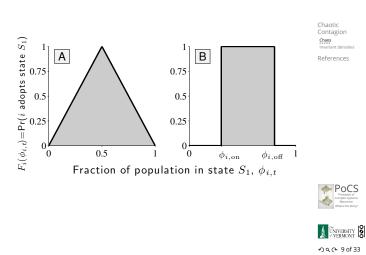


Take r = 2 case:



Chaotic contagion

COcoNuTS

Chaotic Contagion <u>Chaos</u> Invariant densities References

Definition of the tent map:

$$F(x) = \begin{cases} rx \text{ for } 0 \le x \le \frac{1}{2}, \\ r(1-x) \text{ for } \frac{1}{2} \le x \le 1. \end{cases}$$

 \clubsuit The usual business: look at how *F* iteratively maps the unit interval [0, 1].

COcoNuTS

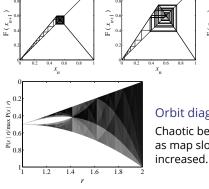
Chaotic Contagion

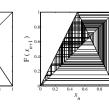
Chaos

References

The tent map

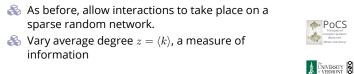
Effect of increasing r from 1 to 2.





Chaotic Contagion Chaos Invariant densiti

Invariant densities References



What happens if nodes have limited information?

Two population examples:

COcoNuTS Chaotic Contagion

Chaos Invariant de

References

 $\begin{array}{c} \widehat{\prod}_{i=1}^{l} \begin{bmatrix} A & & & \\ 0.5 & \\ 0.5 & 0.6 \\ 0.2 & \\ 0 &$

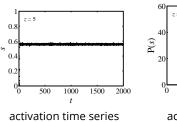
- \clubsuit Randomly select $(\phi_{i,1},\phi_{i,2})$ from gray regions shown in plots B and C.
- Insets show composite response function averaged over population.
- 🗞 We'll consider plot C's example: the tent map.

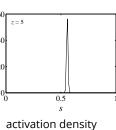
PoCS

Invariant densities—stochastic response functions

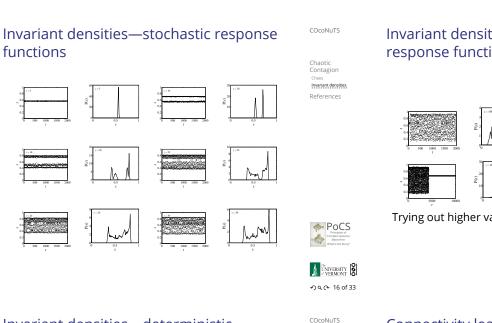
Chaotic Contagion ^{Chaos} Invariant densities References

COcoNuTS

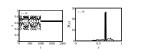


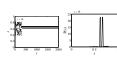


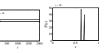
COcoNuTS

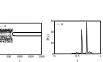


Invariant densities—deterministic response functions for one specific network with $\langle k \rangle = 18$









VERMONT

COcoNuTS

Chaotic Contagion

Chaos Invariant densities

PoCS

VERMONT

うへで 18 of 33

References

PoCS

Complex Syste (Ppocsvox) What's the Str

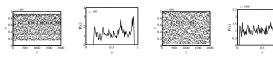
Chaotic Contagion

Invariant densities

References

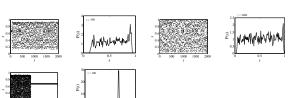
Chaos

Invariant densities—stochastic response functions



Trying out higher values of $\langle k \rangle$...

Invariant densities References



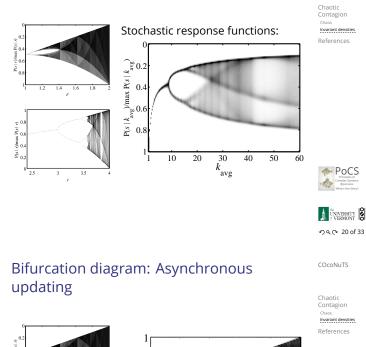
Trying out higher values of $\langle k \rangle$...

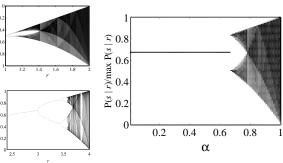
UNIVERSITY VERMONT •୨ < (∾ 19 of 33

Connectivity leads to chaos:

COcoNuTS

Complex 1 (Ppop





Bifurcation diagram: Asynchronous updating

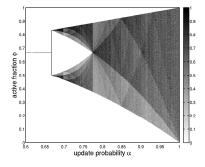


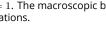
FIG. 3. Bifurcation diagram for the dense map $\Phi(\phi;\alpha)$, Eqn. (18). This was generated by iterating the map at 1000 α values between 0 and 1. The iteration was carried out with 3 random initial conditions for 10000 time steps each, discarding the first 1000. The ϕ -axis contains 1000 bins and the invariant density, shown by the grayscale value, is normalized by the maximum for each α . With $\alpha < 2/3$, all trajectories go to the fixed point at $\phi = 2/3$.

Chaotic Contagion

COcoNuTS

https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0 LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 6, update synchronicity parameter α = 1. The macroscopic behavior is period-1, plus noisy fluctuations.

https://www.youtube.com/watch?v=7UCula_ktmw?rel=0 \square LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 11, update synchronicity parameter $\alpha = 1$. The macroscopic behavior is period-2, plus noisy fluctuations.



COcoNuTS

Chaotic Contagion

Invariant densities

References

COcoNuTS

Chaotic Contagion

Invariant densities References

https://www.youtube.com/watch?v=oWKt8Zj1Ccw?rel=0 LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. $\langle k \rangle = 30$, update synchronicity parameter $\alpha = 1$. The macroscopic behavior is chaotic.

・ク < へ 27 of 33

https://www.youtube.com/watch?v=7JHrZyyq870?rel=0 How the bifurcation diagram changes with increasing average degree $\langle k \rangle$ as a function of the synchronicity parameter α for the stochastic response (tent map) case.

COcoNuTS

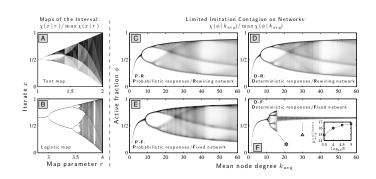
Chaotic Contagion ^{Chaos} Invariant densities References

https://www.youtube.com/watch?v=_zwK6polBvc?rel=0 \square How the bifurcation diagram changes with increasing α , the synchronicity parameter as a function of average degree $\langle k \rangle$ for the stochastic response (tent map) case.

Deriversity Solution

COcoNuTS

Chaotic Contagion Invariant densities References



COcoNuTS

Chaotic Contagion Invariant densities References

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update synchronicity parameter $\alpha = 1$. The dynamics exhibit transient chaotic behavior before collapsing to a fixed point.

https://www.youtube.com/watch?v=AfhUlkIOiOU?rel=0 LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update

synchronicity parameter α = 1. Shown are nodes which

behavior has "collapsed."

continue changing (703/1000) after the transient chaotic

https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0

1

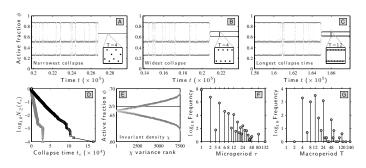
PoCS

Chaotic Contagion

Chaos Invariant densities References

https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0 LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 17, update synchronicity parameter α = 1. The dynamics exhibit transient chaotic behavior before collapsing to a period-4 orbit.

UNIVERSITY VERMONT うへで 30 of 33



References I

COcoNuTS Chaotic

Contagion References

- [1] P. S. Dodds, K. D. Harris, and C. M. Danforth. Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability. Phys. Rev. Lett., 110:158701, 2013. pdf
- [2] K. D. Harris, C. M. Danforth, and P. S. Dodds. Dynamical influence processes on networks: General theory and applications to social contagion.

Phys. Rev. E, 88:022816, 2013. pdf 🖸

