Random walks and diffusion on networks

Last updated：2018／03／23，19：15：27
Complex Networks｜＠networksvox
CSYS／MATH 303，Spring， 2018

Prof．Peter Dodds｜＠peterdodds

Dept．of Mathematics \＆Statistics｜Vermont Complex Systems Center
Vermont Advanced Computing Core｜University of Vermont

© 1 © $\times(3$

Licensed under the Creative Commons Atribution－NonCommercial－ShareAlike 3.0 License．

These slides are brought to you by：

These slides are also brought to you by：
Special Guest Executive Producer

\checkmark On Instagram at pratchett the＿cat \quad ©
－PoCS
 つac 1 of 11 COcoNuTS

Random walks on networks
＊PoCS

つดc 2 of 11

COcoNuTS

Random walks on networks
or PoCS
6
nac 3 of 11

Random walks on networks

Random walks on networks

Outline
－PoCS
$6=$
1．
๑ac 4 of 11

Excellent observation：The same equation applies for stuff moving around a network，such that at each time step all material at node i is sent to its neighbors．
\＆$x_{i}(t)=$ amount of stuff at node i at time t ．
宛

$$
x_{i}(t+1)=\sum_{j=1}^{n} \frac{1}{k_{j}} a_{j i} x_{j}(t) .
$$

Random walking is equivalent to diffusion［．

Where is Barry？

\＆Linear algebra－based excitement：
$p_{i}(t+1)=\sum_{j=1}^{n} a_{j i} \frac{1}{k_{j}} p_{j}(t)$ is more usefully viewed
as

$$
\vec{p}(t+1)=A^{\top} K^{-1} \vec{p}(t)
$$

where $\left[K_{i j}\right]=\left[\delta_{i j} k_{i}\right]$ has node degrees on the main diagonal and zeros everywhere else．
So．．．we need to find the dominant eigenvalue of $A^{\top} K^{-1}$ ．
Expect this eigenvalue will be 1 （doesn＇t make sense for total probability to change）．
．The corresponding eigenvector will be the limiting probability distribution（or invariant measure）．
Extra concerns：multiplicity of eigenvalue $=1$ ，and network connectedness．

Where is Barry？

．By inspection，we see that

$$
\vec{p}(\infty)=\frac{1}{\sum_{i=1}^{n} k_{i}} \vec{k}
$$

satisfies $\vec{p}(\infty)=A^{\top} K^{-1} \vec{p}(\infty)$ with eigenvalue 1 ．
We will find Barry at node i with probability proportional to its degree k_{i} ．
，Beautiful implication：probability of finding Barry travelling along any edge is uniform．
Diffusion in real space smooths things out．
\＆On networks，uniformity occurs on edges．
So in fact，diffusion in real space is about the edges too but we just don＇t see that．

Random walks on n̄ētwō $\overline{\mathrm{F}} \mathrm{k}$

Other pieces：

Random walks on n̄ētwo $\bar{r} \overline{k s}$
Goodness：$A^{\top} K^{-1}$ is similar to a real symmetric matrix if $A=A^{\top}$ ．
Consider the transformation $M=K^{-1 / 2}$ ：

$$
K^{-1 / 2} A^{\top} K^{-1} K^{1 / 2}=K^{-1 / 2} A^{\top} K^{-1 / 2} .
$$

\＆Since $A^{\top}=A$ ，we have

$$
\left(K^{-1 / 2} A K^{-1 / 2}\right)^{\top}=K^{-1 / 2} A K^{-1 / 2}
$$

\＆Upshot：$A^{\top} K^{-1}=A K^{-1}$ has real eigenvalues and a complete set of orthogonal eigenvectors．
Can also show that maximum eigenvalue magnitude is indeed 1.

つのc－ 8 of 11

COcoNuTS

Random walks on naē̄̄̄ōrks

＊－PoCS

つac 9 of 11

COcoNuTS

Random walks on n̄ē̄̄wōr $\overline{\text { Kis }}$

