Chaotic

References

Chaotic Contagion: The Idealized Hipster Effect

Last updated: 2018/03/23, 20:59:06

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

These slides are brought to you by:

Contagion Chaos

These slides are also brought to you by:

Special Guest Executive Producer

☑ On Instagram at pratchett_the_cat

COCONUTS

Chaotic Contagion Chaos Invariant densitie

References

99 @ 3 of 33

Outline

COcoNuTS

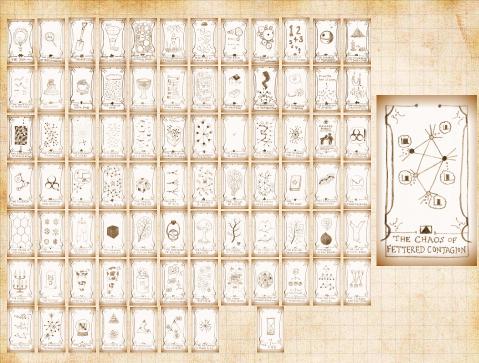
Chaotic Contagion Chaos Invariant densities References

Chaotic Contagion
Chaos

References

Invariant densities

Pocs
Principles of
Complex Systems
Spocsyox
What's the Story?



Chaotic Contagion on Networks:

"Limited Imitation Contagion on random networks: Chaos, universality, and unpredictability"

"Dynamical influence processes on networks: General theory and applications to social contagion" A Harris, Danforth, and Dodds, Phys. Rev. E, **88**, 022816, 2013. [2]

A. Mandel, conference at Urbana-Champaign, 2007:

"If I was a younger man, I would have stolen this from you."

Chaotic Contagion Chaos Invariant densities References

Chaotic contagion:

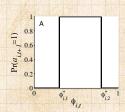
What if individual response functions are not monotonic?

Consider a simple deterministic version:

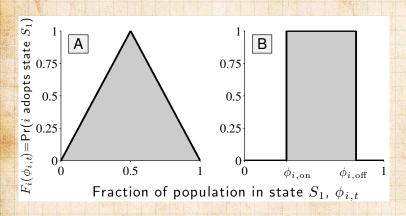
Node i has an 'activation threshold' $\phi_{i,1}$

...and a 'de-activation threshold' $\phi_{i,2}$

Nodes like to imitate but only up to a limit—they don't want to be like everyone else.



Chaotic



References

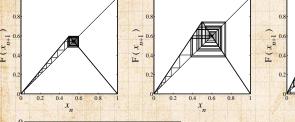
Definition of the tent map:

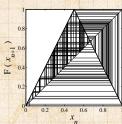
$$F(x) = \left\{ \begin{array}{l} rx \text{ for } 0 \leq x \leq \frac{1}{2}, \\ r(1-x) \text{ for } \frac{1}{2} \leq x \leq 1. \end{array} \right.$$

The usual business: look at how F iteratively maps the unit interval [0,1].

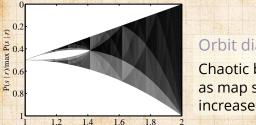
The tent map

Effect of increasing r from 1 to 2.





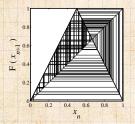
Contagion Chaos References



Orbit diagram:

Chaotic behavior increases as map slope r is increased.

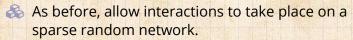
Take r=2 case:

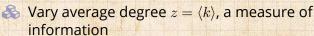


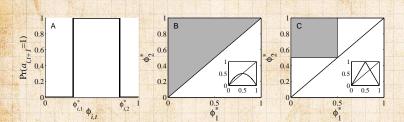
Chaotic Contagion Chaos Invariant densities

References

What happens if nodes have limited information?

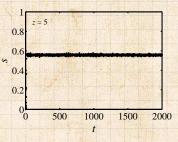


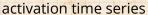


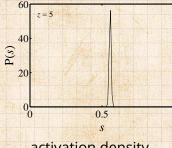


- Randomly select $(\phi_{i,1}, \phi_{i,2})$ from gray regions shown in plots B and C.
- Insets show composite response function averaged over population.
- & We'll consider plot C's example: the tent map.

Invariant densities—stochastic response **functions**





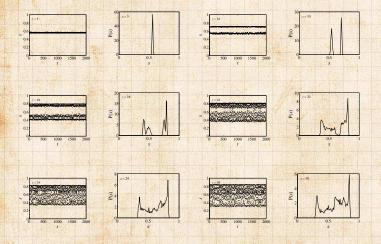


activation density

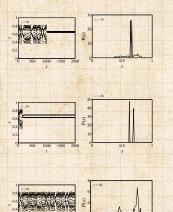
Invariant densities—stochastic response

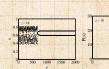
functions

Contagion Invariant densities



Invariant densities—deterministic response functions for one specific network with $\langle k \rangle = 18$





COCONUTS

Contagion Invariant densities

Invariant densities—stochastic response functions

COcoNuTS -

Chaotic Contagion Chaos Invariant densities

References

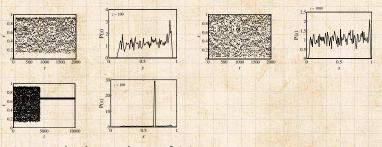
Trying out higher values of $\langle k \rangle$...

Invariant densities—deterministic response functions

COCONUTS

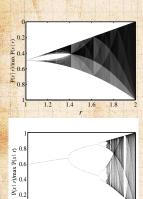
Chaotic Contagion Chaos Invariant densities

References



Trying out higher values of $\langle k \rangle$...

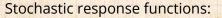
Connectivity leads to chaos:

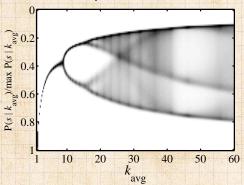


3

3.5

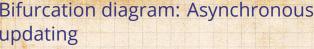
2.5

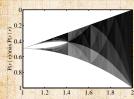


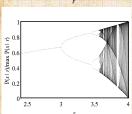


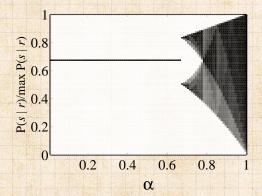
Contagion Invariant densities

Bifurcation diagram: Asynchronous updating









COCONUTS

Contagion Invariant densities

Bifurcation diagram: Asynchronous updating

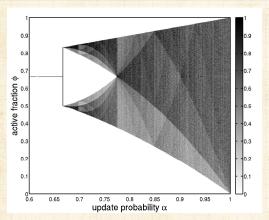


FIG. 3. Bifurcation diagram for the dense map $\Phi(\phi;\alpha)$, Eqn. (18). This was generated by iterating the map at 1000 α values between 0 and 1. The iteration was carried out with 3 random initial conditions for 10000 time steps each, discarding the first 1000. The ϕ -axis contains 1000 bins and the invariant density, shown by the grayscale value, is normalized by the maximum for each α . With $\alpha < 2/3$, all trajectories go to the fixed point at $\phi = 2/3$.

COCONUTS

Chaotic Contagion Chaos Invariant densities

References

https://www.youtube.com/watch?v=7JHrZyyq870?rel=0 \square How the bifurcation diagram changes with increasing average degree $\langle k \rangle$ as a function of the synchronicity parameter α for the stochastic response (tent map) case.

References

https://www.youtube.com/watch?v=_zwK6polBvc?rel=0 2

How the bifurcation diagram changes with increasing α , the synchronicity parameter as a function of average degree $\langle k \rangle$ for the stochastic response (tent map) case.

https://www.youtube.com/watch?v=3bo4fzp4Snw?rel=0 2

LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 6, update synchronicity parameter α = 1. The macroscopic behavior is period-1, plus noisy fluctuations.

Chaos Invariant densities

References

https://www.youtube.com/watch?v=7UCula ktmw?rel=0

LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. Average degree = 11, update synchronicity parameter $\alpha = 1$. The macroscopic behavior is period-2, plus noisy fluctuations.

26 of 33

References

https://www.youtube.com/watch?v=oWKt8Zj1Ccw?rel=0 \(\bar{C} \) LIC dynamics on a fixed graph with a shared stochastic (tent map) response function. $\langle k \rangle = 30$, update synchronicity parameter $\alpha = 1$. The macroscopic behavior is chaotic.

https://www.youtube.com/watch?v=AfhUlkIOiOU?rel=0

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update synchronicity parameter α = 1. Shown are nodes which continue changing (703/1000) after the transient chaotic behavior has "collapsed."

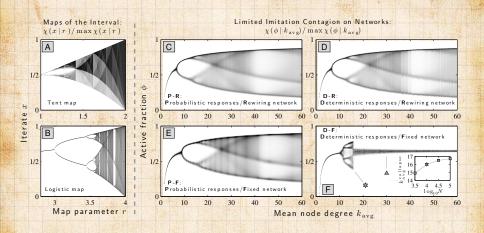
https://www.youtube.com/watch?v=ZwY0hTstJ2M?rel=0

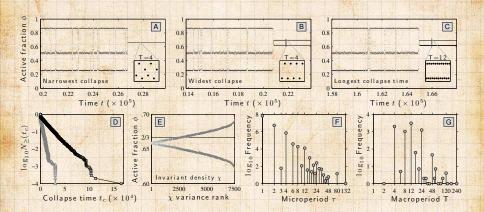
LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 30, update synchronicity parameter α = 1. The dynamics exhibit transient chaotic behavior before collapsing to a fixed point.

References

https://www.youtube.com/watch?v=YDhjmFyBSn4?rel=0

LIC dynamics on a fixed graph with fixed, deterministic response functions. Average degree = 17, update synchronicity parameter α = 1. The dynamics exhibit transient chaotic behavior before collapsing to a period-4 orbit.





- [1] P. S. Dodds, K. D. Harris, and C. M. Danforth.
 Limited Imitation Contagion on random networks:
 Chaos, universality, and unpredictability.
 Phys. Rev. Lett., 110:158701, 2013. pdf
- [2] K. D. Harris, C. M. Danforth, and P. S. Dodds. Dynamical influence processes on networks: General theory and applications to social contagion.

Phys. Rev. E, 88:022816, 2013. pdf

