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Contagion models

Some large questions concerning network
contagion:

1. For a given spreading mechanism on a given
network, what's the probability that there will be
global spreading?

2. If spreading does take off, how far will it go?

3. How do the details of the network affect the
outcome?

4. How do the details of the spreading mechanism
affect the outcome?

5. What if the seed is one or many nodes?

<> Next up: We'll look at some fundamental kinds of
spreading on generalized random networks.

Spreading mechanisms

<> General spreading
mechanism:
State of node i

i and i's neighbors’
states.

<% Doses of entity may be

stochastic and
history-dependent.
<> May have multiple,
interacting entities
spreading at once.

E uninfected
infected

depends on history of
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Spreading on Random Networks

For random networks, we know local structure is
pure branching.

Successful spreading is - contingent on single
edges infecting nodes.

Success Failure:

—> —
Focus on binary case with edges and nodes either
infected or not.

First big question: for a given network and
contagion process, can global spreading from a
single seed occur?

Global spreading condition
We need to find: °)
R = the average # of infected edges that one
random infected edge brings about.
Call R the gain ratio.
Define B,,; as the probability that a node of
degree k is infected by a single infected edge.

R:i % e (k—1) e By,

S—— ~——
k=0 — # outgoing Prob. of
prob. of infected infection
connecting to edges

adegree k node

——

>k
+ Z < ;‘ ° Q o (1 - Bkl)
k=0 # outgoing Prob. of
infected no infection
edges

Global spreading condition

Our global spreading condition is then:

R=Y T
=0

o(k—1)e B, > 1.

( >

Case1: If B,; =1 then

N kP gy o (kE—1)
=2 k="

Good: This is just our giant component condition
again.
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Global spreading condition
Case2: If By =<1 then

_ kR
TR W

—1)efB>1.

A fraction (1-8) of edges do not transmit infection.
Analogous phase transition to giant component
case but critical value of (k) is increased.

Aka bond percolation (',

Resulting degree distribution P,

e (e

Insert question from assignment 9 &'

We can show Fiy(z) = Fp(Bz +1—f).

1kP

Global spreading condition

Cases 3, 4,5, ... Now allow B, to depend on k&

Asymmetry: Transmission along an edge depends
on node's degree at other end.

Possibility: B, increases with k... unlikely.
Possibility: By, is not monotonic in ... unlikely.
Possibility: B,,, decreases with k... hmmm.

By,1 \/is a plausible representation of a simple
kind of social contagion.

The story:
More well connected people are harder to
influence.

Global spreading condition

Example: By, = 1/k.

X P 1—-P,
227’“.(1471):17<T>0

Since R is always less than 1, no spreading can
occur for this mechanism.

Decay of By, is too fast.
Result is independent of degree distribution.
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Global spreading condition

Example: By = H(% — ¢)
where 0 < ¢ < 1is athreshold and H is the
Heaviside function.

Infection only occurs for nodes with low degree.

Call these nodes vulnerables:
they flip when only one of their friends flips.

_ _ .kPk
S

where |-| means floor.

Global spreading condition

The uniform threshold model global spreading
condition:

1)
R:Z(k—l)okpk > 1.
P (k)

As ¢ — 1, all nodes become resilient and r — 0.

As ¢ — 0, all nodes become vulnerable and the
contagion condition matches up with the giant
component condition.

Key: If we fix ¢ and then vary (k), we may see two

phase transitions.

Added to our standard giant component
transition, we will see a cut off in spreading as
nodes become more connected.

Virtual contagion: Corrupted Blood (4, a 2005 virtual
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Social Contagion

Some important models (recap from CSYS 300)

Tipping models—Schelling (1971) 1. 12,121
Simulation on checker boards.
Idea of thresholds.

Threshold models—Granovetter (1978) (€

Herding models—Bikhchandani et al. (1992) - 2]
Social learning theory, Informational cascades,...

Threshold model on a network

Original work:

“A simple model of global cascades on

Duncan J. Watts,
Proc. Natl. Acad. Sci., 99, 5766-5771,
2002.0151

Mean field Granovetter model — network model
Individuals now have a limited view of the world

Threshold model on a network

Interactions between individuals now represented
by a network

Network is sparse
Individual i has k,; contacts

Influence on each link is reciprocal and of unit
weight

Each individual i has a fixed threshold ¢,
Individuals repeatedly poll contacts on network
Synchronous, discrete time updating

Individual i becomes active when
number of active contacts a; > ¢,k;

Activation is permanent (SI)
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Threshold model on a network oo Global spreading events on random o
networks !
Basic Contagion 1 Basic Contagion
Models Models
Global spreading ° Top curve: final fraction Global spreading
condition : 08 5 infected if successful. condition
Social Contagion \\ . Social Contagion
t=1 t=2 =3 Models 06 Y Middle curve: chance of  wodels
ittt o S starting a global Heweoon
’ \‘ spreading event
\b . \ i \‘ : (cascade).
J4 /4 rtsze . . Bottom curve: fractional -
References 1 2 3 4 5 6 size of vulnerable References
z subcomponent. [1°]
All nodes have threshold ¢ = 0.2. . z = (k)
Global spreading events occur only if size of vulnerable
subcomponent > 0.
System is robust-yet-fragile just below upper
boundary 3 4 141 N o
1 [Eese , . . 4 [eved !
Ignorance’ facilitates spreading.
Q> 260f88 a > 290f88
The most gullible oo Cascades on random networks o
Vulnerables: Basic Contagion Basic Contagion
Models Models

Recall definition: individuals who can be activated Global spreading
by just one contact being active are vulnerables. ;Z‘(‘:“‘Z’;’mw
The vulnerability condition for node i: 1/k; > ¢,. Vodels

Means # contacts k;, < [1/¢,].

Key: For global spreading events (cascades) on e
random networks, must have a global component recl

of vulnerables ['>! References
For a uniform threshold ¢, our global spreading
condition tells us when such a component exists:

Global spreading
condition

Social Contagion
Models

nu&gﬂmf Q{,m\

Above lower phase Just below upper

12 -
transition phase transition

kP, .
2w

R= —1)>1

ll NIVERSITY |§| erwmm |9|
4 VERMONT # VERMONT
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. COcoNuTS COcoNuTS
Example random network structure: o Cascades on random networks o

ch’it = Critical Basic Contagion Basic Contagion

Models 50 Models
mass = global a

Global spreading @ Global spreading
Vulnerable condition I 40 * condition

@« .
component el 2" g o= . Time taken for cascade [ coneen
Qprig = firies A P to spread through
. . - k) 0

triggering Theory : S network. [

spreading possibility IS .
component srsing ot Two phase transitions.
innal = Final size e R T R Final size
potential References z References
extent of (n.b., = = (k)
spread Largest vulnerable component = critical mass.
Q1 = entire Now have endogenous mechanism for spreading
network from an individual to the critical mass and then

beyond.
Qerie C Qtrig? Qerit € Qpinars and Q'crig’ Qfina) C Q2. .5@,55};;;{ |°| Eﬁygg}m |§|
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Cascade window for random networks

25
20,
N 15

cascades

no cascades

&05

01 015 02 025
¢

(nb., z = (k)

Outline of cascade window for random networks.

Cascade window for random networks

influence Z —»
= = N N
o [$)] o [6)]

[6)]

cascades

no cascades .-

So
o
a

0.1

0.15 0.2 0.25
@ = uniform individual threshold

Social Contagion

Granovetter's Threshold model—recap

o o o
2 ® -

Prob(activation)

o
i)

Assumes deterministic
response functions

¢, = threshold of an
individual.

f(¢,) = distribution of

thresholds in a population.

F(¢,) = cumulative

S

02 04 0.6

08

i distribution = fto

¢, = fraction of people
‘rioting’ at time step ¢.

f(¢l)del
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Social Sciences—Threshold models

At time ¢t + 1, fraction rioting = fraction with

by < ¢y

by
Gea1 = /0 F(6.)86, = F(6,)|* = F(,)

= Iterative maps of the unit interval [0, 1].

Social Sciences—Threshold models

Action based on perceived behavior of others.

1 2! 1
A B Cc
_. 08 2 ~. 08
W £
708 EE w 05|
<04 =1 - 04
& )
02) 05 & o2 ii
0 0 0
0 o 1 0 05 1 0 05
e ¢’ @

Two states: S and |
Recover now possible (SIS)
¢ = fraction of contacts ‘on’ (e.g., rioting)

Discrete time, synchronous update (strong
assumption!)

This is a Critical mass model

Social Sciences—Threshold models

25|
0
4 S N I
0§ !
= ¥ 1
15 & |
04 i
4 :
0.5 0.2] |
0 02 04 06 08 1 0 02 04 06 08 1
y %

Example of single stable state model
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Social Sciences—Threshold models

Implications for collective action theory:
1. Collective uniformity + individual uniformity
2. Small individual changes = large global changes

Next:
Connect mean-field model to network model.
Single seed for network model: 1/N — 0.

Comparison between network and mean-field
model sensible for vanishing seed size for the
latter.

All-to-all versus random networks

all-to—all networks random networks

g 1

Threshold contagion on random networks

Three key pieces to describe analytically:

1. The fractional size of the largest subcomponent of
vulnerable nodes, S, ..

2. The chance of starting a global spreading event,

Ptrig = Strig-
3. The expected final size of any successful spread,
S.

n.b., the distribution of S is almost always
bimodal.
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Example random network structure:

Qerie = Quyin =
critical mass =
global
vulnerable
component
Qt'rig = .
triggering
component
innal =
potential
extent of
spread

Q = entire
network

Qerie C Q'crig§ Qeric € Qfinai; and Qtrig7 Qfinal C 2.

Threshold contagion on random networks

First goal: Find the largest component of
vulnerable nodes.

Recall that for finding the giant component's size,
we had to solve:

Fo(z) =xFp (F,(z)) and F,(z) = zFy (F,(z))

We'll find a similar result for the subset of nodes
that are vulnerable.

This is a node-based percolation problem.
For a general monotonic threshold distribution
f(¢), a degree k node is vulnerable with probability

1/k

B = f(¢)do

0

Threshold contagion on random networks

We now have a generating function for the probability
that a randomly chosen node is vulnerable and has

degree k:
OO
> PyBja*.
k=0

The generating function for friends-of-friends
distribution is similar to before:

Fguln)(m> _

vl o kP, _
Fgu n)(w) _ Z <T>kBklmlc
k=0
In) I
&M@ &P ()

- %FP(INI:l - Fr(1)

Detail: We still have the underlying degree distribution
involved in the denominator.
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Threshold contagion on random networks
& Probability an infected edge leads to a global

Functional relations for component size g.f.'s are Basic Contagion spreading event: Basic Contagion
Models Models
almost the same ... Global spreading Qyig Must satisfying a one-step recursion relation. Global spreading
(vuln) o (vuln) (vuln) (vuln) condition . . . condition
Fr (I) =1- FP (1) +xFP (FP (I)) Social Contagion Follow an infected Edge and use three pieces: Social Contagion
central node Models 1. Probatl)cillsity of reaching a degree k node is Models
is not Allto-all networks Qk:(T; Allto-all network
vulnerable T 2. The node reached is vulnerable with probability
siy By,.
FYM™ () = 1= FYIY (1) 4z p YUY (F[(,V”'”)(x)> e 3. At least one of the node’s outgoing edges leads to i
—V_/first e References a global spreading event = 1 - probability no edges  references
is mot doso=1—(1—Qyg)* "
vulnerable

0 1 Put everything together and solve for Q!

Can now solve as before to find kP,
k _
2 Qtrig:ZT‘Bkl' [1_(1_Qtrig)k 1] :
_ (vuln) = (k)
Svuln =1-rx (1)
e 1] e O
| Bt W B
“a > 47 of 88 a 520f88
Threshold contagion on random networks ~ “*" Good things about our equation for Qg e
Basic Contagion kP, Basic Contagion
Models Qtrig = Z <T>k.Bkﬂ°[1 - (1 - Qtrig)kil] = f(Qtrig? ka Bkl) Vodels
. .- . . lobal spreading k obal spreading
Second goal: Find probability of triggering largest conton conditon
Vulnerable component. Social Contagion Social Contagion

Models Models

Qyig = 0 is always a solution.

Assumption is first node is randomly chosen. -
Same set up as for vulnerable component except Theory Spreading occurs if a second solution exists for which

now we don't care if the initial node is vulnerable £ 0< Quig <1

or not: Fin Given P, and B, we can use any kind of root finder

FY® () = 2Fp (F;()’“'”)(x)) References to solve for Qg but ...
Fﬁ(,vuln)(x) —1_ Fguln)(l) I xF}(%/uln) (F,()vuln)(x)) The function f increases monotonically with Q;g.
We can therefore use an iterative cobwebbing
approach to find the solution:

1) (n)
Qiﬁg = f(Qt;g%kaBk1)~

[} e Start with a suitably small seed Q|
4 VERMONT O . .
while rubbing hands together.

Solve as before to find Py = Syig = 1 — Fx (1)

U > 0and iterate ﬁw\,ﬂm 8

rg o VERMONT

vac 49 of 88 Q> 530f88

. . . . COcoNuTS COcoNuTS
Physical derivation of possibility and probability o o
of global spreading: Global spreading is possible if the fractional size S,

. . o . Basic Contagion of the largest component of vulnerables is “giant”. Basic Contagion
Possibility: binary indicator of phase. Global spreading Models Models
events are either possible or can never happen. Global spreading Interpret S, as the probability a randomly chosen Global spreading

condition . . . . condition
) o node is vulnerable and that infecting it leads to a global
For random networks, global spreading possibility is Sodial Contagion spreading event: Sodial Contagion

understood as meaning a giant component of
vulnerable nodes exists. ‘

Theory Syuin = Z P eB, e [1 —(1- Qtrig)k] > 0.
Next: what's the probability that a randomly infected Spreadi k
node will cause a global spreading event? Phy

Amounts to having Qg > 0.

Call this Ptrig' References - . . .
Probability of global spreading differs only in that we

As usual, it's all about edges and we need to first don't care if the initial seed is vulnerable or not:

determine the probability that an infected edge leads

to a global spreading event. Pyig = Strig = »_ P o [1 = (1 — Quig)*]
k

Call this Qg

As for Syins Pyrig is non-zero when Qg > 0.
CNIVERSITY |3| 7xszl\rrv[mrr\{ |8|
VERMONT IO & |/ VERMONT 1O}

e 510f88 a 540f88

Later: Generalize to more complex networks involving
assortativity of all kinds.
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Connection to generating function results:

We found that £"" (1)—the probability that a random
edge leads to a finite vulnerable component—satisfies

F,(Jvuln)(l) —1_ Fguln)ﬂ) +1- F;%/uln) (F‘()vuln)(l)) .

We set F' (1) = 1 — Quig and deploy
FRi™ (@) = Yo7 ) 52 By a1 to find

1_Qtrig

k=0 k=0
Some breathless algebra it all matches:

> LP, k-1
Qtrig:ZW;.Bkl.[17(17ng) :|

k=0

Fractional size of the largest vulnerable
component:

The generating function approach gave
Syun = 1 — FY" (1) where

FS\-VUIn)(l) —1_

Again using FYM™ (1) = 1 — Qurig along with
FY™ (z) = 327° P, By %, we have:

1-Sun=1- ZPkBk1+ZPkBk1 (1*Qtrig)k

Excited scrabbling about gives us, as before:

Suuin = Z Py By [1 —(1- Qtrig)k} .

Triggering probability for single-seed global
spreading events:

Slight adjustment to the vulnerable component
calculation.

Suig = 1 — F5"®(1) where
FY'®(1) = 1. Fp (FY™(1).

We play these cards: Fy"" (1) =
Fp(z) =37, P.a" to arrive at

1-— Qtrig and

e K
1_Strig: 1+Zpk (1_Qtrig)
k=0
More scruffing around brings happiness:

Strig = i By [1 - (1 - Qtrig) k] -
k=0

o k o k
-3 PkBM 3 T B (1= Q)

F;;/uln)<1> +1- Fguln) (F};vuln)(l)) .
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Connection to simple gain ratio argument:

Earlier, we showed the global spreading condition

follows from the gain ratio R > 1:

e B, > 1.

> kP,
R = k o(k—1
2w kY

We would very much like to see that R > 1 matches up

With Qg > 0.
It really would be just so totally awesome.

Must come from our basic edge triggering probability
equation:

Qtrig Z

By e [1—(1— Qtrig)kil} .

When does this equation have a solution 0 < Qg < 1?7

We need to find out what happens as Qy;,; — 0.

What we're doing:

A Possibility of a
Global Spreading Event
Microsopic physically C
D .. motivated
escription derivations
B Probability of a

Global Spreading Event

For Qg — 0%, equation tends towards

Qtrig = Z ké;:)k oDy e [1+ (I+< 1)Qtrig + )}

kP,
:Qtrig:; <k>k.Bk1.( _I)Qtrig

=>1=;k<f:>k°(k—1)°3m

Only defines the phase transition points (i.e., R = 1).

Inequality?
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& Again take Qg — 07, but keep next higher order term:

Quig = Z k<£> -Bklo{](-&— (I-&-( —1)Quig— (k ; 1)Qt2rig):|

= Qtrig

(k)

& We have Quig > 0if 30, 5k e (k—1) e Byy > 1.

&> Repeat: Above is a mathematical connection between
two physically derived equations.

& From this connection, we don't know anything about a
gain ratio R or how to arrange the pieces.

Threshold contagion on random networks

&% Third goal: Find expected fractional size of spread.

&% Not obvious even for uniform threshold problem.

<% Difficulty is in figuring out if and when nodes that
need > 2 hits switch on.

& Problem solved for infinite seed case by Gleeson
and Cahalane:
“Seed size strongly affects cascades on random
networks,” Phys. Rev. E, 2007."

<> Developed further by Gleeson in “Cascades on
correlated and modular random networks,” Phys.
Rev. E, 2008. [

Meme species:

Periodic Table of Advice Animals Know Your Meme

& More here( at http://knowyourmeme.com (2"

kA S L N

kP EP, E—1
=>Zk: k.(k:—l)oBk1=1+zk:<T>’“Bk1( ) )ng
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Expected size of spread
Idea:

& Randomly turn on a fraction ¢, of nodes at time t = 0

<% Capitalize on local branching network structure of
random networks (again)

<> Now think about what must happen for a specific node
i to become active at time ¢:

e ¢t = 0: ¢ is one of the seeds (prob = ¢,)

e ¢ = 1: 4 was not a seed but enough of 4's friends
switched on at time ¢ = 0 so that 4's threshold is now
exceeded.

e t = 2: enough of i's friends and friends-of-friends
switched on at time ¢ = 0 so that 4's threshold is now
exceeded.

e ¢ = n: enough nodes within n hops of i switched on at
t = 0 and their effects have propagated to reach 1.

Expected size of spread

@ - active, ¢ = 1/3
t=0

@ =activeat t=0
QO =activeat t=1
@ -ativeatt=2
@ =activeatt=3
@ =ctiveat t=4
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Expected size of spread

Notes:

<% Calculations presume nodes do not become
inactive (strong restriction, liftable)

Not just for threshold model—works for a wide
range of contagion processes.

We can analytically determine the entire time
evolution, not just the final size.

We can in fact determine
Pr(node of degree k switches on at time ¢).

Even more, we can compute: Pr(specific node i
switches on at time t).

Asynchronous updating can be handled too.

& & » » B

Expected size of spread

Pleasantness:

<& Taking off from a single seed story is about
expansion away from a node.

<& Extent of spreading story is about contraction at a
node.

A

=7

Expected size of spread

<% Notation:
¢y, = Pr(a degree k node is active at time ).

& Notation: By,; = Pr (a degree k node becomes
active if j neighbors are active).
& Our starting point: ¢, o = ¢.
& (%)0(1—¢9)F~7 = Pr (j of a degree k node's
neighbors were seeded at time ¢ = 0).
&% Probability a degree k node was a seed at ¢ = 0 is
¢, (as above).
&> Probability a degree k node was not a seed att = 0
is (1 —dp).
&% Combining everything, we have:
k. /k ; .
P, =90+ (1—0q) Z (J)Oé(l — o) I By
7=0
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Expected size of spread ot
&> For general t, we need to know the probability an e
. . . . asic Contagion
edge coming into a degree k node at time ¢ is Models -
active.

Global spreading
condition

<% Notation: call this probability 6,. Social Contagion
& We already know 6, = ¢;. e
& Story analogous to t = 1 case. For specificnodei: "
B
Gi 141 =0 + (1— ) Z ( ;)ef(l — et)kﬁJB,w-.
=0 \-

&% Average over all nodes with degree k to obtain
expression for ¢, ;:

b1 = dot(1—0p) Z Z (J)b‘](l -0 )kijBkj'

&> So we need to compute 4,...
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Expected size of spread

Basic Contagion

First connect 6, to 6;: Models
& 9 Globjat\ spreading
re ¢0+ Social Contagion
o o1 Models
kP Netwc
S o,
k=1

& ik = Q, = Pr(edge connects to a degree k node).

& Z o piece gives Pr (degree node k activates if j
of |ts k — 1 incoming neighbors are active).

&> ¢ and (1 — ¢,) terms account for state of node at
timet = 0.

&> See this all generalizes to give 6, , in terms of 6,...
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Two pieces: edges first, and then nodes
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101 = (E,Q Global spreading
exogenous condition
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Models
oo P — . Netw
r-o0 3RS (o -ayron,
k=1 7=0
social effects
with 8y = ¢q.
2. ¢t+1 =
oo ]f ; -
¢ +(- (1=¢0) Y Z p 07(1—0,)*B,;.
exogenous k=0 =

social effects
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Comparison between theory and
simulations

1
Pure random networks

with simple threshold
responses
R = uniform threshold
(our ¢,), z= average
o= degree; p = ¢; ¢ =
0.1 0.2 0s N = 10°.
$o =1073,0.5 x 1072,

0.5

and 102,

P Cascade window is for
[N o = 1072 case.

z Sensible expansion of

From Gleeson and cascade window as ¢
Cahalane!’! increases.

Notes:

Retrieve cascade condition for spreading from a
single seed in limit ¢4 — 0.

Depends on map 0, ; = G(6,; ¢o).

First: if self-starters are present, some activation is
assured:

e

¢0:Z

oBk0>0

meaning B, > 0 for at least one value of &k > 1.
If 8 = 0is a fixed point of G (i.e., G(0; ¢,) = 0) then
spreading occurs for a small seed if

< kP,
G (0; ¢p) = Z k —1)e By, >1.

Insert question from assignment 10 (&'

Notes:

In words:

If G(0; 64) > 0, spreading must occur because
some nodes turn on for free.

If G has an unstable fixed point at # = 0, then
cascades are also always possible.

Non-vanishing seed case:

Cascade condition is more complicated for ¢, > 0.
If G has a stable fixed pointat § = 0, and an
unstable fixed point for some 0 < 6, < 1, then for
0o > 0,, spreading takes off.

Tricky point: G depends on ¢, so as we change
¢, We also change G.
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General fixed point story:

1 pi 1 P 1

Gl 00

01 = G

O

0 o o,

Given 6, (= ¢g), 0, Will be the nearest stable fixed
point, either above or below.

n.b., adjacent fixed points must have opposite stability
types.

Important: Actual form of G depends on ¢,,.

Important: ¢, can only increase monotonically so ¢,
must shape G so that ¢, is at or above an unstable
fixed point.

First reason: ¢, > ¢,.
Second: G’(0; ¢y) >0,0< 6 < 1.

Interesting behavior:

1
Now allow thresholds
o to be distributed
' according to a
Gaussian with mean R.
. R=0.2,0.362, and
0.38; 0 =0.2.

i v ¢o = 0 but some nodes
= ; have thresholds < 0 so
0.5] 3 .

: effectivel > 0.
. Y o
0 Now see a (nasty)
0 2 4 6 8 10 R A
z discontinuous phase
From Gleeson and transition for low (k).
Cahalane!”!
Interesting behavior:
1
@
0.5
B T T Plots of stability points
z for6,,.1 = G(04; ¢0).

n.b.: 0 is not a fixed
point here: 6, =0
always takes off.

Top to bottom: R =
0.35, 0.371, and 0.375.
Saddle node
bifurcations appear
and merge (b and c).

From Gleeson and
Cahalane!’!
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What's happening:

& Fixed points slip above and below the 9, , =6,
line:

o)
o)

=)
o6

Time-dependent solutions

Synchronous update

<> Done: Evolution of ¢, and 6, given exactly by the
maps we have derived.

Asynchronous updates

<> Update nodes with probability a.

&> As a — 0, updates become effectively
independent.

<% Now can talk about ¢(¢) and 6(¢).

Nutshell:

&% Solid dive into understanding contagion on generalized
random networks.

&5 Threshold model leads to idea of vulnerables and a
critical mass. [16 €

& Generating function approaches provided first
breakthroughs and gave possibility and probability of
spreading. [0 16]

& Later: A probabilistic, physical method solved the

whole story for a fractional seed—final size, dynamics,
[7, 6]

& Much can be generalized for more realistic kinds of
networks: degree-correlated, modular, bipartite, ...

&% The single seed contagion condition and triggering
probability can be fully developed using a physical
story. [ ]

&5 Many connections to other kinds of models: Voter
models, Ising models, ...
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