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Willett et al.,

Science Magazine, 343, 1248765, 2014. %]
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http://www.youtube.com/watch?v=FnroL1_-12c?rel=0'

(Science Daily)
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- Can Hortoh and Tokunaga be happy?

In terms of network achitecture, Horton's laws
appear to contain less detailed information than
Tokunaga's law.

Oddly, Horton's laws have four parameters and
Tokunaga has two parameters.

R,, R, R, and R_ versus T; and R;. One simple
redundancy: R, = R,.
Insert question from assignment 1 (£

To make a connection, clearest approach is to
start with Tokunaga's law ...

Known result: Tokunaga — Horton '8 19.20.9, 21
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Letus ma.ke'them happy

We need one more ingredient:

A network is space-filling if the average distance
between adjacent streams is roughly constant.

Reasonable for river and cardiovascular networks

For river networks:
Drainage density pqq = inverse of typical distance
between channels in a landscape.

In terms of basin characteristics:

Q i
> stream segment lengths > 1,5,

fodr basin area T
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- More with the happy-making thing b
Horton <
Tokunaga
Start looking for Horton's stream number law: R
TLW/TLw+1 - Rn' Scaling relations
Estimate N, the number of streams of order w in Fluctuations
Models

terms of other n_,, w’ > w.

Nutshell

Observe that each stream of order w terminates
by either:

References

1. Running into another stream of order w
and generating a stream of order w + 1
» 2n,, , streams of order w do this

2. Running into and being absorbed by a
stream of higher order w’ > w ...

w

» n T, streams of order w do this et
A @
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2 Scaling relations
nw = 2n(d+1 + /Z Tw/*wnw/ Fluctuations
generation «'=wt1l apsorption Models
Nutshell
Use Tokunaga’s law and manipulate expression to = references
find Horton'’s law for stream numbers follows and
hence obtain R,,.

Insert question from assignment 1 (£

Solution:
e 2+Rr+T1)+/2+Rr+T1)2 -8Ry
L 2
(The larger value is the one we want.) gﬁ%m |§|
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Finding other Horton ratios

Now use uniform drainage density pyq4-

Assume side streams are roughly separated by
distance 1/pqq.

For an order w stream segment, expected length is
w—1
5, ol (1 +) Tk)
k=1
Substitute in Tokunaga's law T}, = T, R&1:

w—1
i = (1 S R%“) o R
k=1
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Horton and f&kunaga are happy
. Altogether then:
&

:>§w/’§w71 :RT = Rs :RT

. & Recall R, =R, so

|R, =R, = Ry

&> And from before:

R

_ (2+Rp+Ty)++/(@2+Rr+T1)2—8Ry

" 2

L) SR
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 Horton and Tokunaga are happy

R, and R, depend on T; and R .
Seems that R, must as well ...

Suggests Horton's laws must contain some
redundancy

We'll in fact seethat R, = R,,.

Also: Both Tokunaga's law and Horton's laws can
be generalized to relationships between
non-trivial statistical distributions. > !
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 Horton and Tokunaga are happy

Note: We can invert the expresssions for R,, and
R, to find Tokunaga's parameters in terms of
Horton's parameters.

RT = Ré,

Suggests we should be able to argue that Horton's
laws imply Tokunaga's laws (if drainage density is
uniform) ...
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Horton and Tokunaga are friends

Assume Horton's laws
hold for number and
length

Start with picture
showing an order w
stream and order w — 1
generating and side
streams.

Scale up by a factor of
R,, orders increment
tow+1and w.
Maintain drainage
density by adding new
order w — 1 streams
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- Horton and Tokunaga are friends

Must retain same drainage density.

Add an extra (R, — 1) first order streams for each
original tributary.

Since by definition, an order w + 1 stream segment
has T,, order 1 side streams, we have:

k—1
T, = (R, — 1) <1+ZT,£> .
(A= T

For large w, Tokunaga's law is the solution—let’s
check ...
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Substitute Tokunaga'slaw T, = Ty R/ =T R,/

k—1
Ttdinl ) <1+ZTZ->

into

(osd

Tk:(Re—1)<

AR R T ek R
(re=1) (14770

(R, —1)

2 Rﬂk_l
LR

Horton and 'Toikunaga are friends

k-1

Rt

L+ YT R
1=1

)

..yep.

)
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‘ l | ; f d b $ COcoNuUTS
Horton's laws of area and number:
The Mississippi 3 The Nile 3 The Amazon
89 = 10 DpE 5 Horton <
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In bottom plots, stream number graph has been
flipped vertically.
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Highly suggestive that R,, = R, ... 4 el
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- Measuring Horton ratios is tricky:

How robust are our estimates of ratios?

Rule of thumb: discard data for two smallest and
two largest orders.
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~ Mississippi:

w range R,
2, 3] 5.27
2, 5] 4.86
[2,7] 4.77
3,4] 472
3, 6] 4.70
3, 8] 4.60
4, 6] 4.69
4, 8] 4.57
[5,7] 4.68
[6, 7] 4.63
[7,8] 4.16

mean u  4.69
stddevo 0.21

RCL
5.26
4.96
4.88
4.91
4.83
4.79
4.81
4.77
4.83
4.76
4.67
4.85
0.13

R,
2.48
242
2.40
2.41
2.40
2.38
2.40
2.38
2.36
2.30
2.41
2.40
0.04

RS
2.30
2.31
2.31
2.34
2.35
2.34
2.36
2.34
2.29
2.16
2.56
2.33
0.07

o/p 0.045 0.027 0.015 0.031

R,/R,
1.00
1.02
1.02
1.04
1.03
1.04
1.02
1.05
1.03
1.03
1.12
1.04
0.03

0.024
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- Amazon:;

w range

mean u
std dev o

o/

R,
4.78
4.55
4.42
4.45
4.35
4.38
4.38
4.08
4.42
0.17

0.038 0.023 0.045 0.042

R,
4.71
4.58
4.53
4.52
4.49
4.54
4.62
4.27
4.53
0.10

R,
2.47
2.32
2.24
2.26
2.20
2.22
2.22
2.05
2.25
0.10

R,
2.08
2.12
2.10
2.14
2.10
2.18
2.21
1.83
2.10
0.09

R,/R,
0.99
1.01
1.02
1.01
1.03
1.03
1.06
1.05
1.02
0.02

0.019
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Reducing Horton's laws:

ag o< sum of all stream segment lengths in a order
Q basin (assuming uniform drainage density)

So:
Q
aq = Z nwgw/pdd
w=1
Q no
YIRS e
w=1 7 S5
Q Q )
Rs T Rn
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“RedudnglﬂdNOn%lams:

Zei R_’gzzg Rs b (Rs/Rn>Q
= Rs 1Rn 1= (Rs/Rn>
Q—-13 1
-k SRR

E TR R

So, ag, is growing like R.$* and therefore:
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COcoNuTS

- Reducing Horton's laws:

Horton <
Tokunaga

Reducing Fioron
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...But this only a rough argument as Horton's laws "
do not imply a strict hierarchy References

Need to account for sidebranching.
Insert question from assignment 2 (£
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- Equipartitioning: sl
Horton <

Tokunaga

Reducing Horton

Observe: Combined area of basins of order w Scaling relations
independent Of w. Fluctuations
5 o . Model
Not obvious: basins of low orders not necessarily
utshe

contained in basis on higher orders.
Story:

References

R =R

n

Reason:

The (o]
i UNIVERSITY |9|
il ¥ VERMONT 1O

DA 280f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

| Equipartitiohihg:

Mississippi basin partitioning

.
D.G...o

dER20305a, . 5F=6 it 8MI0IE10 1)
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o
D
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Amazon basin partitioning

dan2 T38Ca 367678 8 010501’
(0]

Nile basin partitioning
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3 0.4

0.2

1
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~ Scaling laws

Natural branching networks are hierarchical,
self-similar structures

Hierarchy is mixed

Tokunaga's law describes detailed architecture:
T Rk L

We have connected Tokunaga’'s and Horton's laws
Only two Horton laws are independent (R,, = R,,)

Only two parameters are independent:
(T17 RT) = (er Rs)
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~ Scaling laws

Ignore stream ordering for the moment
Pick a random location on a branching network p.

Each point p is associated with a basin and a
longest stream length

Q: What is probability that the p's drainage basin
has area a? P(a) x a™ " forlargea

Q: What is probability that the longest stream
from p has length ¢? P(¢) oc ¢~ for large ¢

Roughly observed: 1.3 <7< 1.5and 1.7 < v < 2.0
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~ Scaling laws

We see them everywhere:

Earthquake magnitudes (Gutenberg-Richter law)
City sizes (Zipf's law)

Word frequency (Zipf's law) [#*!

Wealth (maybe not—at least heavy tailed)
Statistical mechanics (phase transitions) !

A big part of the story of complex systems

Arise from mechanisms: growth, randomness,
optimization, ...

Our task is always to illuminate the mechanism ...

COcoNuTS

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

The O
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

A 330f87


http://www.uvm.edu
http://www.uvm.edu/pdodds

~ Scaling laws

We have the detailed picture of branching
networks (Tokunaga and Horton)

Plan: Derive P(a) «x a~™ and P(¢) « ¢~ starting
with Tokunaga/Horton story '/ !

Let's work on P(¢) ...

Our first fudge: assume Horton's laws hold
throughout a basin of order Q.

(We know they deviate from strict laws for low w
and high w but not too much.)

Next: place stick between teeth. Bite stick.
Proceed.
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COcoNuTS

~ Scaling laws

Horton <
Tokunaga

Reducing Horton

Often useful to work with cumulative Scaling reliniong
distributions, especially when dealing with Fluctuations
power-law distributions. Models

The complementary cumulative distribution turns "
out to be most useful: References

emax

P.(L) = P(>0,) :/ P(0)de

=

*

Also known as the exceedance probability.
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Scaling laws

The connection between P(x) and P_(z) when
P(z) has a power law tail is simple:

Given P(¢) ~ ¢~ large ¢ then for large enough ¢,

Emax

SO ARG e S
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COcoNuTS

~ Scaling laws

Horton <
Tokunaga

Aim: determine probability of randomly choosing oo
Scaling relations

a point on a network with main stream length > ¢, ==~

Fluctuations
Assume some spatial sampling resolution A e
Landscape is broken up into grid of A x A sites Nutshell

References

Approximate P_(¢,) as

£ N>(£*§ A)
i oo

where N_ (¢,; A) is the number of sites with main

stream length > /..

Use Horton's law of stream segments:
§w/§w_1 == RS cee
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COcoNuTS

Scaling laws

Horton <
Tokunaga

Reducing Horton

Set¢, = ¢, forsome 1 « w < Q.

Scaling relations

e Q i) Fluctuations
122 (Z o N (L3 D) ~ ZW’*L«H»l nw’sw’/A Madels
i N>(O§ A) ZQ 2B //A/ Ndtshell
w

References

A’s cancel
Denominator is ag pqq, @ CONStant.
So ...using Horton's laws ...

’ /
Z nw’gw’ e Z (1R'r?7w )(51]?;*’ 71)
w/'=w+1 w/ =w+1
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Scaling laws

We are here:

it Q

P3ff,) oc >0 (1-RI+)(@ R
w/'=w+1
Cleaning up irrelevant constants:

R (e

w/'=w+1 U

Change summation order by substituting

W =0 -

Sumis now fromw” =0tow” =Q —w—1
(equivalentto w’ = Q downto w’ = w + 1)
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~ Scaling laws

reS (= )M 2 (R”)w

w”=0
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Scaling laws

Nearly there:

P.E) (Rn) _ ewin(R,/R,)

Need to express right hand side in terms of 7.
Recall that ¢, ~ ¢; R¢ 1.

LA R B R
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,Scallng Iaws

Finding ~:
<& Therefore:

& » B

=4,

—win(R,/R,) _ (e wInRS)

R,/R,)/InR,

z InR,,/InR_+1

7—y+1
=S o

(InR,,—InR,)/INnR_

—In(R,,/R,)/In(

RS)
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~ Scaling laws

And so we have;

|v=InR, /InR,

Proceeding in a similar fashion, we can show

‘Tzz—InRs/lan :2_1/7‘

Insert question from assignment 2 (£

Such connections between exponents are called
scaling relations

Let's connect to one last relationship: Hack’s law
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Scaling laws

Horton <
Tokunaga
Reducing Horton

h Scaling relations

{f xa

Fluctuations

Typically observed that 0.5 < h < 0.7. -
Use Horton laws to connect i to Horton ratios: Nutshell

References
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Observe:
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- We mentioned there were a good number

of ‘laws’; !

Relation:

Ty, = Ty (Rp)*?
{~ L2

COcoNuTS

r;lolr’tom =
Name or description: i
icing Horton
Tokunaga's law R
uations
self-affinity of single channels o5
Horton’s law of stream numbers el

Horton's law of main stream lengths
Horton's law of basin areas

Horton’s law of stream segment lengths
scaling of basin widths ‘
probability of basin areas
probability of stream lengths
Hack’s law

scaling of basin areas
Langbein’s law

variation of Langbein’s law

rences
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- Connecting éxponents

relation: scaling relation/parameter: !
{~ L4 d
T, =T, (Rp)*! T,=R,—R,—2+2R_/R,
Rr=R,

nw/nw+l = Rn Rn
@w+1/@w = Ra Ra = Rn
Ew—‘—l/gw = RZ RE = Rs

{~al h=InR,/InR,,
a~ LD D=d/h

P(a) ~a™7 T=2—-h

Pl) ~ 07 v=1/h
A~ af B=1+h
A~ L¥ p=d
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Scheldeggers m:odel

. Directed random networks

o "
"\.% ‘\.‘QL&I\Q ;“\:v ?E}Q?’: }"'\-
I'._; 3-'5’ ,-" ¥ E} : ;

ks 5 m “f? y;ggf >‘>-x:f;:f

% SN
f,-*;"f}‘kg’ .‘?"{:-3{ W x Nh}r

By = Bl = 1/2
<= Functional form of all scaling laws exhibited but
exponents differ from real world "> 16141
<= Useful and interesting test case
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| ‘A‘toy modelé-Scheidegger’s model

Boundaries of basins are random walks

area a
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| Scheidegger;s model

1
P PR R ey 2
(n) 5
and so P(¢) « ¢-3/2,

Typical area for a walk of length n is oc n3/2:

0o a?/3.

Finde 413 h =213,y —3/2d— |
Noter =2—hand~y=1/h.
R, and R, have not been derived analytically.
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COcoNuTS

| Equipartitiohihg reexamined:

Horton <
Mississippi basin partitioning Amazon basin partitioning Tokunaga
1 4
Q Reducing Horton
L]
04 0g . Scaling relations
% % Fl i
o & ° uctuations
S0, e ® & ot Lt le e J 55
] Models
304
= Nutshell
0.2 g References
i 152 i34 56 i B9 0l 1972 384 150 6 7. 81 A9 10T

W (4]
Nile basin partitioning
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Equipartitiohing

What about
Pla)i~ian" ?

Since 7 > 1, suggests no equipartitioning:

aP(a) ~a~7+! &£ const

P(a) overcounts basins within basins ...

while stream ordering separates basins ...
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| - Hard neural reboot (sound matters):
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| Fluctuations

Both Horton’s laws and Tokunaga's law relate
average properties, e.g.,

gw/gw—l = Rs

Natural generalization to consider relationships
between probability distributions

Yields rich and full description of branching
network structure

See into the heart of randomness ...
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: Atoy r‘nodeil—Scheideggek’s ‘r'n"odel

| :
‘L Directed random networks

PN = PUd) = 1/2

&> Flow is directed downwards
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COcoNuTS

Generalizing Horton's laws

Y w I —w w ;
b, x (Rg)” = N(f|w) = (R, R,)"“F,(¢/R7) Horton =
= w s 2\—w w i
aw X (Ra) = N((Z|(JJ> —_— (Rn) FCL (G/Rn) Reducing Horton
Mississippi: length distributions _, Mississippi: length distributions G
1 10 Fluctuations
o (‘0:3 ,,,,,,,,,,
4 Models
T e
6 Nutshell

References

N(l o)

ABRRRD,
DOCITEARADA FAA

>

10“‘0 100 200 300 1 A2 3
| (km) I
Scaling collapse works well for intermediate
orders
: % e i HO)
All moments grow exponentially with order R 8
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Generalizing Horton's laws

How well does overall basin fit internal pattern?

Actual length = 4920
km (at 1 km res)

Predicted Mean length
=11100 km

Predicted Std dev =

Actual length/Mean
length = 44 %
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COcoNuTS

Generalizing Horton's laws

Comparison of predicted versus measured main

Horton <

stream lengths for large scale river networks (in 103 Tokuhasg
km): Reducing Horton
Scaling relations
basin: La L o, Lo/la 04/lq Fluctuations
Mississippi 4.92 11.10 5.60 0.44 0.51 MalEls
Amazon 575 9.18 6.85 0.63 0.75 ephel
Nile 6.49 266 220 244 0.83 Fea
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 237 174 045 0.73
ag ag Oq  Ga/0a 04/q

Mississippi  2.74 7.55 5.58 0.36 0.74
Amazon 540 9.07 8.04 0.60 0.89

Nile 3.08 096 079 3.19 082

Congo 370 1009 828 037 082

Kansas 0.14 049 042 028 086 | j—
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Combining stream segments distributions:

Stream segments
sum to give main
stream lengths

H=w
= E S,
p=1

P(,)is a
convolution of
distributions for
the s,
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Generalizing Horton's laws

© Pd:}s)v )

0]
1

log, Rn‘*"Q R

N{f|lw) =

Mississippi: stream segments

Rn =4.69, R: {B?

Sum of variables ¢, = 3" " s, leads to
convolution of distributions:

N(s|1) * N(s]2) % - % N(s|w)

N(slw) = F (s/Ry)

B
R Ry

Fla) = e 28
Mississippi: £ =~ 900 m.
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COcoNuTS

Generalizing Horton's laws

. . . . Horton <
Next level up: Main stream length distributions TokUhise
must combine to give overall distribution for Reducing Horton
Stream Iength Scaling relations

Fluctuations

Mississippi: length distributions

1 Models
i wm%% w=3 Nutshell
T, Bt =g Ref
%&3 . 5 ererences
10° = =
: s Pl X
% Another round of
e convolutions %!
10 :
Interesting ...
10"
10 10 :
| (km) 4 [T
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- Generalizing Horton’s laws

Number and
area
distributions for
the Scheidegger
model| %!

P(nq ¢) versus
P(ag) for a
randomly
selected w = 6
basin.
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- Generalizing Tokunaga's law

Scheidegger:

|

(b)

—
=
g
0
=
o
=
=
@i =1
15} B
3 ¥
=) Y/ ATo )
g - Sthop
m o
o
SHed
_l m __m
3

0 0:1°410.2¢ 03 #0455 0.5 12016
-1
T“’V (Rl(s))

Observe exponential distributions for 7, ,
Scaling collapse works using R,
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Generalizing Tokunaga's law

Mississippi:

2.%
2, @
2
Q,
— o
Z15 VD%Q%O
E ol ve S
o =8 o
[=} v
=Tl g Q%%)@O
2 V. o m OO(%
o O
o O dg
0.5 w om o
u] O O @ 00O O
C0 20 40 60
T
[TRY

(b)
3 %
oe
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%9@ (o) ]
1.9 ¥8g0,po 000 d
miRvala]
5§00
1
¥V
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R
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Same data collapse for Mississippi ...
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- Generalizing Tokunaga's law

So
P<Tp,,u) == <R3>N7V71Pt [T,u,v/<Rs)M7V71]
where :
B — e 2 Sy
v

P(s,) < P(T, ,)

B,V

Exponentials arise from randomness.
Look at joint probability P(s,,, T, , ).

G Vg 72
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Generalizing Tokunaga's law

Inter-tributary
lengths
exponentially
distributed

Leads to random
spatial
distribution of
stream segments
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- Generalizing Tokunaga's law

Follow streams segments down stream from their
beginning

Probability (or rate) of an order p stream segment
terminating is constant:

Pu = L/(R)* &,

Probability decays exponentially with stream
order

Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments
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Generalizing Tokunaga's law

COcoNuTS

Horton <
Joint distribution for generalized version of e

Reducing Horton

Tokunaga's law:

Scaling relations

Fluctuations

~ S A 1 TJ,.I/ ~ 225 il
P(S;JJT/,L,V) = pp, ( 5—‘ )pl/} (1_py_p“)s“ T“"V 1 Models
M,V

Nutshell
Where References
p,, = probability of absorbing an order v side
stream

p,, = probability of an order p stream terminating
Approximation: depends on distance units of s,

In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.
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- Generalizing Tokunaga's law

Now deal with this thing:

e 1IN g L
P(Sy,7Tp,,u) :pp( % )pV ’ (1_py_pp,)SH

n,v

Set (xvy) = (S,uaT,u,u) and 9= 1 — Py _ﬁul
approximate liberally.

Obtain
Plzy)= Ne M2 [F(y/z)]”

no-(7)" ")

where

P

My

v

=i
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Generalizing Tokunaga's law

COcoNuTS

Horton <
Tokunaga

Checking form of P(s,, T, ,) works: Reducing Horton
M M,V S
caling relations
Scheidegger: Fluctuations
L 1.5 Models
0.8 @ Nutshell
i 1l
References
Z _ 0. = 0.5
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COcoNuTS

- Generalizing Tokunaga's law

Horton <
Tokunaga

Reducing Horton

Checking form of P(s,,,T,, ,) works:

Scaling relations

Scheidegger: Fluctuations
Models
Nutshell
—~ References
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Generalizing Tokunaga's law S i

Horton <
Tokunaga
. o Reducing Horton
Checking form of P(s,,,T, ,) works: 3
M B,V it O 3
Scaling relations
Scheidegger: Fluctuations
mal Models
© 1
P Nutshell
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Generalizing Tokunaga's law

Checking form of P(s,,,T,, ,) works:

Mississippi:
1.5

& @
v
~ v m
@ o
= o o
= Y
> a o o (o)
l_i N7 o
E.; 0y oo v o o
> h O o fo)
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ok vV oW o o
0 D0
o oo
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D 5 o
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DI:IOOO
Vg Y0
0.4 Dg OVD
<>(> 8 v
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oo (R
Oills oo g%
v oV <o
o oo
¢
-0.4
onoo oooo
ov AVARR Vo203
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THE UNKNowN
MECHAN1SM




- Models

Dominant theoretical
concept for several decades.
Bethe lattices are fun and
tractable.

Led to idea of “Statistical
inevitability” of river
network statistics

But Bethe lattices
unconnected with surfaces.
In fact, Bethe lattices ~
infinite dimensional spaces
(oops).

So let's move on ...

COcoNuTS

Horton <
Tokunaga

Reducing Horton
Scaling relations
Fluctuations
Models

Nutshell

References

The O
ﬁ UNIVERSITY |Q|
il ¥ VERMONT 1O

DA 750f 87


http://www.uvm.edu
http://www.uvm.edu/pdodds

[ Scheldeggers m:odel

. Directed random networks
%\tu “v-s;}{ fff&;?
; A :ﬁ{’}?”{ Jt}
S N
RARTRED

ROov = —1)

& Functional form of all scaling laws exhibited but
exponents differ from real world !> 16141
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- Optimal channel networks

Landscapes h(Z) evolve such that energy
dissipation ¢ is minimized, where

€ /d? (flux) x (force) ~> " a,Vh; ~ > a]

Landscapes obtained numerically give exponents
near that of real networks.

But: numerical method used matters.

And: Maritan et al. find basic universality classes
are that of Scheidegger, self-similar, and a third
kind of random network ¢!
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- Theoretical networks

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN's () 1/2 1
OCN's (I1) 2/3 1
OCN's (l11) 3/5 1

Real rivers 0.5-0.7 1.0-1.2

h = ¢ x a® (Hack’s law).
d = ( o« L{ (stream self-affinity).
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NUtShe” COcoNuTS :

Tohinbas
Horton's laws and Tokunaga law all fit together. Reducing Horton
For 2-d networks, these laws are ‘planform’ laws e
and ignore slope. i‘u‘l”
Abundant scaling relations can be derived. N;;;!
Can take R,,, R,, and d as three independent References

parameters necessary to describe all 2-d
branching networks.

For scaling laws, only h = InR,/InR,, and d are
needed.

Laws can be extended nicely to laws of
distributions.

Numerous models of branching network evolution
exist: nothing rock solid yet. [ el
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