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Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.

Oddly, Horton’s laws have four parameters and

Tokunaga has two parameters.

R, R, R, and R, versus T; and R,. One simple
redundancy: R, = R,.

Insert question from assignment 1 &'

To make a connection, clearest approach is to
start with Tokunaga's law ...

Known result: Tokunaga — Horton ['8 19.20,9, 2]

Let us make them happy

We need one more ingredient:

Space-fillingness
A network is space-filling if the average distance
between adjacent streams is roughly constant.
Reasonable for river and cardiovascular networks

For river networks:
Drainage density pyq = inverse of typical distance
between channels in a landscape.

In terms of basin characteristics:

Q _
> stream segment lengths ~ >- .|, 1,5,
basin area a ag

Pdd =

More with the happy-making thing

Start with Tokunaga’s law: T, = T, RA

Start looking for Horton's stream number law:
nw/nw{ 1= R'n,'

Estimate n,,, the number of streams of order w in
terms of other n,,/, w’ > w.

Observe that each stream of order w terminates
by either:

1. Running into another stream of order w
and generating a stream of order w + 1

» 2n,., streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

» n T, streams of order w do this
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More with the happy-making thing

Putting things together:

ny = 2nw+1 + Z w’

generatlon w'=wtl absorptlon

Use Tokunaga’s law and manipulate expression to
find Horton's law for stream numbers follows and

hence obtain R,,.
Insert question from assignment 1 (&'

Solution:

(24 Rp+T)+/Q2+Rp+Ty)?
no 2

—8R,

R

(The larger value is the one we want.)

Finding other Horton ratios

Connect Tokunaga to R,

Now use uniform drainage density pyq-

Assume side streams are roughly separated by
distance 1/pygq-

For an order w stream segment, expected length is

w—1
o~ Pgd (HZ%)

Substitute in Tokunaga's law T}, = T, Rk

w—1
- (HTl zwl) xR

k=1

Horton and Tokunaga are happy
Altogether then:
= 5u/5w1=Rp= R, =Ry

Recall R, = R, so

And from before:

@+ Rp+T)+ 2+ Ry +T)2
n - 9

—8R

R
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Horton and Tokunaga are happy

Some observations:

R, and R, depend on T; and R.
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'll in fact see that R, = R,,.

Also: Both Tokunaga's law and Horton'’s laws can
be generalized to relationships between
non-trivial statistical distributions. >4

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

Ry =Ry,

T, =R, —R,—2+2R,/R,,.

Suggests we should be able to argue that Horton's
laws imply Tokunaga’s laws (if drainage density is
uniform) ...

Horton and Tokunaga are friends

From Horton to Tokunaga %!

Assume Horton's laws
hold for number and
length

Start with picture
showing an order w
stream and order w —1
generating and side
streams.

Scale up by a factor of
R,, orders increment
tow+1andw.
Maintain drainage
density by adding new
order w — 1 streams
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Horton and Tokunaga are friends

...and in detail:

Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

Ty, = (R, —1) <1+I§Ti> .

For large w, Tokunaga's law is the solution—let's
check ...

Horton and Tokunaga are friends

Just checking:

Substitute Tokunaga's law T, = Ty RA ! = T, R/~ !

into
k-1
T, = (R, — 1) <1+2Ti)
1=1

k1
T, =(R,—1) (1 + Z T1R5i1>

i=1
Rf1—1
=R, -1 (1+T)Lt—+—
(re= 1) (1415
k-1

R
~ (R, — 1T} Rjil =T,RF .yep.

Horton's laws of area and number:

The Mississippi The Nile

=,
o a(sakm)
o )

T23 4567801011
™

T3 3456676061011 Te s e o
stream ordee> stream order o

The Mississippi § The Nile The Amazon

- Moo
P e

Q=11 Q=1

T2 345678010001
stream ordew

T2 345667801001

T2 54567801001
© stream ordew

In bottom plots, stream number graph has been
flipped vertically.

Highly suggestive that R,, = R, ...
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Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and
two largest orders.

Mississippi:

w range R, R, R, R, R,/R,
(2, 3] 527 526 248 230 1.00
(2, 5] 486 496 242 231 1.02
[2,7] 477 488 240 2.31 1.02
(3,4] 472 491 241 234 1.04
3, 6] 470 483 240 235 1.03
3,8] 460 479 238 234 1.04
[4,6] 469 4.81 240 2.36 1.02
[4,8] 457 477 238 234 1.05
[5,7] 468 483 236 229 1.03
[6,7] 463 476 230 2.16 1.03
[7,8] 416 467 2.4 2.56 1.12

meanp 469 485 240 233 1.04

stddeve 021 0.13 0.04 0.07 0.03

o/u 0.045 0.027 0.015 0.031 0.024
Amazon:
w range R R, R, R, R,/R,

[2,3] 478 471 247 208 0.99
[2,5] 455 458 232 212 1.0
2,7 442 453 224 210 1.02
3,5] 445 452 226 214 101
3,7 435 449 220 210 1.3
[4,6] 438 454 222 218 1.03
[5,6) 438 462 222 221 1.06
6,71 408 427 205 183 1.05
meanyu 442 453 225 210  1.02
stddeve 017 010 010 009 0.02
o/u 0038 0023 0.045 0.042 0.019
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Reducing Horton’s laws:

Rough first effort to show R, = R,:

ag, o< sum of all stream segment lengths in a order
Q basin (assuming uniform drainage density)

So:

Q
aqg = Z nw'gw/pdd

Reducing Horton's laws:

Continued ...

R & /R
o T Y ( R)
_ RQ§ Rs 1_(R5/Rn)ﬂ
B Rs 1Rn 17(R5/Rn)

~ RSZ—] s

1
—————as
" Slli(Rs/Rn) s /‘

So, ag, is growing like R,$? and therefore:

Reducing Horton’s laws:

Not quite:
...But this only a rough argument as Horton's laws
do not imply a strict hierarchy
Need to account for sidebranching.
Insert question from assignment 2 £
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Equipartitioning:

Intriguing division of area:

Observe: Combined area of basins of order w
independent of w.

Not obvious: basins of low orders not necessarily

contained in basis on higher orders.

Story:

Reason:

g, o (Rg)® ocngt

Equipartitioning:
Some examples:

Mississippi basin partitioning
U

Amazon basin partitioning

0.8 0. .
. ) .

o .o P

T e | S0 e e e

m@ 3

204

0.2

2 3456 7 8 9 1011 2 3456 7 8 9 1011
[4) ®

Nile basin partitioning

2 3 45 6 7 8 9 10
W

Neural Reboot: Fwoompf
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Scaling laws

The story so far:

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga'’s law describes detailed architecture:
T, = Ty RE .

We have connected Tokunaga’'s and Horton's laws
Only two Horton laws are independent (R,, = R,,)

Only two parameters are independent:
(TlvRT) < (anRs)

Scaling laws

A little further ...

Ignore stream ordering for the moment
Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has areaa? P(a) xa 7 forlargea

Q: What is probability that the longest stream
from p has length ¢? P(¢) oc ¢=7 forlarge ¢

Roughly observed: 1.3 <7 <1.5and 1.7 < v $2.0

Scaling laws

Probability distributions with power-law decays

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) #?!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) [°!

A big part of the story of complex systems

Arise from mechanisms: growth, randomness,
optimization, ...
Our task is always to illuminate the mechanism ...
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Scaling laws

Connecting exponents
We have the detailed picture of branching
networks (Tokunaga and Horton)
Plan: Derive P(a) < a~™ and P({) < £~ 7 starting
with Tokunaga/Horton story 7121
Let's work on P(?) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth. Bite stick.
Proceed.

Scaling laws

Finding ~:

Often useful to work with cumulative
distributions, especially when dealing with
power-law distributions.

The complementary cumulative distribution turns

out to be most useful:

max

P>(€*)=P((Z>£*):/£ P(o)de
s

=0,

P>(‘€*):17P(€<£*)

Also known as the exceedance probability.

Scaling laws
Finding ~:

The connection between P(z) and P, (z) when
P(z) has a power law tail is simple:

Given P(¢) ~ ¢~7 large ¢ then for large enough ¢,

ZI'HSX
P(,) = / P(0)dt

0=t,

Lmax
N / de
o—e,

(1) |

p=CE

(v—1)

o=2,

o £, for lnax > ¢,
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Scaling laws

Finding ~:
Aim: determine probability of randomly choosing

a point on a network with main stream length > ¢,

Assume some spatial sampling resolution A
Landscape is broken up into grid of A x A sites
Approximate P (¢,) as

N.(4;4)

N WYV

where N_ (¢,; A) is the number of sites with main
stream length > ¢,.

Use Horton's law of stream segments:
5,/8,_1 =R, ...

Scaling laws

Finding ~:

Sett, = ¢, forsomel < w <« Q.

— Q —
P (Z )_ N>(EW;A) ~ Zw =w+1 TLw/Sw///K
TN Y s X
A's cancel
Denominator is ag pgyq, @ cONstant.
So ...using Horton's laws ...
Q Q
Z Ny S Z (1.RS—
w'=wt1 w'=wt
Scaling laws
Finding ~:
We are here:
_ Q
P.(f,)oc D (1-RP™)(5 R
w'=w+1

Cleaning up irrelevant constants:

P Y (j;)“

w'=w+1 n

Change summation order by substituting
W= -

Sum is now fromw” =0tow” =0 —w—1
(equivalentto w’ = Qdowntow’ = w+1)

Rw —1)
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Scaling laws

Finding ~:

Q—w-1 Q—w” O—w—1 w
s () ()

W’ = n w”=0

SinceR,, >R ,and 1 K w <« Q,

Scaling laws

Finding ~:
Nearly there:

P(L) x (&) — (R, /R,)

Need to express right hand side in terms of 7,
Recall that ¢, ~ ¢; Ry~ *.

Vi w _ pw _ ,winR
l, xRy =Ry =e s

Scaling laws
Finding ~:
Therefore:

P —In(R,/R,)/In(R,)

(1) oc @R /R —

(ew\nRS)

7 —WN(R,/R,)/MR,

~

_ 7—(nR,—InR,)/InR
- tw
_ E;\nR” /INR +1

7—+1
:gw’YJr
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Scaling laws

Finding ~:
And so we have:

v=InR,, /InR,

Proceeding in a similar fashion, we can show

|[7=2-InR,/INR, =21/

Insert question from assignment 2 (&'

Such connections between exponents are called
scaling relations

Let's connect to one last relationship: Hack’s law

Scaling laws

Hack’s law: [

Lo al
Typically observed that 0.5 < h < 0.7.
Use Horton laws to connect h to Horton ratios:

{,xR¥and a, x RY

Observe:

InR_/InR,,
Zw x 6wlnRS x (ewlnR") d

- (Rw)InRS/Ian

n

ai /B o [h = InR,/INR,,
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We mentioned there were a good number ~ “™"
of ‘laws".
Horton
Relation: Name or description: - ”’“ng t
ng relations
Ty = Ty(Ry)*  Tokunaga's law i
¢~ L% self-affinity of single channels s
ny,/n,1 = R, Horton's law of stream numbers hell
l,.1/¢, =R, Horton'slaw of main stream lengths rences
a,.1/a, =R, Horton'slaw of basin areas
S,41/5, = R, Horton's law of stream segment lengths
L, ~ i scaling of basin widths
P(a) ~a~" probability of basin areas
P(¢) ~ ¢~ probability of stream lengths

¢ ~a Hack's law

a~ LP scaling of basin areas
A ~af Langbein’s law
A~ L% variation of Langbein’s law
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Connecting exponents

Only 3 parameters are independent:

e.g.,taked, R, and R,

n'

relation: scaling relation/parameter: %!

¢~ L d

T,=T(Rp)** Ty=R,—R,—2+2R,/R,

Rp=R
nw/nw+1 = Rn Rn

a‘L:.)+1/L_lu.«' = Ra Ra = Rn
ZL;.erl/zw = RZ RE = Rs
l~al h=InR,/InR,,
a~LP D=d/h
L, ~LH H=d/h—1
Pla)~a " T=2—h

P()~ 07 y=1/h

A~aP B=1+h

A~ L% p=d

Scheidegger's model

Directed random networks (.12

U
,;,,‘3?\9\&\
&

P(\) =P() =

<% Functional form of all scaling laws exhibited but
exponents differ from real world 1> 16, 14]

& Useful and interesting test case

A toy model—Scheidegger’'s model

Random walk basins:

&% Boundaries of basins are random walks

X

area a
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Scheidegger’s model

Increasing partition of N=64

Scheidegger’s model

Prob for first return of a random walk in (1+1)

dimensions (from CSYS/MATH 300):

&

P(n) ~ L n

~3/2

2Vm

and so P(¢) x £3/2,

<& Typical area for a walk of length n is oc n3/2:

£ x a?/3.

& Findr=4/3,h=2/3,y=3/2,d=1.

&> Noter=2—handy=1/h
& R,, and R, have not been derived analytically.

Equipartitioning reexamined:

Recall this story:

Mississippi basin partitioning

‘Amazon basin partitioning

o]
Fog o a0 0

2 3456 7 891011
®

2 3 456 7 8 91011
)

Nile basin partitioning

i3
t
H
is
x

4]

2 3 456 7 8 9 10
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Equipartitioning

&> What about
Pa) ~a™ " ?

&% Since 7 > 1, suggests no equipartitioning:
aP(a) ~a~ "1 + const

&> P(a) overcounts basins within basins ...
<& while stream ordering separates basins ...

Hard neural reboot (sound matters):

https://twitter.com/round_boys/status/951873765964681 2

Fluctuations

Moving beyond the mean:

&% Both Horton's laws and Tokunaga'’s law relate
average properties, e.g.,

gw/gw—l = Rs
<% Natural generalization to consider relationships

between probability distributions

&% Yields rich and full description of branching
network structure

& See into the heart of randomness ...
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A toy model—Scheidegger’'s model

Directed random networks['" 12

NG

N, 'rzf_(_, ,}
.w\ }% YZ AN
=>>“>z<§§ff ¢ ;Jf

F%\::ﬁ u\\\ A Qfm

&

P(\)=P()=1/2

& Flow is directed downwards

Generalizing Horton's laws

& L, x (Ry)* = N(llw) =
& a, o (R,)” = N(alw) =

& Mississippi: length distributions
1

(R, Ry)"“F,(¢/RY)
(R3)"“F,(a/Rs)

73 Mississippi: length distributions

10
° w3 R =469, R=2.38
]
10 .
2 |2 i
= s . |
s A aaa 3
107 #
B :“f Spam o] |
S W | |
H 0% ° w3 e R
i "4 /'t
iz s 5 L
ig B ig
10
0 100 200 300 400 o T2 3
I (km) 'R

<% Scaling collapse works well for intermediate
orders

<> All moments grow exponentially with order

Generalizing Horton's laws

< How well does overall basin fit internal pattern?

7 Mississippi

1210 & Actual length = 4920

12 o s km (at 1 km res)
ERlR e & Predicted Mean length
C‘E—O_a s § =11100 km
£ o |, & Predicted Std dev =
o 04 5600 km

oa g <> Actual length/Mean

S length = 44 %
em % & Okay.
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Generalizing Horton's laws

Comparison of predicted versus measured main
stream lengths for large scale river networks (in 102
km):

basin: Lo Lo gp  Lolla 0./l
Mississippi  4.92 11.10 5.60 0.44 0.51
Amazon 575 9.18 6.85 0.63 0.75
Nile 6.49 266 220 244 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 237 174 045 0.73
ag ag 0a  Gglag 04/ag
Mississippi  2.74 7.55 5.58 0.36 0.74
Amazon 540 9.07 8.04 0.60 0.89
Nile 3.08 096 0.79 3.19 0.82
Congo 3.70 10.09 828 0.37 0.82
Kansas 0.14 049 042 0.28 0.86

Combining stream segments distributions:

Stream segments
sum to give main
stream lengths

H=w
L, = Sy,
p=1
P(¢,)isa

convolution of
distributions for
the s,

Generalizing Horton's laws
Sum of variables ¢, = 321" s,, leads to
convolution of distributions:

N(¢|lw) = N(s|1) * N(s]2) * - * N(s|w)

Mississippi: stream segments

N(slw) =

1
= ——_F(s/RY
mamy ! )

F(x) = e /¢

Mississippi: £ ~ 900 m.
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Generalizing Horton's laws

Next level up: Main stream length distributions
must combine to give overall distribution for
stream length

Mississippi: length distributions
1

o w=3
° 4
\ . s
10° * P(0) ~ 077
% Another round of
z convolutions !
10
Interesting ...
10
10" 10°
I (km)

~4
1X10
Number and L x 10"
area 4
distributions for g 3
the Scheidegger 2
model ! 0.6 .
P(n, ¢) versus o
P(aG) for a 0.4 0 1 2 10;?»
randomly 02 i
selectedw =6
basin. o
0 1 2 3 4
x 10"

Generalizing Tokunaga’s law

Scheidegger:

m_m
02 03 04 05 06

0 0.1
T T, Re™

Observe exponential distributions for T}, ,,
Scaling collapse works using R,
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Generalizing Tokunaga's law

Mississippi:
25
<% (a) 3 e o
2
V%%O ~ 3
— o 2 ©
m, & = o
v
':,11'5 7 %%) 2y o R
o ES o b5 E@%@g@
v —
mS 1 Voo (&&%@o s 4 P30 &
S l o) < %]JSD &
= Vom o @&, 3 g O
o ® 0o 519 SRop@ 000
0.9 w om = S0 oo
(=] O OO0 oo — 1)
%V
0 20 20 60 0 n
Tu.v TR

Same data collapse for Mississippi ...

Generalizing Tokunaga’s law

So
P(TH:V) = (Rs)p—u—lpt [Tu,u/(Rs)“_u_l]
where ,
Py(2) = gefz/gt.
P(s,) < P(T, )

Exponentials arise from randomness.
Look at joint probability P(s,,, T}, ,)-

Generalizing Tokunaga's law

Network architecture:

Inter-tributary
lengths
exponentially
distributed
Leads to random
spatial
distribution of
stream segments

COcoNuTS

Horton
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

1 |0|
UNIVERSITY |G
P8 Vervont 13

Q> 640f87
COcoNuTS

Horton
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

i O]
ﬁ UNIVERSITY |0|
4 VERMONT 10l

Q> 650f87
COcoNuTS

Horton
Tokunage

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

1 R 0]
NIVERSITY |o|
Py Vewvont 18]

“a 66 0f87

Generalizing Tokunaga’s law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order n stream segment
terminating is constant:

P = 1/ (R)HIE,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments

Generalizing Tokunaga’s law

Joint distribution for generalized version of
Tokunaga's law:

~ s, —1 T,, . B -
P<SH’TH«,V) :pu( ? )pl/‘Y (lfpufpu)sﬂ Ty—1

T, .
where
p, = probability of absorbing an order v side
stream

p,, = probability of an order  stream terminating
Approximation: depends on distance units of s,

In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.

Generalizing Tokunaga’s law

Now deal with this thing:

-~ (s, —1\ T,, - T
P(SI,UT,LL,D) :p“( :I{w )pu“y (1_p1/_pp.)5“ Lot
v

Set (v,y) = (s,,,Ty,,,)andg=1—p, —p,,
approximate liberally.

Obtain
P(z,y) = Nz~ Y2 [F(y/x)]"

- (5

where
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Generalizing Tokunaga's law

& Checking form of P(s,,
Scheidegger:

(@)
04

0.4

{|

| (s)

n

[F(V)

0 0.2 0.4 0.6 0.8
v=T 11©
[TV

(s
P 1L

1, 1) WOrKs:
1.5 o
%0 (b)
1
0g
0f o
-0 °
4 5
500 0.1 0.15
v=T 1®
[TA

Generalizing Tokunaga’s law

& Checking form of P(s,,
Scheidegger:

1) WOrks:

Generalizing Tokunaga's law

& Checking form of P(s,,
Scheidegger:

log, (R ) M2 P(T,, |f’)

1) Works:

=

o
Q

Q

|
o
q

[
N

!
=
g

-02 -01 0 0.1 0.2
M 110 -p ) R 62
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Generalizing Tokunaga’s law

& Checking form of P(s,,,T,, ,) works:
Mississippi:
1.
& @ o, )
@
O T S A
= v % o R
. DEP 00 ';1 & © e}
3| o >I’-\- J oo 0w
0_305]uu vD ODo o '@7 ° ZOO gvn o
g ° 4 0 ° v
= v ow o o S 0.4
J o g 0go oupe
o Bem
0 0.15 0.3 0.45 0.6 7(} .5 -0.25 0 0.25 0.5
(s) (s)_ v
TW / Iu [Tw ! Ip pv](RI ©)

Models

Random subnetworks on a Bethe lattice '*]

&> Dominant theoretical

concept for several decades.

& Bethe lattices are fun and
tractable.

& Led to idea of “Statistical
inevitability” of river
network statistics [/

& But Bethe lattices

unconnected with surfaces.

& In fact, Bethe lattices =~
infinite dimensional spaces
(oops).

&> So let's move on ...

Scheidegger’s model

Directed random networks (. 12)

.
'&({ a
\9 {ngx\ (
P(\)=P()=1/2

< Functional form of all scaling laws exhibited but
exponents differ from real world ['> 16, 14]
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Optimal channel networks

Rodriguez-Iturbe, Rinaldo, et al.['"]

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

. /d? (flux) x (force) ~ 3" a,Vh, ~ 3 a7

Landscapes obtained numerically give exponents
near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes
are that of Scheidegger, self-similar, and a third
kind of random network (!

Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN's (I) 1/2 1
OCN's (Il) 2/3 1
OCN's (I1l) 3/5 1

Real rivers 0.5-0.7 1.0-1.2

h = ¢ x a’ (Hack's law).

d=lx Ld (stream self-affinity).

Nutshell

Branching networks Il Key Points:

Horton's laws and Tokunaga law all fit together.

For 2-d networks, these laws are ‘planform’ laws
and ignore slope.

Abundant scaling relations can be derived.
Cantake R,,, R,, and d as three independent
parameters necessary to describe all 2-d
branching networks.

For scaling laws, only h =
needed.

Laws can be extended nicely to laws of
distributions.

Numerous models of branching network evolution
exist: nothing rock solid yet.

InR,/InR,, and d are
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