Branching Networks II

Last updated: 2018/03/23, 19:15:27

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell

References

Outline

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

<u>@080</u>

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

These slides are brought to you by:

COcoNuTS

UNIVERSITY VERMONT

夕 Q № 1 of 87

Horton ⇔ Tokunaga Reducing Horton Scaling relations Models Nutshell

References

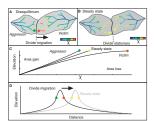
少∢~ 2 of 87

Piracy on the high χ 's:

"Dynamic Reorganization of River Basins"

Willett et al.,

Science Magazine, **343**, 1248765, 2014. [21]



$$\frac{\partial z(x,t)}{\partial t} = U - KA^m \left| \frac{\partial z(x,t)}{\partial x} \right|^n$$

$$z(x) = z_{\rm b} + \left(\frac{U}{KA_0^m}\right)^{1/n}\chi$$

$$\chi = \int_{x_{\rm b}}^x \left(\frac{A_0}{A(x')}\right)^{m/n} {\rm d}x\,'$$

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS

Horton ⇔ Tokunaga References

Reducing Horton Scaling relations Fluctuations Models Nutshell

Piracy on the high χ 's:

More: How river networks move across a landscape ☑ (Science Daily)

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

少a (~ 7 of 87

Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_{\ell} = R_s$. Insert question from assignment 1 2
- To make a connection, clearest approach is to start with Tokunaga's law ...
- Known result: Tokunaga → Horton^[18, 19, 20, 9, 2]

COcoNuTS

Horton ⇔ Tökünägä

Reducing Horton Scaling relations Fluctuations Models Nutshell

More with the happy-making thing

Putting things together:

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- Use Tokunaga's law and manipulate expression to find Horton's law for stream numbers follows and hence obtain R_n .
- 🙈 Insert question from assignment 1 🗹
- Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

၅ရ (~ 13 of 87

COcoNuTS

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks: Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$\rho_{\rm dd} \simeq \frac{\sum {\rm stream\ segment\ lengths}}{{\rm basin\ area}} = \frac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}$$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Models Nutshell References

COcoNuTS

Finding other Horton ratios

Connect Tokunaga to R_{\circ}

- & Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance $1/\rho_{dd}$.
- \clubsuit For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_\omega \simeq \rho_{\rm dd}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{\;k-1} \right) \, \propto R_T^{\;\omega} \label{eq:sigma}$$

Nutshell References

Reducing Horton

Scaling relations

Fluctuations

Models

Reducing Horton

Scaling relations

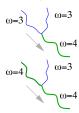
Fluctuations

Nutshell

More with the happy-making thing

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n.$
- & Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- & Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega + 1$
 - $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...
 - $n_{\omega'}T_{\omega'-\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

Horton and Tokunaga are happy

Altogether then:

$$\Rightarrow \bar{s}_{\omega}/\bar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

 \Re Recall $R_{\ell} = R_{s}$ so

$$R_\ell = R_s = R_T$$

And from before:

$$\boxed{R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}}$$

•9 q (~ 15 of 87

Horton and Tokunaga are happy

Some observations:

- $\Re R_n$ and R_ℓ depend on T_1 and R_T .
- & Seems that R_a must as well ...
- Suggests Horton's laws must contain some redundancy
- $\mbox{\&}$ We'll in fact see that $R_a=R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

COcoNuTS

Horton ⇔ Tokūnāgā

Reducing Horton Scaling relations Fluctuations Models Nutshell

少 Q (~ 16 of 87

Horton and Tokunaga are friends

...and in detail:

- Must retain same drainage density.
- $\mbox{\&}$ Since by definition, an order $\omega+1$ stream segment has T_{ω} order 1 side streams, we have:

$$T_k = (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_i\right).$$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

The other way round

 $\ \, \mathbb{A}$ Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n$$
.

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform) ...

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell References

ton Substitute Tokunaga's law $T_i=T_1R_T^{i-1}=T_1R_\ell^{i-1}$ into $T_k=(R_\ell-1)\left(1+\sum_{i=1}^{k-1}T_i\right)$

Horton and Tokunaga are friends

Just checking:

$$\begin{split} T_k &= (R_\ell - 1) \left(1 + \sum_{i=1}^{k-1} T_1 R_\ell^{i-1} \right) \\ &= (R_\ell - 1) \left(1 + T_1 \frac{R_\ell^{k-1} - 1}{R_\ell - 1} \right) \\ &\simeq (R_\ell - 1) T_1 \frac{R_\ell^{k-1}}{R_\ell - 1} = T_1 R_\ell^{k-1} \quad \text{...yep.} \end{split}$$

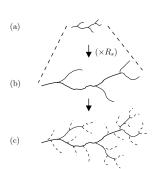
COcoNuTS

Horton ⇔

Reducing Horton
Scaling relations
Fluctuations
Models
Nutshell
References

Horton and Tokunaga are friends

From Horton to Tokunaga [2]



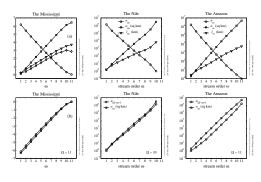
- Assume Horton's laws hold for number and length
- \ref{Start} Start with picture showing an order ω stream and order $\omega-1$ generating and side streams.
- Scale up by a factor of R_ℓ , orders increment to $\omega+1$ and ω .
- $\begin{array}{ll} & \text{Maintain drainage} \\ & \text{density by adding new} \\ & \text{order } \omega-1 \text{ streams} \end{array}$

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations Models Nutshell References

Horton's laws of area and number:



- In bottom plots, stream number graph has been flipped vertically.
- \clubsuit Highly suggestive that $R_n \equiv R_a$...

COcoNuTS Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations Models Nutshell

References

-ე ი 21 of 87

Measuring Horton ratios is tricky:

Horton ⇔ Tokunaga

COcoNuTS

Reducing Horton's laws:

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and two largest orders.

Rough first effort to show $R_n \equiv R_a$: Reducing Horton $\& a_{\Omega} \propto \text{sum of all stream segment lengths in a order}$

🚜 So:

Scaling relations Fluctuations Models

Nutshell References

COcoNuTS

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Horton's laws:

Continued ...

$$\begin{split} & \mathbf{a_{\Omega}} \propto \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega} \\ & = \frac{R_n^{\Omega}}{R_s} \bar{s}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)} \end{split}$$

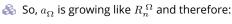
 Ω basin (assuming uniform drainage density)

 $a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega \bar{s}_\omega/\rho_{\rm dd}$

 $\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot \hat{1}}_{\substack{n \\ n}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\substack{\bar{s} \\ \bar{s}}}$

 $=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$

$$\sim R_n^{\Omega-1} \bar{s}_1 \frac{1}{1-(R_s/R_n)}$$
 as $\Omega \nearrow$



COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Mississippi:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3, 8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7, 8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

•9 q (№ 23 of 87

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Horton's laws:

COcoNuTS

UNIVERSITY OF

•9 a (№ 26 of 87

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

Amazon:

ω range	R_n	R_a	R_{ℓ}	R_s	R_a/R_n
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Not quite:

- ...But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- 🙈 Insert question from assignment 2 🗹

Equipartitioning:

Intriguing division of area:

- & Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \mathrm{const}}$$

Reason:

$$n_\omega \propto (R_n)^{-\omega}$$

$$\bar{a}_\omega \propto (R_a)^\omega \propto n_\omega^{-1}$$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations Fluctuations

Models Nutshell

夕 Q № 28 of 87

Scaling laws

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- A Hierarchy is mixed
- Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- \mathfrak{R} Only two Horton laws are independent ($R_n = R_a$)
- Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

少 Q (~ 31 of 87

COcoNuTS

Reducing Horton

Scaling relations

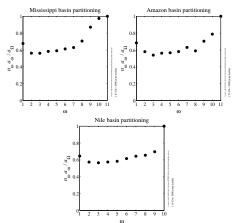
Models

Nutshell

References

Equipartitioning:

Some examples:



COcoNuTS

Reducing Horton Scaling relatio

Models

Nutshel References

•9 q (~ 29 of 87

COcoNuTS

Scaling laws

A little further ...

- Ignore stream ordering for the moment
- Pick a random location on a branching network p.
- & Each point p is associated with a basin and a longest stream length
- \mathbb{Q} : What is probability that the p's drainage basin has area a? $P(a) \propto a^{-\tau}$ for large a
- Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- Roughly observed: $1.3 \lesssim \tau \lesssim 1.5$ and $1.7 \lesssim \gamma \lesssim 2.0$

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Neural Reboot: Fwoompf

Scaling laws

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation Fluctuations

Models Nutshell

References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [22]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism ...

少 q (~ 30 of 87

Scaling laws

Connecting exponents

- We have the detailed picture of branching
- $\ \ \,$ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story $^{[17,\ 1,\ 2]}$
- & (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

COcoNuTS Scaling laws

Horton ⇔ Tokunaga Finding γ :

- Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
 - 🚓 Assume some spatial sampling resolution Δ
 - & Landscape is broken up into grid of $\Delta \times \Delta$ sites

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*}; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

Use Horton's law of stream segments: $\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$...

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

夕 Q ← 37 of 87

COcoNuTS

Reducing Horton

Scaling relations

Models

References

Scaling laws

Finding γ :

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_>(\ell_*) = P(\ell > \ell_*) = \int_{\ell=\ell_*}^{\ell_{\rm max}} P(\ell) \mathrm{d}\ell$$

$$P_{\searrow}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

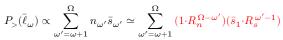
COcoNuTS Scaling laws

Finding γ :

 \mathfrak{S} Set $\ell_* = \bar{\ell}_{\omega}$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\bar{\ell}_{\omega}) = \frac{N_{>}(\bar{\ell}_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega' = \omega+1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\&}}{\sum_{\omega'=1}^{\Omega} n_{\omega'} \bar{s}_{\omega'} / \cancel{\&}}$$

- & Δ 's cancel
- So ...using Horton's laws ...



COcoNuTS

Reducing Horton

Scaling relations

Fluctuations

Nutshell References

Scaling laws

Finding γ :

- \clubsuit The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- $Arr Given P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ ,

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\rm max}} P(\ell) \, \mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \frac{\ell^{-\gamma} \text{d} \ell}{\ell}$$

$$= \left. \frac{\ell^{-(\gamma-1)}}{-(\gamma-1)} \right|_{\ell-\ell}^{\ell_{\max}}$$

$$\propto \ell_*^{-(\gamma-1)}$$
 for $\ell_{\text{max}} \gg \ell_*$

Scaling laws

Finding γ :

We are here:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\,\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- Change summation order by substituting $\omega'' = \Omega - \omega'.$
- $\mbox{\&}$ Sum is now from $\omega''=0$ to $\omega''=\Omega-\omega-1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

少 Q (~ 39 of 87

networks (Tokunaga and Horton)

- & Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω .

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Hortor

Scaling relations

Models

Nutshell

References

UNIVERSITY OF

少 Q (~ 35 of 87

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

UNIVERSITY VERMONT

夕 Q № 36 of 87

Fluctuations

Nutshell

Scaling laws

Finding γ :

$$P_{>}(\bar{\ell}_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

 $\red since R_n > R_s \ {\rm and} \ 1 \ll \omega \ll \Omega$,

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n-1)/(a-1)$

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations

Models Nutshell

COcoNuTS

Reducing Horton

Scaling relations

Models

Nutshell

References

Scaling laws

Finding γ :

And so we have:

$$\gamma = {\rm ln} R_n / {\rm ln} R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \mathrm{ln}R_s/\mathrm{ln}R_n = 2 - 1/\gamma$$

Insert question from assignment 2 2

- Such connections between exponents are called scaling relations
- 🚵 Let's connect to one last relationship: Hack's law

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

少 Q (~ 43 of 87

COcoNuTS

Reducing Horton

Scaling relations

Models

Nutshell

References

Scaling laws

Finding γ :

Nearly there:

$$P_{>}(\bar{\ell}_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} \\ = e^{-\omega \ln(R_n/R_s)}$$

- & Need to express right hand side in terms of $\bar{\ell}_{\omega}$.
- \Re Recall that $\bar{\ell}_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\bar{\ell}_{\omega} \propto R_{\ell}^{\omega} = R_{s}^{\omega} = e^{\omega \ln R_{s}}$$

Scaling laws

Hack's law: [6]

 $\ell \propto a^h$

 \clubsuit Typically observed that $0.5 \lesssim h \lesssim 0.7$. & Use Horton laws to connect h to Horton ratios:

$$\bar{\ell}_{\omega} \propto R_s^{\,\omega} \text{ and } \bar{a}_{\omega} \propto R_n^{\,\omega}$$

Observe:

$$\bar{\ell}_{\omega} \propto e^{\,\omega {\rm ln} R_s} \propto \left(e^{\,\omega {\rm ln} R_n}\right)^{{\rm ln} R_s/{\rm ln} R_n}$$

$$\propto (R_n^{\,\omega})^{{\rm ln}R_s/{\rm ln}R_n} \, \propto \bar{a}_\omega^{{\rm ln}R_s/{\rm ln}R_n} \Rightarrow \boxed{h = {\rm ln}R_s/{\rm ln}R_n}$$

COcoNuTS

Scaling laws

Finding γ :

Therefore:

$$P_>(\bar{\ell}_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\,\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \overline{\ell}_{co}^{-\ln(R_n/R_s)/\ln R_s}$$

$$=\bar{\ell}_{\omega}^{-(\ln R_n - \ln R_s)/\ln R_s}$$

$$= \bar{\ell}_{\omega}^{-\ln R_n/\ln R_s + 1}$$

$$=\bar{\ell}_{\omega}^{-\gamma+1}$$

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

UNIVERSITY OF

少 Q (~ 41 of 87

Scaling relations Fluctuations

Nutshell

We mentioned there were a good number of 'laws': [2]

	<u>H</u>	orton ⇔
Relation:	Name or description:	inaga
		icing Horton
$T_k = T_1(R_T)^{k-1}$	Tokunaga's law	ng relations
	o o	uations
$\ell \sim L^d$	self-affinity of single channels	els
$n_{\omega}/n_{\omega+1} = R_n$	Horton's law of stream numbers	hell
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	Horton's law of main stream lengths	rences
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	Horton's law of basin areas	
$\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$	Horton's law of stream segment lengths	5
$L_{\perp} \sim L^H$	scaling of basin widths	YL C
$P(a) \sim a^{-\tau}$	probability of basin areas	- Bet
$P(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	3
$\ell \sim a^h$	Hack's law	52
$a \sim L^D$	scaling of basin areas	~
$\Lambda \sim a^{eta}$	Langbein's law	
$\lambda \sim L^{\varphi}$	variation of Langbein's law	NIVERSITY VERMONT

∙) q (~ 45 of 87

Connecting exponents

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim L^d$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1} = R_n$	R_n
$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$	$R_a = R_n$
$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$	$R_{\ell} = \frac{R_s}{}$
$\ell \sim a^h$	$h = \ln R_s / \ln R_n$
$a \sim L^D$	D = d/h
$L_{\perp} \sim L^H$	H = d/h - 1
$P(a) \sim a^{- au}$	$\tau = 2 - h$
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^{\beta}$	$\beta = 1 + h$
$\lambda \sim L^{\varphi}$	$\varphi = d$

COcoNuTS Scheidegger's model

Horton ⇔ Tokunaga Reducing Horton

Scaling relations Fluctuations

Models Nutshell

少 Q (~ 46 of 87

COcoNuTS

Reducing Hortor

Scaling relations

Models Nutshell

References

UNIVERSITY OF VERMONT

少 Q (№ 47 of 87

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

UNIVERSITY OF VERMONT

少 q (~ 48 of 87

Fluctuations

Models Nutshell

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

少 q (~ 49 of 87

COcoNuTS

Reducing Horton

Scaling relations

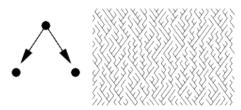
Models

Nutshell

References

Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

- Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]
- Useful and interesting test case

Scheidegger's model

Prob for first return of a random walk in (1+1) dimensions (from CSYS/MATH 300):

Increasing partition of N=64

$$P(n) \sim \frac{1}{2\sqrt{\pi}} \; n^{-3/2}. \label{eq:problem}$$

and so $P(\ell) \propto \ell^{-3/2}$.

 $\mbox{\ensuremath{\&}}$ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{\,2/3}.$$

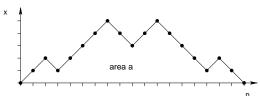
- \Re Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- \Re Note $\tau = 2 h$ and $\gamma = 1/h$.
- $\Re R_n$ and R_ℓ have not been derived analytically.

COcoNuTS

A toy model—Scheidegger's model

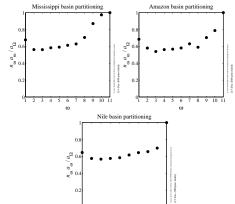
Random walk basins:

Boundaries of basins are random walks



COcoNuTS Equipartitioning reexamined:

Recall this story:



Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Nutshell

Equipartitioning

What about

$$P(a) \sim a^{-\tau}$$

& Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \mathsf{const}$$

 $\Re P(a)$ overcounts basins within basins ...

Hard neural reboot (sound matters):

& while stream ordering separates basins ...

COcoNuTS

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

•9 q (> 52 of 87

A toy model—Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Flow is directed downwards

Generalizing Horton's laws

少 q (~ 55 of 87

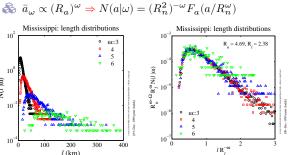
COcoNuTS

Reducing Hortor

Scaling relations Models Nutshell

References

Mississippi: length distributions



Scaling collapse works well for intermediate orders

 $\label{eq:lambda} \tilde{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$

All moments grow exponentially with order

UNIVERSITY OF

Fluctuations

Moving beyond the mean:

Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1} = R_s$$

https://twitter.com/round_boys/status/9518737659646812 W

- Natural generalization to consider relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness ...

COcoNuTS

UNIVERSITY OF

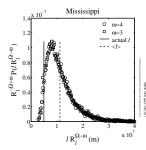
少 Q (~ 53 of 87

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Nutshell

Generalizing Horton's laws

A How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- & Actual length/Mean length = 44 %
- Okay.

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

COcoNuTS

Reducing Horton Scaling relations

Fluctuations Models Nutshell

References

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Nutshell

References

Generalizing Horton's laws

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10^3

basin:	ℓ_{Ω}	$ar{\ell}_{\Omega}$	σ_{ℓ}	$\ell_\Omega/ar\ell_\Omega$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	a_{Ω}	$ar{a}_{\Omega}$	σ_a	a_Ω/\bar{a}_Ω	$\sigma_a/ar{a}_\Omega$
Mississippi	$\frac{a_{\Omega}}{2.74}$	a_{Ω} 7.55	$\frac{\sigma_a}{5.58}$	$\frac{a_{\Omega}/\bar{a}_{\Omega}}{0.36}$	$\frac{\sigma_a/\bar{a}_\Omega}{0.74}$
Mississippi Amazon			a	427 42	a, 32
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74

COcoNuTS

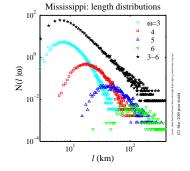
Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell

夕 Q № 58 of 87

Generalizing Horton's laws

Next level up: Main stream length distributions must combine to give overall distribution for stream length



 $P(\ell) \sim \ell^{-\gamma}$

Another round of convolutions [3]

Interesting ...

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

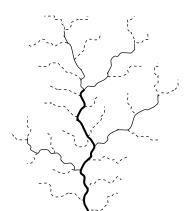
Fluctuations

Models

Nutshell

少 Q (~ 61 of 87

Combining stream segments distributions:



Stream segments sum to give main stream lengths

 $\mbox{\ensuremath{\&}} \ P(\ell_\omega) \ \mbox{is a} \ \mbox{\ensuremath{a}} \ \mbox{\ensuremath{a}} \ \mbox{\ensuremath{e}} \ \mb$ convolution of distributions for the s_ω

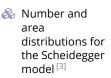
COcoNuTS

Reducing Horton Scaling relations

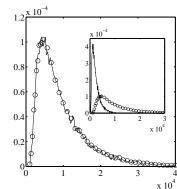
Fluctuations Models Nutshell References

•9 a (№ 59 of 87

Generalizing Horton's laws



 $\Re P(n_{1,6})$ versus $P(a_6)$ for a randomly selected $\omega=6$ basin.



COcoNuTS

Reducing Horton Scaling relations

Fluctuations Models Nutshell References

少∢ № 62 of 87

COcoNuTS

Horton ⇔ Tokunaga

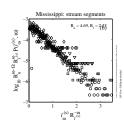
Reducing Horton

Scaling relations

Generalizing Horton's laws

 $\mbox{\&}$ Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \dots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F\left(s/R_{\ell}^{\omega}\right)$$

$$F(x)=e^{-x/\xi}$$

Mississippi: $\xi \simeq 900$ m.

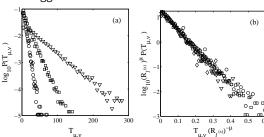
COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Nutshell

Generalizing Tokunaga's law

Scheidegger:

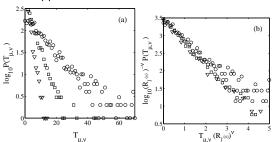


- & Observe exponential distributions for $T_{\mu,\nu}$
- & Scaling collapse works using R_s

Fluctuations Nutshell

Generalizing Tokunaga's law

Mississippi:



🗞 Same data collapse for Mississippi ...

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations Models

Nutshell References

夕 Q № 64 of 87

Reducing Hortor

Scaling relations

Fluctuations

Models

Nutshel

References

COcoNuTS

Generalizing Tokunaga's law

- Follow streams segments down stream from their beginning
- $\ensuremath{\mathfrak{S}}$ Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream
- Inter-tributary lengths exponentially distributed
- ⇒ random spatial distribution of stream segments

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

夕 Q № 67 of 87

Generalizing Tokunaga's law

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- & Look at joint probability $P(s_{\mu}, T_{\mu, \nu})$.

Generalizing Tokunaga's law

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- p_{ν} = probability of absorbing an order ν side
- \tilde{p}_{μ} = probability of an order μ stream terminating
- & Approximation: depends on distance units of s_u
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Now deal with this thing:

Generalizing Tokunaga's law

$$P(s_{\mu},T_{\mu,\nu}) = \tilde{p}_{\mu} \binom{s_{\mu}-1}{T_{\mu,\nu}} p_{\nu}^{T_{\mu,\nu}} (1-p_{\nu}-\tilde{p}_{\mu})^{s_{\mu}-T_{\mu,\nu}-1}$$

- \Leftrightarrow Set $(x,y)=(s_{\mu},T_{\mu,\nu})$ and $q=1-p_{\nu}-\tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = Nx^{-1/2} \left[F(y/x)\right]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

•9 a (~ 69 of 87

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.

UNIVERSITY OF 少 q (~ 65 of 87

COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Nutshell

Generalizing Tokunaga's law

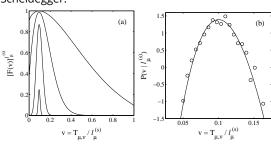
Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments

Generalizing Tokunaga's law

 $\mbox{\&}$ Checking form of $P(s_{\mu},T_{\mu,\nu})$ works:

Scheidegger:



COcoNuTS

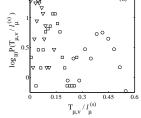
Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations

Models Nutshell References

UNIVERSITY VERMONT

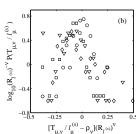
少 Q ← 70 of 87



Mississippi:

Generalizing Tokunaga's law

& Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:



COcoNuTS

Horton ⇔ Tokunaga

Reducing Horton Scaling relations

Fluctuations Models

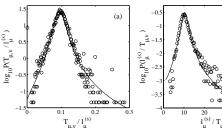
Nutshell

•9 q (~ 73 of 87

Generalizing Tokunaga's law

 $\ensuremath{\mathfrak{S}}$ Checking form of $P(s_{\mu}, T_{\mu, \nu})$ works:

Scheidegger:



COcoNuTS

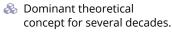
Reducing Horton Scaling relations

Fluctuations Models

Nutshell References

Models

Random subnetworks on a Bethe lattice [13]



- Bethe lattices are fun and tractable.
- & Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces
- ♣ In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on ...

COcoNuTS

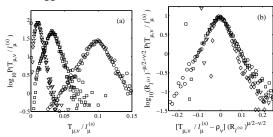
Reducing Horton Scaling relations

Models Nutshell References

Generalizing Tokunaga's law

 \Leftrightarrow Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]

$$P(\searrow) = P(\swarrow) = 1/2$$

Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Reducing Horton

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

 \clubsuit Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{\varepsilon} \propto \int \mathrm{d}\vec{r} \ (\mathrm{flux}) \times (\mathrm{force}) \sim \sum_i a_i \nabla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

COcoNuTS References I

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell References

COcoNuTS

Reducing Horton

Scaling relations

Models

References

[1] H. de Vries, T. Becker, and B. Eckhardt. Power law distribution of discharge in ideal

Water Resources Research, 30(12):3541-3543, 1994. pdf ☑

- P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865-4877, 1999. pdf
- P. S. Dodds and D. H. Rothman. Geometry of river networks. II. Distributions of component size and number. Physical Review E, 63(1):016116, 2001. pdf

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations Models Nutshell

夕 Q ← 80 of 87

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5-0.7	1.0-1.2

 $h \Rightarrow \ell \propto a^h$ (Hack's law). $d \Rightarrow \ell \propto L_{\parallel}^d$ (stream self-affinity).

References II

[4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity.

N. Goldenfeld. Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

J. T. Hack. Studies of longitudinal stream profiles in Virginia and Maryland.

COcoNuTS

Reducing Horton Scaling relations Fluctuations Models

Nutshell References

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Nutshell

Branching networks II Key Points:

- Horton's laws and Tokunaga law all fit together.
- For 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- & Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- \mathfrak{F} For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

References III

Horton ⇔ Tokunaga J. W. Kirchner. Reducing Horton Scaling relations

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks.

Geology, 21:591-594, 1993. pdf 2

Paper, 294-B:45-97, 1957. pdf

A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar. Universality classes of optimal channel networks. Science, 272:984-986, 1996. pdf

S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023-1029, 1995.

UNIVERSITY VERMONT 少 Q (~ 79 of 87

References

Physical Review E, 63(1):016117, 2001. pdf ☑

Addison-Wesley, Reading, Massachusetts, 1992.

United States Geological Survey Professional

COcoNuTS

Fluctuations

Models

Nutshell

UNIVERSITY OF VERMONT 少 Q (~ 78 of 87

References IV

[10] I. Rodríguez-Iturbe and A. Rinaldo.

Fractal River Basins: Chance and
Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15–20, 1967. pdf 🗗

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

References V

[13] R. L. Shreve.

Infinite topologically random channel networks. Journal of Geology, 75:178–186, 1967. pdf ☑ ♣

[14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, 1989.
pdf 🔀

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110–3117, 1988.

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations Fluctuations

Models Nutshell

References

COcoNuTS

Reducing Horton

Scaling relations

Models

Nutshell

References

References VII

[19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf ☑

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

[21] S. D. Willett, S. W. McCoy, J. T. Perron, L. Goren, and C.-Y. Chen.

Dynamic reorganization of river basins. Science Magazine, 343(6175):1248765, 2014. pdf

COcoNuTS

Horton ⇔ Tokunaga Reducing Horton Scaling relations

Fluctuations Models Nutshell

References

少 Q (~ 86 of 87

COcoNuTS

Horton ⇔

Reducing Horton Scaling relations

Fluctuations Models

Nutshell

References

References VIII

[22] G. K. Zipf.

<u>Human Behaviour and the Principle of</u> <u>Least-Effort.</u>

Addison-Wesley, Cambridge, MA, 1949.

References VI

[16] M. Takayasu and H. Takayasu.

Apparent independency of an aggregation system with injection.

Physical Review A, 39(8):4345–4347, 1989. pdf ✓

[17] D. G. Tarboton, R. L. Bras, and I. Rodríguez-Iturbe. Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso.

Water Resources Research, 26(9):2243–4, 1990.
pdf

[18] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf 7

COcoNuTS

Tokunaga Reducing Horton

Scaling relations Fluctuations

Models

Nutshell References

Novement | Section | Sect