964, 1965). Diffusion of innovations (Bass, 1969) Spread of fanatical behavior (Castillo-Cháve

Introduction

COCONUTS

Independent Interaction models

- Interdependent interaction models
- Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[7]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[3, 4]

Diffusion of innovations (Bass, 1969) Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Introduction

COCONUTS

introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[7]
- Spread of rumors (Daley & Kendall, 1964, 1965) ^[3, 4]
- liffusion of innovations (Bass, 1969)^[1]

Spread of fanatical behavior (Castillo-Chávez 8 Song, 2003)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Valiant attempts to use SIR and co. elsewhere:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)^[7]
- Spread of rumors (Daley & Kendall, 1964, 1965)^[3, 4]
- 🚯 Diffusion of innovations (Bass, 1969) [1]
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)^[2]

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

Granovetter's model (recap of recap)

Action based on perceived behavior of others.



Two states: S and I.
 Recovery now possible (SIS).
 φ = fraction of contacts 'on' (e.g., rioting).
 Discrete time, synchronous update.
 This is a Critical mass model.
 Interdependent interaction model.

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Nutshel

Appendix

References

200 15 of 65

Disease models assume independence of infectious events.

Threshold models only involve proportions. $3/10 \equiv 30/100$. Threshold models ignore exact sequence of influences Threshold models assume immediate pollin Mean-field models neglect network structur

Metwork effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

nac 16 of 65

Disease models assume independence of infectious events.

Threshold models only involve proportions: $3/10 \equiv 30/100.$

Threshold models ignore exact sequence c influences

Threshold models assume immediate pollin, Mean-field models neglect network structure Network effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

990 16 of 65

Disease models assume independence of infectious events.

- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences

Threshold models assume immediate polling Mean-field models neglect network structure Network effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 16 of 65

Disease models assume independence of infectious events.

- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- 🚳 Threshold models assume immediate polling.

Mean-field models neglect network structur Network effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 16 of 65

Disease models assume independence of infectious events.

- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- 🚳 Threshold models assume immediate polling.
- 🚳 Mean-field models neglect network structure

Network effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Disease models assume independence of infectious events.

- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- 🚳 Threshold models assume immediate polling.
- 🗞 Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Basic ingredients:

Incorporate memory of a contagious element^[5, 6]
Population of *N* individuals, each in state S, I, or R
Each individual randomly contacts another at each time step.

 ϕ_t = traction infected at time t = probability of <u>contact</u> with infected individua With probability p_t contact with infective leads to an exposure.

If exposed, individual receives a dose of size ddrawn from distribution *1*. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 17 of 65

Basic ingredients:

Incorporate memory of a contagious element ^[5, 6]
 Population of *N* individuals, each in state S, I, or R.
 Each individual randomly contacts another at each time step.
 \$\vec{\sigma}_{t}\$ = fraction infected at time t
 = probability of contact with infected individual

With probability p_i contact with infective leads to an exposure.

If exposed, individual receives a dose of size a drawn from distribution f. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

nac 17 of 65

Basic ingredients:

- Incorporate memory of a contagious element^[5, 6]
- Solution of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
 - ϕ_t = fraction infected at time t= probability of <u>contact</u> with infected individu With probability p_i contact with infective leads to an **exposure**.
 - If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

nac 17 of 65

Basic ingredients:

- Incorporate memory of a contagious element^[5, 6]
 - \mathbb{B} Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- $\phi_t =$ fraction infected at time t= probability of <u>contact</u> with infected individual

With probability p_i contact with infective leads to an exposure.

If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Basic ingredients:

- Incorporate memory of a contagious element^[5, 6]
- \Im Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- $\phi_t =$ fraction infected at time t= probability of <u>contact</u> with infected individual
- With probability *p*, contact with infective leads to an exposure.

If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Basic ingredients:

- Incorporate memory of a contagious element^[5, 6]
- \Im Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- $\phi_t =$ fraction infected at time t= probability of <u>contact</u> with infected individual
- With probability *p*, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

 $S \Rightarrow I$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

990 18 of 65

 $S \Rightarrow I$

Individuals 'remember' last T contacts: $D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$ Infection occurs if individual 's 'threshold' is

Threshold d_i^* drawn from arbitrary distribution at t = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 18 of 65

 $S \Rightarrow I$

lndividuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

Threshold d_i^* drawn from arbitrary distribution at t = 0.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

A Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \ge d_i^*$$

 $S \Rightarrow I$

 $\underset{i}{\bigotimes}$ Threshold d_i^* drawn from arbitrary distribution g at t = 0.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

Appendix

$I \Rightarrow R$

When $D_{t,i} < d_i^*$, individual *i* recovers to state R with probability *r*.

Once in state R, individuals become susceptible aga with probability ρ .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 19 of 65

$I \Rightarrow R$

When $D_{t,i} < d_i^*$, individual *i* recovers to state R with probability *r*.

$R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 19 of 65

A visual explanation

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

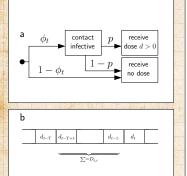
Heterogeneous version

Nutshell

Appendix

References

20 of 65



с

ρ

R

1 if $D_{t,i} < d_i^*$

 $r\rho \text{ if } D_{t,i} < d_i^*$

 $r(1-\rho)$ if $D_{t,i} < d_i^*$

 $-\rho$

1 if $D_{t,i} \ge d_i^*$

 $1 - r \text{ if } D_{t\,i} < d_i^*$

1 if $D_{t,i} \ge d_i^*$

S

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

Look for steady-state behavior as a function exposure probability p. Denote fixed points by ϕ^* .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 Q 21 of 65

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function exposure probability p. Denote fixed points by ϕ^* .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 Q 21 of 65

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function of exposure probability p.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

29 c 21 of 65

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function of exposure probability *p*.
 Denote fixed points by φ*.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function of exposure probability *p*.
 Denote fixed points by *φ**.

Homogeneous version: All individuals have threshold dAll dose sizes are equal: d = 1

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

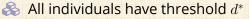
Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function of exposure probability *p*.
 Denote fixed points by *o**.

Homogeneous version:



COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Study SIS-type contagion first:

Recovered individuals are immediately susceptible again:

 $\rho = 1.$

Look for steady-state behavior as a function of exposure probability *p*.
 Denote fixed points by *o**.

Homogeneous version:

All individuals have threshold d^* All dose sizes are equal: d = 1

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Outline

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 22 of 65

Generalized Model Homogeneous version

Fixed points for r < 1, $d^* = 1$, and T = 1:

2 < 1 means recovery is probabilistic.
 T = 1 means individuals forget past interactions.
 d = 1 means one positive interaction will infect a individual.

Evolution of infection level:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: r < 1 means recovery is probabilistic.

T = 1 means individuals forget past interactions. $d^2 = 1$ means one positive interaction will infect a individual.

Evolution of infection level:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

Fixed points for r < 1, $d^* = 1$, and T = 1:

r < 1 means recovery is probabilistic.
 T = 1 means individuals forget past interactions.

 I means one positive interaction will infect a individual.

Evolution of infection level:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

Fixed points for r < 1, $d^* = 1$, and T = 1:

- $rac{1}{2}$ r < 1 means recovery is probabilistic.
- $rac{1}{2}$ T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- $rac{1}{2}$ r < 1 means recovery is probabilistic.
- $rac{1}{2}$ T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = p\phi_t + \phi_t (1 - p\phi_t) (1 - r).$$

 a: Fraction infected between t and t + 1, independent of past state or recovery.
 b: Probability of being infected and not being reinfected.
 b: Probability of not recovering.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- $rac{1}{2}$ r < 1 means recovery is probabilistic.
- $rac{1}{2}$ T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}}$$

a: Fraction infected between t and t + 1, independent of past state or recovery.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na ~ 23 of 65

Fixed points for r < 1, $d^* = 1$, and T = 1:

- $rac{1}{2}$ means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}} + \underbrace{\phi_t(1 - p\phi_t)}_{\mathsf{b}}$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

- $rac{1}{2}$ means recovery is probabilistic.
- T = 1 means individuals forget past interactions.
- $d^* = 1$ means one positive interaction will infect an individual.
- Evolution of infection level:

$$\phi_{t+1} = \underbrace{p\phi_t}_{\mathsf{a}} + \underbrace{\phi_t(1-p\phi_t)}_{\mathsf{b}} \underbrace{(1-r)}_{\mathsf{C}}.$$

- a: Fraction infected between t and t + 1, independent of past state or recovery.
- b: Probability of being infected and not being reinfected.
- c: Probability of not recovering.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshel

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1:

Set
$$\phi_t = \phi^*$$
:

Critical point at $p = p_c = r$. Spreading takes off if p/r > 1Find continuous phase transition as for SIR mod Goodness. Matches $R_o = \beta/\gamma > 1$ condition:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_* = \phi^*$:

$$\phi^* = p \phi^* + (1 - p \phi^*) \phi^* (1 - r)$$

Critical point at $p = p_c = r$. Spreading takes off if p/r > 1Find continuous phase transition as for SIR mod Goodness. Matches $R_o = \beta/\gamma > 1$ condition.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_* = \phi^*$:

$$\phi^* = p \phi^* + (1 - p \phi^*) \phi^* (1 - r)$$

$$\Rightarrow 1=p+(1-p\phi^*)(1-r), \quad \phi^*\neq 0,$$

Critical point at $p = p_c = r$. Spreading takes off if p/r > 1Find continuous phase transition as for SIR mod Goodness. Matches $R_o = \beta/\gamma > 1$ condition.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 24 of 65

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1=p+(1-p\phi^*)(1-r), \quad \phi^*\neq 0,$$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0$.

Critical point at $p = p_c = r$. Spreading takes off if p/r > 1Find continuous phase transition as for SIR mod Goodness Matches $R_o = \beta/\gamma > 1$ condition.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0.$

Scritical point at $p = p_c = r$. Spreading takes off if p/r > 1Find continuous phase transition as for SIR Goodness. Matches $R_o = p/m > 1$ condition

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

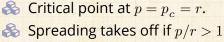
References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0.$



Find continuous phase transition as for SIR model Goodness: Matches $R_o = \beta/\gamma > 1$ condition:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0$.

Critical point at $p = p_c = r$.
Spreading takes off if p/r > 1Find continuous phase transition as for SIR model.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r < 1, $d^* = 1$, and T = 1: Set $\phi_t = \phi^*$:

$$\phi^* = p\phi^* + (1 - p\phi^*)\phi^*(1 - r)$$

$$\Rightarrow 1 = p + (1 - p\phi^*)(1 - r), \quad \phi^* \neq 0,$$

$$\Rightarrow \phi^* = rac{1-r/p}{1-r}$$
 and $\phi^* = 0$.

Critical point at p = p_c = r.
Spreading takes off if p/r > 1
Find continuous phase transition as for SIR model.
Goodness: Matches R_o = β/γ > 1 condition.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

2 C 24 of 65

Fixed points for r = 1, $d^* = 1$, and T > 1

r = 1 means recovery is immediate. T > 1 means individuals remember at least 2 interactions.

d = 1 means only one positive interaction in pas
 T interactions will infect individual.
 Effect of individual interactions is independent from effect of others.
 Call o the steady state level of infection.

Pr(infected) = 1 - Pr(uninfected):

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{2}$ = 1 means recovery is immediate.
 - T > 1 means individuals remember at least 2 interactions.
 - d = 1 means only one positive interaction in pas
 T interactions will infect individual.
 Effect of individual interactions is independent
 from effect of others.
 Call o the steady state level of infection.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

Solution r = 1 means recovery is immediate.
T > 1 means individuals remember at least 2 interactions.

d = 1 means only one positive interaction in particular interactions will infect individual.
 Effect of individual interactions is independent from effect of others.
 Call of the steady state level of infection.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{2}$ = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past *T* interactions will infect individual.
 - Effect of individual interactions is independen from effect of others. Call the steady state level of infection. Pr(infected) = 1 - Pr(uninfected):

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{3}$ r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past *T* interactions will infect individual.
- Effect of individual interactions is independent from effect of others.

Call of the steady state level of infection Pr(infected) = 1 - Pr(uninfected):

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

na ~ 25 of 65

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{3}$ r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past *T* interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- \mathfrak{S} Call ϕ^* the steady state level of infection.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

na ~ 25 of 65

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{3}$ r = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past *T* interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- \mathfrak{B} Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na ~ 25 of 65

Fixed points for r = 1, $d^* = 1$, and T > 1

- $rac{1}{2}$ = 1 means recovery is immediate.
- T > 1 means individuals remember at least 2 interactions.
- $d^* = 1$ means only one positive interaction in past *T* interactions will infect individual.
- Effect of individual interactions is independent from effect of others.
- \mathfrak{B} Call ϕ^* the steady state level of infection.
- Pr(infected) = 1 Pr(uninfected):

$$\phi^* = 1 - (1 - p\phi^*)^T$$

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

$$\phi^* = 1 - (1-p\phi^*)^T$$

Again find continuous phase transition Note: we can solve for p but not ϕ^* :

 $p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/2}]$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

$$\phi^* = 1-(1-p\phi^*)^T$$

 \bigotimes Look for critical infection probability p_c .

Again find continuous phase transition Note: we can solve for p but not ϕ^* :

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

990 26 of 65

$$\phi^* = 1 - (1-p\phi^*)^T$$

♣ Look for critical infection probability p_c . ♣ As $\phi^* \rightarrow 0$, we see

$$\phi^* \simeq pT\phi^*$$

Again find continuous phase transition . Note: we can solve for p but not ϕ^* : $p = (\phi^*)^{-1}[1 - (1 - \phi^*)^{1/T}].$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

990 26 of 65

$$\phi^* = 1-(1-p\phi^*)^T$$

♣ Look for critical infection probability p_c . ♣ As $\phi^* \rightarrow 0$, we see

$$\phi^* \simeq pT \phi^* \ \Rightarrow p_c = 1/T$$

Again find continuous phase transition. Note: we can solve for p but not ϕ^* : $p \models (\phi^*)^{-1}[1 - (1 - \phi^*)^{1/T}].$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

990 26 of 65

Homogeneous, one hit models: Fixed points for r = 1, $d^* = 1$, and T > 1S Closed form expression for ϕ^* :

$$\phi^* = 1 - (1-p\phi^*)^T$$

♣ Look for critical infection probability p_c . ♣ As $\phi^* \rightarrow 0$, we see

$$\phi^* \simeq pT\phi^* \ \Rightarrow p_c = 1/T$$

🙈 Again find continuous phase transition ...

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

26 of 65

Homogeneous, one hit models: Fixed points for r = 1, $d^* = 1$, and T > 1S Closed form expression for ϕ^* :

$$\phi^* = 1 - (1-p\phi^*)^T$$

♣ Look for critical infection probability p_c . ♣ As $\phi^* \to 0$, we see

$$\phi^* \simeq pT\phi^* \Rightarrow p_c = 1/T$$

Again find continuous phase transition ... Note: we can solve for p but not ϕ^* :

$$p = (\phi^*)^{-1} [1 - (1 - \phi^*)^{1/T}].$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

So For r < 1, add to right hand side fraction who:

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

So For r < 1, add to right hand side fraction who: 1. Did not receive any infections in last T time steps,

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

Sor r < 1, add to right hand side fraction who: 1. Did not receive any infections in last T time steps, 2. And did not recover from a previous infection.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

$$\phi^* = 1 - (1 - p\phi^*)^T.$$

Sor r < 1, add to right hand side fraction who: 1. Did not receive any infections in last T time steps, 2. And did not recover from a previous infection.

Define corresponding dose histories. Example: AA.

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

 $\phi^* = 1 - (1 - p\phi^*)^T.$

Sor r < 1, add to right hand side fraction who: 1. Did not receive any infections in last T time steps, 2. And did not recover from a previous infection.

Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

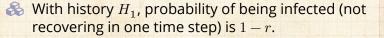
Start with r = 1, $d^* = 1$, and $T \ge 1$ case we have just examined:

 $\phi^* = 1 - (1 - p\phi^*)^T.$

Sor r < 1, add to right hand side fraction who: 1. Did not receive any infections in last T time steps, 2. And did not recover from a previous infection.

Define corresponding dose histories. Example:

$$H_1 = \{\dots, d_{t-T-2}, d_{t-T-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's}}\},\$$



COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ 3 In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}.$$

Overall probabilities for dose histories occurring

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

na (~ 28 of 65

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ 3 In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1 - p \phi^*)^T (1 - r),$$

Pr(infection T + m + 1 time steps ago) Pr(no doses received in T + m time steps since Pr(no recovery in m chances)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ 3 In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p\phi^*(1-p\phi^*)^T(1-r),$$

 $P(H_{m+1}) = p\phi^* (1 - p\phi^*)^{T+m} (1 - r)^{m+1}$

Pr(infection T + m + 1 time steps ago) Pr(no doses received in T + m time steps sinc Pr(no recovery in m chances)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ \bigotimes In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1 - p \phi^*)^T (1 - r)$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a}$$

a: Pr(infection T + m + 1 time steps ago)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Nutshell

Appendix

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ \bigotimes In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1 - p \phi^*)^T (1 - r)$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_{a} \underbrace{(1 - p\phi^*)^{T+m}}_{b}$$

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Homogeneous, one hit models: Fixed points for $r \le 1$, $d^* = 1$, and $T \ge 1$ \bigotimes In general, relevant dose histories are:

$$H_{m+1} = \{\dots, d_{t-T-m-1}, 1, \underbrace{0, 0, \dots, 0, 0}_{m \text{ 0's }}, \underbrace{0, 0, \dots, 0, 0}_{T \text{ 0's }}\}$$

Overall probabilities for dose histories occurring:

$$P(H_1) = p \phi^* (1-p \phi^*)^T (1-r),$$

$$P(H_{m+1}) = \underbrace{p\phi^*}_a \underbrace{(1-p\phi^*)^{T+m}}_b \underbrace{(1-r)^{m+1}}_c$$

a: Pr(infection T + m + 1 time steps ago)
b: Pr(no doses received in T + m time steps since)
c: Pr(no recovery in m chances)

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

Using the probability of not recovering, we end u with a fixed point equation:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

29 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m})$$

Using the probability of not recovering, we end u with a fixed point equation:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 29 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 29 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p \phi^* (1-p \phi^*)^T}{1-(1-p \phi^*)(1-r)}$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 29 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Pr(recovery) = Pr(seeing no doses for at least T time steps and recovering)

$$= r \sum_{m=0}^{\infty} P(H_{T+m}) = r \sum_{m=0}^{\infty} p \phi^* (1 - p \phi^*)^{T+m} (1 - r)^m$$

$$= r \frac{p \phi^* (1 - p \phi^*)^T}{1 - (1 - p \phi^*)(1 - r)}$$

Solution Using the probability of not recovering, we end up

with a fixed point equation:

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

ク へ へ 29 of 65

UNIVERSITY

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Find critical exposure probability by examinin, above as $\phi^* \rightarrow 0$.

where $\tau =$ mean recovery time for simple relaxation process. Decreasing r keeps individuals infected for kand decreases p_e .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 30 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Sind critical exposure probability by examining above as $\phi^* \rightarrow 0$.

where $\tau =$ mean recovery time for simple relaxation process. Decreasing r keeps individuals infected for lo and decreases p_c .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 0 30 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

2

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Find critical exposure probability by examining above as $\phi^* \rightarrow 0$.

$$\Rightarrow \quad p_c = \frac{1}{T + 1/r - 1} = \frac{1}{T + \tau}$$

where τ = mean recovery time for simple relaxation process.

Decreasing *r* keeps individuals infected for long and decreases *p*_e.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 0 30 of 65

Fixed points for $r \leq 1$, $d^* = 1$, and $T \geq 1$

Fixed point equation (again):

3

$$\phi^* = 1 - \frac{r(1 - p\phi^*)^T}{1 - (1 - p\phi^*)(1 - r)}.$$

Sind critical exposure probability by examining above as $\phi^* \rightarrow 0$.

$$\Rightarrow \quad p_c = \frac{1}{T + 1/r - 1} = \frac{1}{T + \tau}$$

where τ = mean recovery time for simple relaxation process.

Solution Decreasing r keeps individuals infected for longer and decreases p_c .

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

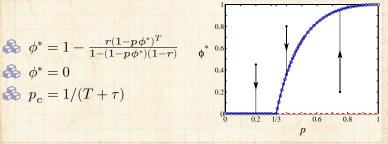
Homogeneous version Heterogeneous version

Nutshell

Appendix

Epidemic threshold:

Fixed points for $d^* = 1$, $r \leq 1$, and $T \geq 1$



Independent Interaction models Interdependent interaction models Generalized Model Homogeneous version Heterogeneous version Nutshell Appendix

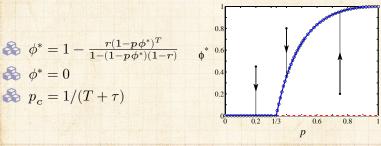
COCONUTS

References

Solution Example details: $T = 2 \& r = 1/2 \Rightarrow p_c = 1/3$. Solution Blue = stable, red = unstable, fixed points. Solution $\tau = 1/r - 1$ = characteristic recovery time = 1. Solution $T + \tau \simeq$ average memory in system = 3.

Epidemic threshold:

Fixed points for $d^* = 1$, $r \leq 1$, and $T \geq 1$



Independent Interaction models Interdependent interaction models Generalized Model Henrogeneous version Heterogeneous version Nutshell Appendix References

COCONUTS

& Example details: T = 2 & r = 1/2 ⇒ p_c = 1/3.
& Blue = stable, red = unstable, fixed points.
& τ = 1/r - 1 = characteristic recovery time = 1.
T + τ ≃ average memory in system = 3.
& Phase transition can be seen as a transcritical bifurcation. ^[12]

20 31 of 65

All right: $d^* = 1$ models correspond to simple disease spreading models.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 32 of 65

3

All right: $d^* = 1$ models correspond to simple disease spreading models. 3 What if we allow $d^* \geq 2?$

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

29 CP 32 of 65

All right: $d^* = 1$ models correspond to simple disease spreading models.

 \Im What if we allow $d^* \ge 2?$

3

Again first consider SIS with immediate recovery (r = 1)

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 0 32 of 65

- All right: $d^* = 1$ models correspond to simple disease spreading models.
- $\textcircled{What if we allow } d^* \geq 2?$
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1))$.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 32 of 65

- All right: $d^* = 1$ models correspond to simple disease spreading models.
- $\textcircled{What if we allow } d^* \geq 2?$
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1))$.
- To be infected, must have at least d^* exposures in last T time steps.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 0 32 of 65

- All right: $d^* = 1$ models correspond to simple disease spreading models.
- $\textcircled{What if we allow } d^* \geq 2?$
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1))$.
- To be infected, must have at least d* exposures in last T time steps.
 - Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

- All right: $d^* = 1$ models correspond to simple disease spreading models.
- $\textcircled{What if we allow } d^* \geq 2?$
- Again first consider SIS with immediate recovery (r = 1)
- Also continue to assume unit dose sizes $(f(d) = \delta(d-1)).$
- To be infected, must have at least d* exposures in last T time steps.

Fixed point equation:

$$\phi^* = \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1-p\phi^*)^{T-i}.$$

 \mathbf{s} As always, $\phi^* = 0$ works too.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

e.g., for $d^* = 2, T = 3$:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

 \bigotimes Exactly solvable for small T.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T. e.g., for $d^* = 2$, T = 3: COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$

Exactly solvable for small T. e.g., for $d^* = 2$, T = 3:

Fixed point equation: $\phi^* =$

$$\psi = \frac{1}{3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi^{*3}}$$

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$ Solve the second seco

Fixed point equation:
 \$\phi^* = \$\$\$ 3p^2 \phi^{*2} (1 - p \phi^*) + p^3 \phi^{*3}\$
 See new structure: a saddle node bifurcation [12] appears as p increases.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

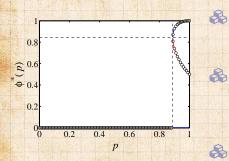
Appendix

References

UNIVERSITY VERMONT

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$ Solvable for small T. Solvable for small T.



Sized point equation: $\phi^* =$ $3p^2 {\phi^*}^2 (1 - p \phi^*) + p^3 {\phi^*}^3$ See new structure: a saddle node bifurcation^[12] appears as *p* increases. $(p_h, \phi^*) = (8/9, 27/32).$ COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

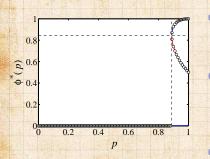
Appendix

References

VERMONT

na @ 33 of 65

Fixed points for r = 1, $d^* > 1$, and $T \ge 1$ Solvable for small T. Solvable equal to $d^* = 2$, T = 3:



Fixed point equation:
 \$\phi^* = \$\$\$ 3p^2 \phi^{*2}(1 - p \phi^*) + p^3 \phi^{*3}\$
 See new structure: a saddle node bifurcation [12] appears as p increases.

 $\textcircled{b} (p_b,\phi^*) = (8/9,27/32).$

Introductio

Independent Interaction models

COCONUTS

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

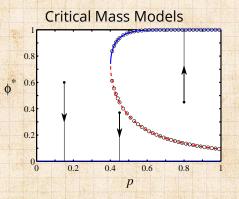
References

Behavior akin to output of Granovetter's threshold model.

200 33 of 65

NIVERSITY

Another example:



COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

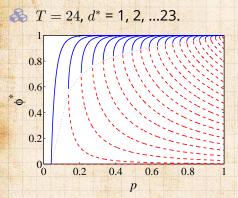
Nutshell

Appendix

References

 $r = 1, d^* = 3, T = 12$ Saddle-node bifurcation.

200 34 of 65



 $d^* = 1 \rightarrow d^* > 1;$ jump between continuous phase transition and pure critical mass model. Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

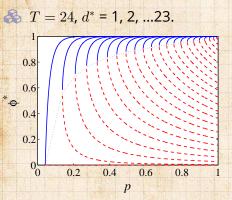
Nutshell

Appendix

References

ク へ C 35 of 65

NIVERSITY



 $d^* = 1 \rightarrow d^* > 1;$ jump between continuous phase transition and pure critical mass model. Unstable curve for $d^* = 2$ does not hit $\phi^* = 0$. Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

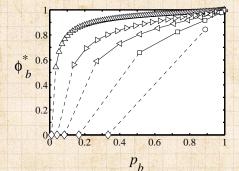
Nutshell

Appendix

References

See either simple phase transition or saddle-node bifurcation, nothing in between.

Sifurcation points for example fixed T, varying d^* :



COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 36 of 65

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 37 of 65

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
 Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^t d_i(t')$$

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 37 of 65

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
 Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^{t} d_i(t')$$

Solution Example for T = 24, $d^* = 14$:

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

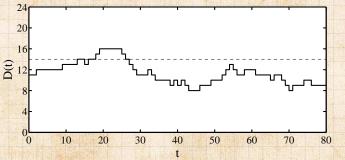
References

20 0 37 of 65

For r < 1, need to determine probability of recovering as a function of time since dose load last dropped below threshold.
 Partially summed random walks:

$$D_i(t) = \sum_{t'=t-T+1}^{t} d_i(t')$$

So Example for T = 24, $d^* = 14$:



COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

20 0 37 of 65

Define γ_m as fraction of individuals for whom D(t) last equaled, and has since been below, their threshold m time steps ago,

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

na (~ 38 of 65

Define γ_m as fraction of individuals for whom D(t) last equaled, and has since been below, their threshold m time steps ago,
 Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^\infty (1-r)^m \gamma_m(p,\phi^*).$$

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 38 of 65

So Define γ_m as fraction of individuals for whom D(t)last equaled, and has since been below, their threshold *m* time steps ago,

Fraction of individuals below threshold but not recovered:

$$\Gamma(p,\phi^*;r) = \sum_{m=1}^\infty (1-r)^m \gamma_m(p,\phi^*).$$

Trille

COCONUTS

ndependent

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Fixed point equation:

$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}.$$

Want to examine how dose load can drop below threshold of $d^* = 2$:

fwo subsequences do this:

Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.

To stay below threshold, observe acceptable following sequences may be composed of any combination of two subsequences:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

VERMONT

200 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

UNIVERSITY

29 CP 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

🚳 Two subsequences do this:

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

20 CA 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

🚳 Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

20 CA 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

🚳 Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

2 a a 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

🚳 Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$ Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$.

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Appendix

References

UNIVERSITY 2 a a 39 of 65

🚳 Want to examine how dose load can drop below threshold of $d^* = 2$:

$$D_n = 2 \Rightarrow D_{n+1} = 1$$

🚳 Two subsequences do this: $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}\} = \{1, 1, 0, 0\}$ and $\{d_{n-2}, d_{n-1}, d_n, d_{n+1}, d_{n+2}\} = \{1, 0, 1, 0, 0\}.$ 🚳 Note: second sequence includes an extra 0 since this is necessary to stay below $d^* = 2$. lacktriangleright Start following sequences may be composed of any combination of two subsequences:

$$a = \{0\}$$
 and $b = \{1, 0, 0\}.$

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Appendix

References

UNIVERSITY 2 9 P 39 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

where [] means floor. Corresponding possible values fo

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 40 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

 N_a = number of $a = \{0\}$ subsequences.

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 40 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

- N_a = number of $a = \{0\}$ subsequences.
- $\Im N_b$ = number of $b = \{1, 0, 0\}$ subsequences.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

う a C 40 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

 N_a = number of $a = \{0\}$ subsequences.

 N_b = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 40 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

 N_a = number of $a = \{0\}$ subsequences.

 $\Im N_b$ = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \ldots, \left\lfloor \frac{m}{3}
ight
floor$$
 .

where [.] means floor.

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 40 of 65

Determine number of sequences of length m that keep dose load below $d^* = 2$.

 N_a = number of $a = \{0\}$ subsequences.

 $\Im N_b$ = number of $b = \{1, 0, 0\}$ subsequences.

$$m = N_a \cdot 1 + N_b \cdot 3$$

Possible values for N_b :

$$0, 1, 2, \dots, \left\lfloor \frac{m}{3}
ight
floor$$
.

where $\lfloor \cdot \rfloor$ means floor. Sourcesponding possible values for N_a :

$$m, m-3, m-6, \ldots, m-3 \left| \frac{m}{3} \right|.$$

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

\circledast How many ways to arrange $N_a a$'s and $N_b b$'s?

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 41 of 65

How many ways to arrange N_a a's and N_b b's?
 Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\ldots,Z_{N_a+N_b}\}$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 Al of 65

How many ways to arrange N_a a's and N_b b's?
 Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\ldots,Z_{N_a+N_b}\}$$

 $\Im N_a + N_b$ slots for subsequences.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 Al of 65

How many ways to arrange N_a a's and N_b b's?
 Think of overall sequence in terms of subsequences:

$$\{Z_1,Z_2,\ldots,Z_{N_a+N_b}\}$$

 $N_a + N_b$ slots for subsequences.
 Choose positions of either *a*'s or *b*'s:

$$\binom{N_a+N_b}{N_a} = \binom{N_a+N_b}{N_b}$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$.

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 42 of 65

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$. $P(a) = (1 - p\phi^*)$ and $P(b) = p\phi^*(1 - p\phi^*)^2$

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 42 of 65

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3\rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3\rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$. $P(a) = (1 - p\phi^*)$ and $P(b) = p\phi^*(1 - p\phi^*)^2$ Total probability of allowable sequences of length m:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k$$

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

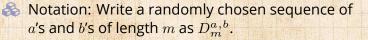
References

Total number of allowable sequences of length m:

$$\sum_{N_b=0}^{\lfloor m/3 \rfloor} \binom{N_b+N_a}{N_b} = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k}$$

where $k = N_b$ and we have used $m = N_a + 3N_b$. $P(a) = (1 - p\phi^*)$ and $P(b) = p\phi^*(1 - p\phi^*)^2$ Total probability of allowable sequences of length m:

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$



Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Sequence endings.
 Six possible sequences:

 $D_1 = \{1, 1, 0, 0, D_{m-1}^{a, b}\}$ $D_2 = \{1, 1, 0, 0, D_m^{a,b}, 1\}$ $D_3 = \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\}$ $D_4 = \{1, 0, 1, 0, 0, D_{m-2}^{a, b}\}$ $D_5 = \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\}$ $D_6 = \{1, 0, 1, 0, 0, D_m^{a, b}, 1, 0\}$ COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 43 of 65

Sequence endings.
 Six possible sequences:

 $D_1 = \{1, 1, 0, 0, D_{m-1}^{a, b}\}$ $D_2 = \{1, 1, 0, 0, D_m^{a,b}, 1\}$ $D_3 = \{1, 1, 0, 0, D_{m-3}^{a,b}, 1, 0\}$ $D_4 = \{1, 0, 1, 0, 0, D_{m-2}^{a, b}\}$ $D_5 = \{1, 0, 1, 0, 0, D_{m-3}^{a,b}, 1\}$ $D_6 = \{1, 0, 1, 0, 0, D_m^{a, b}, 1, 0\}$ COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 A 43 of 65

Nearly there ...must account for details of sequence endings.
 Three endings ⇒ Six possible sequences:

2 0 43 of 65

COCONUTS

Introduction

Interaction models

Interdependent interaction models

F.P. Eq:
$$\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=d^*}^T \binom{T}{i} (p\phi^*)^i (1 - p\phi^*)^{T-i}$$

where $\Gamma(p, \phi^*; r) =$

$$(1-r)(p\phi)^{2}(1-p\phi)^{2} + \sum_{m=1}^{\infty} (1-r)^{m}(p\phi)^{2}(1-p\phi)^{2} \times \frac{1}{2} + \sum_{m=1}^{\infty} (1-r)^{m}(p\phi)^{2} \times \frac{1}{2} + \sum_{m$$

$$\begin{split} & [\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}] \\ & \text{and} \end{split}$$

$$\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} \binom{m-2k}{k} (1-p\phi^*)^{m-k} (p\phi^*)^k.$$

Note: $(1-r)(p\phi)^2(1-p\phi)^2$ accounts for $\{1, 0, 1, 0\}$ sequence.

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

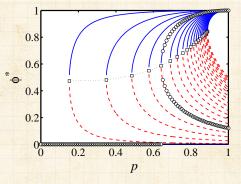
Nutshell

Appendix

References

20 A 44 of 65

 $T = 3, d^* = 2$



 $r = 0.01, 0.05, 0.10, 0.15, 0.20, \dots, 1.00.$

Introduction

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model

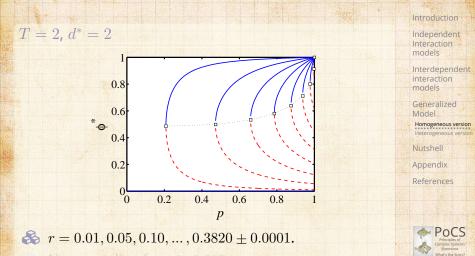
Homogeneous version Heterogeneous version

Nutshell

Appendix

References

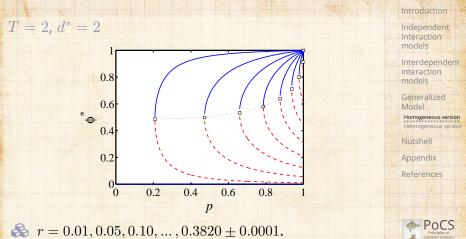
20 A 45 of 65



to spreading for $r \gtrsim 0.382$.

A C 46 of 65

COCONUTS



 \Im No spreading for $r \gtrsim 0.382$.

What's the Story?

20 46 of 65

COCONUTS

🚳 Two kinds of contagion processes:

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 47 of 65

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 47 of 65

Two kinds of contagion processes:
 1. Continuous phase transition: SIR-like.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Two kinds of contagion processes:
 Continuous phase transition: SIR-like.

2. Saddle-node bifurcation: threshold model-like.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Two kinds of contagion processes:
 1. Continuous phase transition: SIR-like.
 2. Saddle-node bifurcation: threshold model-like.

 $d^* = 1$: spreading from small seeds possible.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Two kinds of contagion processes:

 Continuous phase transition: SIR-like.
 Saddle-node bifurcation: threshold model-like.

 d* = 1: spreading from small seeds possible.
 d* > 1: critical mass model.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Structure
 Two kinds of contagion processes:

 Continuous phase transition: SIR-like.
 Saddle-node bifurcation: threshold model-like.
 Saddle-node from small seeds possible.
 d* = 1: spreading from small seeds possible.
 d* > 1: critical mass model.
 Are other behaviors possible?

Outline

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

20 A 48 of 65

Generalized Model

Heterogeneous version

Now allow for general dose distributions (f) and threshold distributions (g).

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

20 A 49 of 65

Now allow for general dose distributions (*f*) and threshold distributions (*g*).
 Key quantities:

$$P_k = \int_0^\infty \mathrm{d} d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \ge d^*
ight) \, ext{where} \, 1 \le k \le T$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Heterogeneous version

Nutshell

Appendix

References

Now allow for general dose distributions (*f*) and threshold distributions (*g*).
 Key quantities:

$$P_k = \int_0^\infty \mathsf{d} d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \ge d^*
ight) \, ext{where} \, 1 \le k \le T$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses. Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

20 A 49 of 65

COcoNuTS

Now allow for general dose distributions (*f*) and threshold distributions (*g*).
 Key quantities:

$$P_k = \int_0^\infty \mathsf{d} d^* \, g(d^*) P\left(\sum_{j=1}^k d_j \ge d^*
ight) \, ext{where} \, 1 \le k \le T$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

🚷 e.g.,

 P₁ = Probability that <u>one dose</u> will exceed the threshold of a random individual
 = Fraction of most vulnerable individuals. COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshel

Appendix

References

20 A 49 of 65

🚳 Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

COCONUTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

Pinciples of Complex Systems @poccvvx What's the Story?

na (~ 50 of 65

 P₁T is the expected number of vulnerables the initial infected individual meets before recoverin
 p₁P₁T is - the expected number of successful infections (equivalent to B₀).

🙈 Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$\boxed{pP_1T\geq 1}$$

 P₁T is the expected number of vulnerables the initial infected individual meets before recovering 2. pP₁T is - the expected number of successful infections (equivalent to R₀).

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshel

Appendix

References

20 0 50 of 65

🙈 Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \ge 1$$
 or $\Rightarrow p_c$

$$\Rightarrow p_c = 1/(TP_1)$$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

Heterogeneous version

Nutshell

Appendix

References

20 0 50 of 65

 P₁ T is the expected number of vulnerables the initial infected individual meets before recovering 2. pP₁T is - the expected number of successful infections (equivalent to R₀).

🙈 Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$\left| pP_{1}T \ge 1 \right|$$
 or =

$$\Rightarrow p_c = 1/(TP_1)$$

🚳 Very good:

 P₁T is the expected number of vulnerables the initial infected individual meets before recovering.

COCONUTS

Interaction models Interdependent interaction models

Generalized

Heterogeneous version

Model

Appendix References

20 0 50 of 65

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \ge 1$$
 or

$$\Rightarrow p_c = 1/(TP_1)$$

Independent Interaction models

COCONUTS

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

🚳 Very good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- 2. pP_1T is \therefore the expected number of successful infections (equivalent to R_0).

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

 \clubsuit Expand around $\phi^* = 0$ to find when spread from single seed is possible:

$$pP_1T \ge 1$$
 or

$$\Rightarrow p_c = 1/(TP_1)$$

Heterogeneous version

Model

Appendix

References

Very good:

- 1. P_1T is the expected number of vulnerables the initial infected individual meets before recovering.
- 2. pP_1T is : the expected number of successful infections (equivalent to R_0).

Solution Observe: p, may exceed 1 meaning no spreading from a small seed.

2 a a 50 of 65

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized

Next: Determine slope of fixed point curve at critical point p_c.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

うへで 51 of 65

Next: Determine slope of fixed point curve at critical point p_c.
 Expand fixed point equation around (p, φ*) = (p_c, 0).

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

20 0 51 of 65

Next: Determine slope of fixed point curve at critical point p_c.
 Expand fixed point equation around (p, φ*) = (p_c, 0).
 Find slope depends on (P₁ - P₂/2)^[6] (see Appendix).

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

na (~ 51 of 65

3

- Next: Determine slope of fixed point curve at critical point p_c.
 Expand fixed point equation around (p, φ*) = (p_c, 0).
 - Find slope depends on $(P_1 P_2/2)^{[6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshel

Appendix

References

200 51 of 65

- Solution Next: Determine slope of fixed point curve at critical point p_c .
 - Expand fixed point equation around $(p, \phi^*) = (p_c, 0)$.
- Find slope depends on $(P_1 P_2/2)^{[6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshel

Appendix

References

200 51 of 65

- Solution Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0).$
- Find slope depends on $(P_1 P_2/2)^{[6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshel

Appendix

References

- Solution Next: Determine slope of fixed point curve at critical point p_c .
- Expand fixed point equation around $(p, \phi^*) = (p_c, 0).$
- Find slope depends on $(P_1 P_2/2)^{[6]}$ (see Appendix).
- Behavior near fixed point depends on whether this slope is
 - 1. positive: $P_1 > P_2/2$ (continuous phase transition)
 - 2. negative: $P_1 < P_2/2$ (discontinuous phase transition)
- Now find <u>three</u> basic universal classes of contagion models ...

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version

Heterogeneous version

Nutshel

Appendix

References

Example configuration:

Dose sizes are lognormally distributed with mean 1 and variance 0.433.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Nutshell

Appendix

References

2 9 0 52 of 65

Example configuration:

Dose sizes are lognormally distributed with mean 1 and variance 0.433.

3 Memory span: T = 10.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

Appendix

References

2 9 0 52 of 65

Example configuration:

Dose sizes are lognormally distributed with mean 1 and variance 0.433.

Solution Memory span: T = 10.

🗞 Thresholds are uniformly set at

1.
$$d_* = 0.5$$

2. $d_* = 1.6$
3. $d_* = 3$

Spread of dose sizes matters, details are not important.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous versio

Heterogeneous version

Nutshell

Appendix

References

na (~ 52 of 65

Example configuration:

Dose sizes are lognormally distributed with mean 1 and variance 0.433.

3 Memory span: T = 10.

Thresholds are uniformly set at

1.
$$d_* = 0.5$$

2. $d_* = 1.6$
3. $d_* = 3$

Spread of dose sizes matters, details are not important.

COCONUTS

Interaction models

Interdependent interaction models

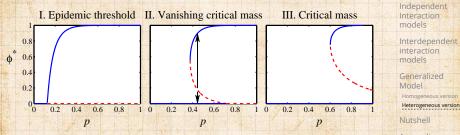
Generalized Model

Heterogeneous version

Appendix

References

Three universal classes

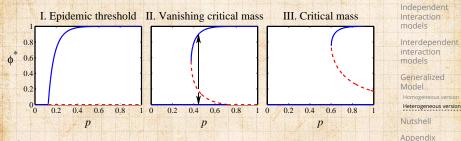


Appendix

References

na ~ 53 of 65

Three universal classes



Epidemic threshold: $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$

References

na ~ 53 of 65

Three universal classes

Interdependent

Heterogeneous version

Interaction models

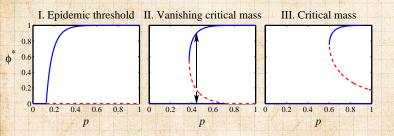
interaction

Generalized Model

Appendix

References

models



Three universal classes

Interdependent

Heterogeneous version

Interaction models

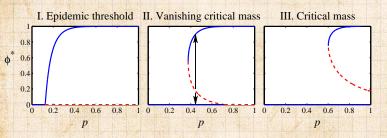
interaction

Generalized Model

Appendix

References

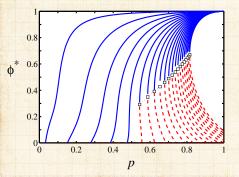
models



20 0 53 of 65

Heterogeneous case

Now allow r < 1:



II-III transition generalizes: p_c = 1/[P₁(T + τ)] where τ = 1/r - 1 = expected recovery time
 I-II transition less pleasant analytically.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model

Heterogeneous version

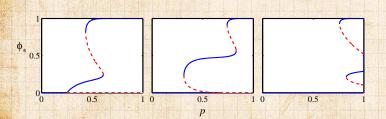
Nutshell

Appendix

References

20 0 54 of 65

More complicated models



Due to heterogeneity in individual thresholds. 1 Three classes based on behavior for small seeds. Same model classification holds: I, II, and III.

COCONUTS

Interaction models Interdependent

interaction

Heterogeneous version

models Generalized Model

Appendix

References

2 a a 55 of 65

Hysteresis in vanishing critical mass models

COcoNuTS

Independent Interaction models

Interdependent interaction models

Generalized Model

Homogeneous version

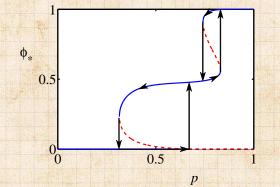
Heterogeneous version

Nutshell

Appendix

References

200 56 of 65



Memory is a natural ingredient.

COCONUTS

Introduction

Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

2 0 0 57 of 65

Memory is a natural ingredient. Three universal classes of contagion processes:

I. Epidemic Threshold
 II. Vanishing Critical Mass
 III. Critical Mass

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Memory is a natural ingredient. Three universal classes of contagion processes:

> 1. I. Epidemic Threshold 2. II. Vanishing Critical Mass 3. III. Critical Mass

Dramatic changes in behavior possible.

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

Nutshell

Appendix

References

Memory is a natural ingredient. Three universal classes of contagion processes: 1. I. Epidemic Threshold 2. II. Vanishing Critical Mass 3. III. Critical Mass Dramatic changes in behavior possible. To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ , P_1 , and/or P_2).

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model Heterogeneous version

Nutshell Appendix

References

2 a a 57 of 65

Memory is a natural ingredient. Three universal classes of contagion processes: 1. I. Epidemic Threshold 2. II. Vanishing Critical Mass 3. III. Critical Mass Dramatic changes in behavior possible. To change kind of model: 'adjust' memory, 4 recovery, fraction of vulnerable individuals (T, r, ρ , P_1 , and/or P_2). 🚳 To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0).

COCONUTS

Interaction models

Interdependent interaction models

Generalized Model

Nutshell Appendix References

Single seed infects others if $pP_1(T + \tau) \ge 1$.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 0 58 of 65

Single seed infects others if $pP_1(T + \tau) \ge 1$. Key quantity: $p_c = 1/[P_1(T + \tau)]$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 58 of 65

Single seed infects others if $pP_1(T + \tau) \ge 1$. Key quantity: $p_c = 1/[P_1(T + \tau)]$ If $p_c < 1 \Rightarrow$ contagion can spread from single seed.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 58 of 65

Single seed infects others if $pP_1(T + \tau) \ge 1$. Key quantity: $p_c = 1/[P_1(T + \tau)]$ If $p_c < 1 \Rightarrow$ contagion can spread from single seed. Depends only on:

- 1. System Memory $(T + \tau)$.
- 2. Fraction of highly vulnerable individuals (P_1) .

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

Single seed infects others if pP₁(T + τ) ≥ 1.
Key quantity: p_c = 1/[P₁(T + τ)]
If p_c < 1 ⇒ contagion can spread from single seed.
Depends only on:

System Memory (T + τ).
Fraction of highly vulnerable individuals (P₁).

Details unimportant: Many threshold and dose distributions give same P_k.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

200 58 of 65

Single seed infects others if $pP_1(T + \tau) > 1$. Key quantity: $p_c = 1/[P_1(T+\tau)]$ rightarrow If $p_c < 1 \Rightarrow$ contagion can spread from single seed. Depends only on: 1. System Memory $(T + \tau)$. 2. Fraction of highly vulnerable individuals (P_1) . Details unimportant: Many threshold and dose distributions give same P_k . Another example of a model where vulnerable/gullible population may be more important than a small group of super-spreaders or influentials.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

WNIVERSITY VERMONT

200 58 of 65

 ϕ^*

Introduction

COcoNuTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix References

na ~ 59 of 65

$$\begin{split} &= \sum_{k=1}^{T} \binom{T}{k} P_{k}(p\phi^{*})^{k} (1 - p\phi^{*})^{T-k}, \\ &= \sum_{k=1}^{T} \binom{T}{k} P_{k}(p\phi^{*})^{k} \sum_{j=0}^{T-k} \binom{T-k}{j} (-p\phi^{*})^{j}, \\ &= \sum_{k=1}^{T} \sum_{j=0}^{T-k} \binom{T}{k} \binom{T-k}{j} P_{k}(-1)^{j} (p\phi^{*})^{k+j}, \\ &= \sum_{m=1}^{T} \sum_{k=1}^{m} \binom{T}{k} \binom{T-k}{m-k} P_{k}(-1)^{m-k} (p\phi^{*})^{m}, \\ &= \sum_{m=1}^{T} C_{m} (p\phi^{*})^{m} \end{split}$$

$C_m = (-1)^m \binom{T}{m} \sum_{k=1}^m (-1)^k \binom{m}{k} P_k,$

since

$$\binom{T}{k}\binom{T-k}{m-k}$$

$$= \frac{T!}{k!(T-k)!} \frac{(T-k)!}{(m-k)!(T-m)!}$$

= $\frac{T!}{m!(T-m)!} \frac{m!}{k!(m-k)!}$
= $\binom{T}{m} \binom{m}{k}.$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix References

linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {T \choose 2}(-2P_1 + P_2).$

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix References

20 61 of 65

\delta Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {T \choose 2}(-2P_1 + P_2)$. Using $p_c = 1/(TP_1)$:

 $\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p-p_c) = \frac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$

COCONUTS

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix References

\delta Linearization gives

$$\phi^* \simeq C_1 p \phi^* + C_2 p_c^2 {\phi^*}^2.$$

where $C_1 = TP_1(=1/p_c)$ and $C_2 = {T \choose 2}(-2P_1 + P_2)$. Using $p_c = 1/(TP_1)$:

 $\phi^* \simeq \frac{C_1}{C_2 p_c^2} (p-p_c) = \frac{T^2 P_1^3}{(T-1)(P_1-P_2/2)} (p-p_c).$

Sign of derivative governed by $P_1 - P_2/2$.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix References

References I

 F. Bass. A new product growth model for consumer durables. <u>Manage. Sci.</u>, 15:215–227, 1969. pdf

- [2] C. Castillo-Chavez and B. Song. Models for the Transmission Dynamics of Fanatic Behaviors, volume 28, pages 155–172. SIAM, 2003.
- [3] D. J. Daley and D. G. Kendall. Epidemics and rumours. Nature, 204:1118, 1964. pdf C
- [4] D. J. Daley and D. G. Kendall.
 Stochastic rumours.
 J. Inst. Math. Appl., 1:42–55, 1965.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

200 62 of 65

References II

[5] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of contagion. Phys. Rev. Lett., 92:218701, 2004. pdf C

 [6] P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion.
 J. Theor. Biol., 232:587–604, 2005. pdf

[7] W. Goffman and V. A. Newill. Generalization of epidemic theory: An application to the transmission of ideas. Nature, 204:225–228, 1964. pdf^C

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 03 of 65

References III

- [8] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf
- [9] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity.
 Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf C

[10] W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf C

COcoNuTS

ntroduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshell

Appendix

References

20 64 of 65

References IV

[11] J. D. Murray. Mathematical Biology. Springer, New York, Third edition, 2002.

[12] S. H. Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, Reading, Massachusetts, 1994.

COcoNuTS

Introduction

Independent Interaction models

Interdependent interaction models

Generalized Model Homogeneous version Heterogeneous version

Nutshel

Appendix

References

na (~ 65 of 65