Branching Networks I

Last updated: 2018/03/23, 12:08:15

Complex Networks | @networksvox CSYS/MATH 303, Spring, 2018

Prof. Peter Dodds | @peterdodds

Dept. of Mathematics & Statistics | Vermont Complex Systems Center Vermont Advanced Computing Core | University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

These slides are brought to you by:

COcoNuTS

Introduction
Definitions
Allometry
Laws

Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

These slides are also brought to you by:

Special Guest Executive Producer

On Instagram at pratchett_the_cat

COcoNuTS

ntroduction

Definitions

Allometry

Laws

Stream Ordering Horton's Laws Tokunaga's Law

References

9 a @ 3 of 56

Outline

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

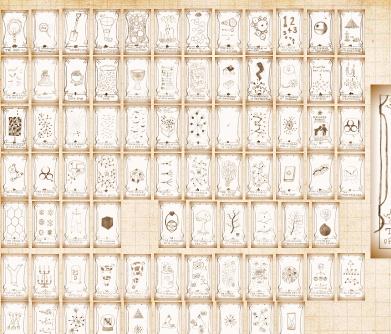
COcoNuTS +

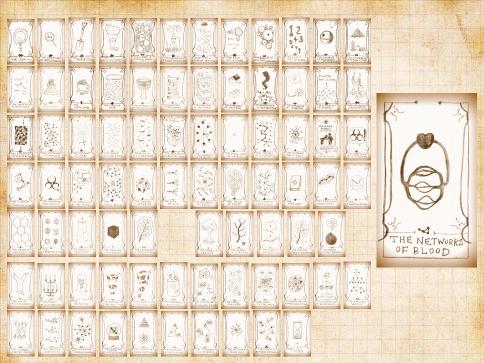
Introduction
Definitions
Allometry
Laws

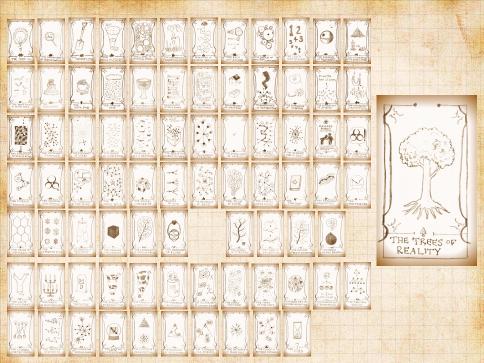
Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell







Fundamental to material supply and collection

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

20 € 8 of 56

Fundamental to material supply and collection

Supply: From one source to many sinks in 2- or 3-d.

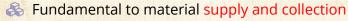
Collection: From many sources to one sink in 2- or 3-d.

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

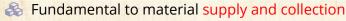
Typically observe hierarchical, recursive self-similar structure

Introduction

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
 - **Evolutionary trees**
- Organizations (only in theory ...)

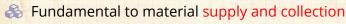
Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law



- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

Plants

Evolutionary trees

Organizations (only in theory ...)

Introduction

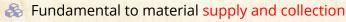
Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



Supply: From one source to many sinks in 2- or 3-d.

Collection: From many sources to one sink in 2- or 3-d.

Typically observe hierarchical, recursive self-similar structure

Examples:

River networks (our focus)

Cardiovascular networks

Plants

Evolutionary trees

Organizations (only in theory ...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

References

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
 - Evolutionary trees
 - Organizations (only in theory ...)

Introduction

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- & Evolutionary trees
 - Organizations (only in theory ...)

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- 🙈 Organizations (only in theory ...)

Introduction

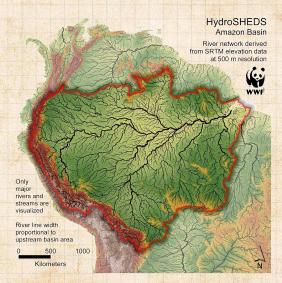
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Branching networks are everywhere ...



http://hydrosheds.cr.usgs.gov/

COCONUTS

Introduction

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Branching networks are everywhere ...

http://en.wikipedia.org/wiki/Image:Applebox.JPGC

COcoNuTS :

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

An early thought piece: Extension and Integration

"The Development of Drainage Systems: A Synoptic View"

Waldo S. Glock, The Geographical Review, **21**, 475–482, 1931. [2]

Initiation, Elongation

Elaboration, Piracy.

Abstraction, Absorption.

COcoNuTS

Introduction

Allometry

Stream Ordering

Horton's Laws
Tokunaga's Law

Nutshell

Fig. 8—An ideal diagrammatic summary of the development of a drainage system given for purposes of comparison only. The first four parts show extension, thus: 1, initiation; 2, elongation; 3, elaboration; and 4, maximum extension. Parts 4 and 6 represent steps during integration.

The sequential stages recognized in the evolution of a drainage system are "extension" and "integration"; the first, a stage of increasing complexity; the second, of simplification.

COCONUTS

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Shaw and Magnasco's beautiful erosion simulations:^a

^aUnpublished!

COcoNuTS -

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Outline

Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Pokunaga's Law

Nutshell

Reference

COcoNuTS =

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

 \triangle Drainage basin for a point p is the complete region of land from which overland flow drains through p.

Definitions

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

 \triangle Drainage basin for a point p is the complete region of land from which overland flow drains through p.

Definition most sensible for a point in a stream.

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Definition most sensible for a point in a stream.

Recursive structure: Basins contain basins and so on.

In principle, a drainage basin is defined at every point on a landscape.

On flat hillslopes, drainage basins are effectively linear.

We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks.

Introduction

Definitions

Allometry

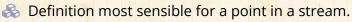
Laws

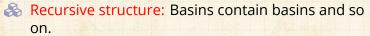
Stream Ordering

Horton's Laws

Tokunaga's Law

Drainage basin for a point p is the complete region of land from which overland flow drains through p.





In principle, a drainage basin is defined at every point on a landscape.

On flat hillslopes, drainage basins are effectively linear.

We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks.

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Definitions

- Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.

We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Definitions

- Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.

Okay for large-scale networks

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Definitions

- Arr Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks ...

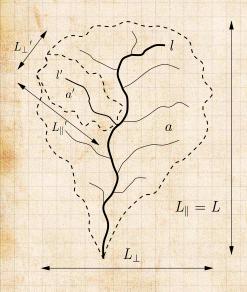
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :



a = drainage basin area

longest (main)
stream (which
may be fracta

 $L = L_{\parallel} = 1$ fongitudinal fength of basin

 $8L-L_{\perp}$ = width c

COcoNuTS :

Introduction

Definitions

Allometry

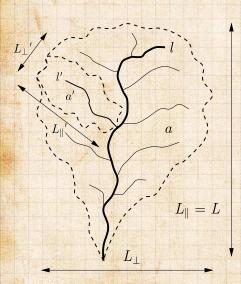
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\perp} :



 a = drainage basin area

COcoNuTS

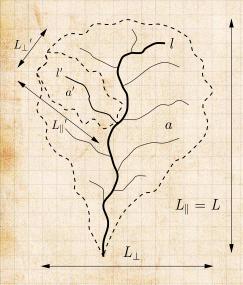
Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\parallel} :



a = drainagebasin area

 ℓ = length of longest (main) stream (which may be fractal)

COcoNuTS

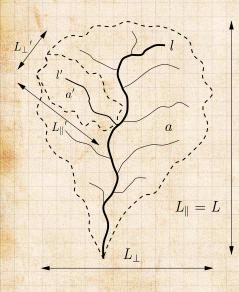
Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\parallel} :



a = drainagebasin area

 ℓ = length of longest (main) stream (which may be fractal)

& $L=L_{\parallel}$ = longitudinal length of basin COCONUTS

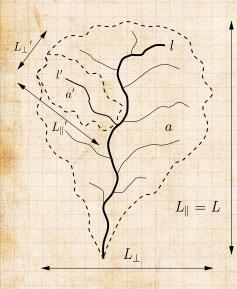
Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Basic basin quantities: a, l, L_{\parallel} , L_{\parallel} :



 a = drainage basin area

 ℓ = length of longest (main) stream (which may be fractal)

& $L=L_{\parallel}$ = longitudinal length of basin



Tokunaga's Law

Nutshell

Stream Ordering

Horton's Laws

COCONUTS

Definitions

Outline

Introduction Allometry

COCONUTS

Introduction Definitions Allometry

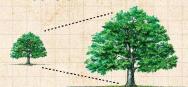
Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Allometry

dimensions scale linearly with each other.



COcoNuTS -

Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

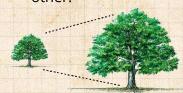
Nutshell

Allometry

COCONUTS

A Isometry:

dimensions scale linearly with each other.



& Allometry:

dimensions scale nonlinearly.

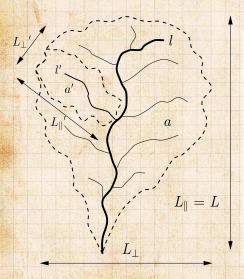
Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

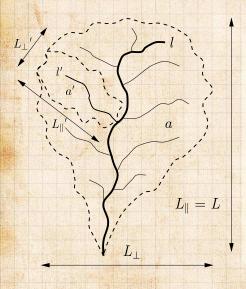


Allometric relationships:

COCONUTS

Introduction Definitions Allometry

Stream Ordering Horton's Laws Tokunaga's Law



Allometric relationships:

 $\ell \propto a^h$

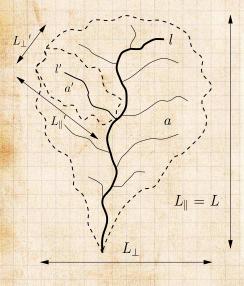
COCONUTS

Introduction Definitions Allometry

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell



Allometric relationships:

 $\ell \propto a^h$

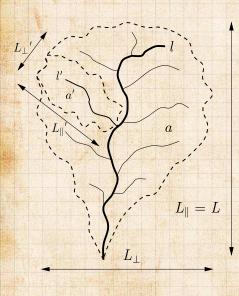
 $\ell \propto L^d$

COCONUTS

Introduction Definitions Allometry

Stream Ordering Horton's Laws

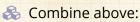
Tokunaga's Law Nutshell



Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$



 $a \propto L^{d/h} \equiv L^D$

COCONUTS

Introduction Definitions Allometry

Stream Ordering Horton's Laws

Tokunaga's Law

'Laws'

Hack's law (1957) [3]:

 $\ell \propto a^h$

reportedly 0.5 < h < 0.7

'Laws'

Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

Scaling of main stream length with basin size:

$$\ell \propto L_\parallel^d$$

reportedly 1.0 < d < 1.1

'Laws'

A Hack's law (1957) [3]:

$$\ell \propto a^h$$

reportedly 0.5 < h < 0.7

🗞 Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Outline

Introduction

Definitions Allometry Laws

Stream Ordering

Horton's Caws

Tokunaga's Law

Nutshell

Reference

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

 $\Lambda \sim a^{\beta}$

 $\lambda \sim L^{\varphi}$

Relation: Name or description:

 $T_{k} = T_{1}(R_{T})^{k-1}$ Tokunaga's law $\ell \sim L^d$ self-affinity of single channels $n_{\omega}/n_{\omega+1}=R_n$ Horton's law of stream numbers $\ell_{\alpha,+1}/\ell_{\alpha}=R_{\ell}$ Horton's law of main stream lengths Horton's law of basin areas $\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a$ Horton's law of stream segment lengths $\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s$ $L_{\perp} \sim L^{H}$ scaling of basin widths probability of basin areas $P(a) \sim a^{-\tau}$ probability of stream lengths $P(\ell) \sim \ell^{-\gamma}$ $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas

Langbein's law

variation of Langbein's law

am Ordering

on's Laws

inaga's Law

hell

Parameter:	Real networks:
R_n	3.0-5.0
R_a	3.0-6.0
$R_{\ell} = R_T$	1.5-3.0
T_1	1.0-1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75-0.80
β	0.50-0.70
arphi	1.05 ± 0.05

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Order of business:

Laws Stream Ordering

Horton's Laws

Tokunaga's Law

Order of business:

- 1. Find out how these relationships are connected.

Laws Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Definitions Allometry Laws

Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

References

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

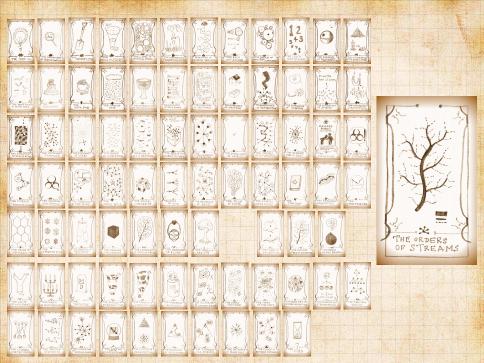
For (3): Many attempts: not yet sorted out ...

Introduction Pefinitions
Allometry
Laws
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



Method for describing network architecture:

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Method for describing network architecture:

Introduced by Horton (1945)^[4]

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Method for describing network architecture:

A Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

A Introduced by Horton (1945) [4]

Modified by Strahler (1957) [7]

Term: Horton-Strahler Stream Ordering [5]

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Method for describing network architecture:

Introduced by Horton (1945)^[4]

Modified by Strahler (1957) [7]

A Term: Horton-Strahler Stream Ordering [5]

Can be seen as iterative trimming of a network.

COCONUTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

A channel head is a point in landscape where flow becomes focused enough to form a stream.

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A source stream is defined as the stream that reaches from a channel head to a junction with another stream.

Roughly analogous to capillary vessels.

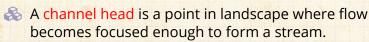
Use symbol $\omega = 1/2, 3, ...$ for stream order

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law



A source stream is defined as the stream that reaches from a channel head to a junction with another stream.

Roughly analogous to capillary vessels.

Use symbol $\omega = 1, 2, 3, ...$ for stream order

Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- & Use symbol $\omega = 1, 2, 3, ...$ for stream order.

Stream Ordering

Horton's Laws

Tokunaga's Law

COcoNuTS

Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

1. Label all source streams as order $\omega = 1$ and remove.

Label al solves streams as

3 Stenour of it sing stribulous left for der = 23

TO ENTRE OF SERVICE SERVICES IN THE SERVICES I

COcoNuTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

1. Label all source streams as order $\omega = 1$ and remove.

Laberal Solution Stream

(4) Bearing Ad to velof the order of the ball stream

COcoNuTS

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

COcoNuTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

COcoNuTS -

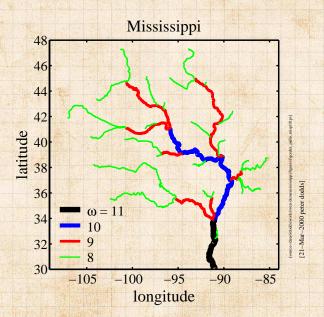
Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Stream Ordering—A large example:



COcoNuTS -

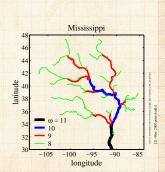
Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$



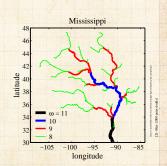
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

 \clubsuit As before, label all source streams as order $\omega = 1$.



Stream Ordering

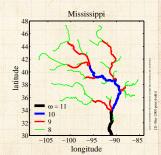
Horton's Laws

Tokunaga's Law

Nutshell

 \clubsuit As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream



Stream Ordering

Horton's Laws

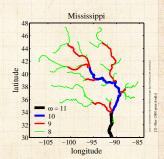
Tokunaga's Law

Nutshell

 \clubsuit As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream

& Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega + 1$).



Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

 \clubsuit As before, label all source streams as order $\omega = 1$.

Follow all labelled streams downstream

Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).

If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.

Simple rule:

 $\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$

Mississippi

ntroduction
Definitions
Ulometry

Stream Ordering

Horton's Laws

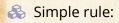
Tokunaga's Law

Nutshell

💫 Follow all labelled streams downstream

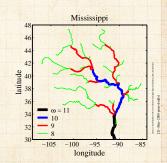
Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 ($\omega+1$).

If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.



$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Laws Tokunaga's Law Nutshell

One problem:

Resolution of data messes with ordering

References

Laws

COCONUTS

One problem:

Resolution of data messes with ordering

Micro-description changes (e.g., order of a basin may increase)

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell



Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes. Definitions
Allometry
Laws

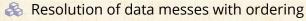
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

One problem:



Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes.

Stream Ordering

Horton's Laws

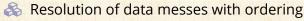
Tokunaga's Law

Nutshell

References

Utility:

One problem:



Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to be robust to resolution changes.

Definitions Ulometry aws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

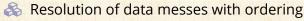
References

Utility:

Stream ordering helpfully discretizes a network.

Goal: understand

One problem:



Micro-description changes (e.g., order of a basin may increase)

...but relationships based on ordering appear to

be robust to resolution changes.

Utility:

Stream ordering helpfully discretizes a network.

Goal: understand network architecture

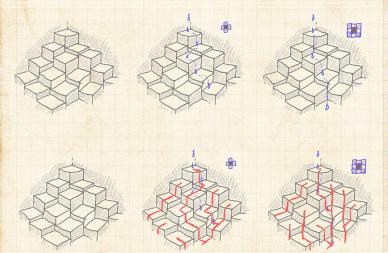
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Basic algorithm for extracting networks from Digital Elevation Models (DEMs):



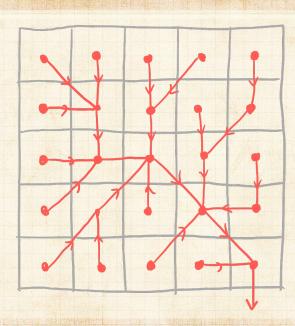
COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



COcoNuTS

Introduction

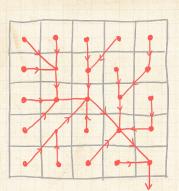
Allometry Laws

Stream Ordering

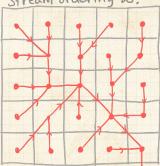
Horton's Laws

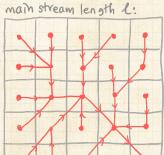
Tokunaga's Law

Nutshell



stream ordering w:





COcoNuTS

Introduction

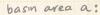
Definitions Allometry Laws

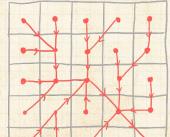
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell





Resultant definitions:

 \mathbb{A} A basin of order Ω has n_{α} streams (or sub-basins) of order ω .

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Resultant definitions:

 \mathbb{A} A basin of order Ω has n_{α} streams (or sub-basins) of order ω .

$$n_{\omega} > n_{\omega+1}$$

COCONUTS

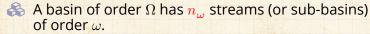
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Resultant definitions:



$$n_{\omega} > n_{\omega+1}$$

 \Leftrightarrow An order ω basin has area a_{ω} .

An order ω basin has a main stream length ℓ_{ω} . An order ω basin has a stream segment length COcoNuTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

 \mathbb{A} A basin of order Ω has n_{α} streams (or sub-basins) of order ω .

$$n_{\omega} > n_{\omega+1}$$

 \triangle An order ω basin has area a_{ω} .

A An order ω basin has a main stream length ℓ_{ω} .

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- & A basin of order Ω has $n_ω$ streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- \clubsuit An order ω basin has area a_{ω} .
- \Leftrightarrow An order ω basin has a main stream length ℓ_{ω} .
- $\red {\Bbb A}$ An order ω basin has a stream segment length s_ω
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $n_{\omega} > n_{\omega+1}$
- \triangle An order ω basin has area a_{ω} .
- $\red{\&}$ An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω} 1. an order ω stream segment is only that part of the
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

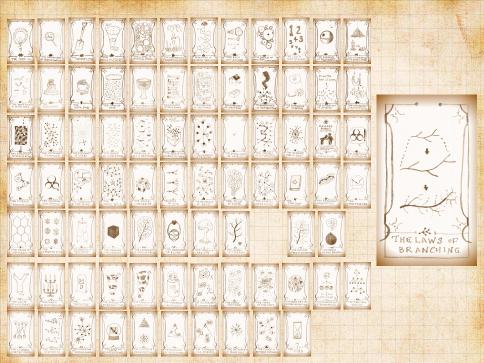
Nutshell

- \mathbb{A} A basin of order Ω has n_{α} streams (or sub-basins) of order ω .
 - $n_{\omega} > n_{\omega+1}$
- \triangle An order ω basin has area a_{ω} .
- \triangle An order ω basin has a main stream length ℓ_{ω} .
- \triangle An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell



Self-similarity of river networks

COcoNuTS

Introduction Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References

9 a @ 37 of 56

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

COCONUTS

Laws Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}>1$$

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Self-similarity of river networks

First quantified by Horton (1945) [4], expanded by Schumm (1956) [6]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1} = R_n > 1$$

Horton's law of stream lengths:

$$\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}>1$$

A Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega} = R_a > 1$$

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's Ratios:

So ...laws are defined by three ratios:

 R_n , R_ℓ , and R_a .

$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^{-2} \\ &\vdots \\ &= n_1/R_n^{-\omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

COCONUTS

Laws Stream Ordering

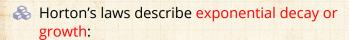
Horton's Laws

Tokunaga's Law Nutshell

Horton's Ratios:

So ...laws are defined by three ratios:

 R_n , R_{ℓ} , and R_a .



$$\begin{split} n_{\omega} &= n_{\omega-1}/R_n \\ &= n_{\omega-2}/R_n^2 \\ &\vdots \\ &= n_1/R_n^{\omega-1} \\ &= n_1 e^{-(\omega-1)\ln R_n} \end{split}$$

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

$$\bar{a}_{\cdot} = \bar{a}_1 e^{(\omega - 1) \ln R_o}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$

As stream order increases, number drops and area and length increase.

COcoNuTS -

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1) \ln R_{\ell}}$$

As stream order increases, number drops and area and length increase.

COcoNuTS

Introduction

Definitions

Allometry

Laws

Stream Ordering

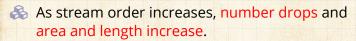
Horton's Laws

Tokunaga's Law

Similar story for area and length:

$$\bar{a}_{\omega} = \bar{a}_1 e^{(\omega - 1) \ln R_a}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega - 1) \ln R_{\ell}}$$



COcoNuTS

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

A few more things:

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

A few more things:

Horton's laws are laws of averages.

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws are laws of averages.

Averaging for number is across basins.

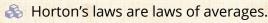
Laws

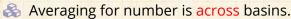
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell





Averaging for stream lengths and areas is within basins.

Horton's ratios go a long way to defining a branching network ...

But we need one other piece of information

Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...

But we need one other piece of information

Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network ...
- But we need one other piece of information ...

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

COCONUTS

Introduction Definitions

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

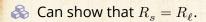
Nutshell

COCONUTS

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$



Introduction Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

COCONUTS

A bonus law:

Horton's law of stream segment lengths:

$$\boxed{\bar{s}_{\omega+1}/\bar{s}_{\omega} = R_s > 1}$$

 \mathfrak{S} Can show that $R_s = R_{\ell}$.

Insert question from assignment 1 2

Laws

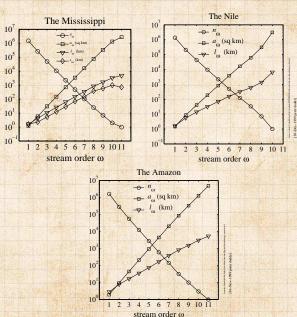
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws in the real world:



COcoNuTS

Introduction

Definitions Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws-at-large

Blood networks:

COCONUTS

Stream Ordering

Laws

Horton's Laws

Tokunaga's Law Nutshell

Horton's laws-at-large

Blood networks:

Horton's laws hold for sections of cardiovascular networks

COCONUTS

Stream Ordering

Laws

Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws-at-large

COCONUTS

Blood networks:

Horton's laws hold for sections of cardiovascular networks

Measuring such networks is tricky and messy ...

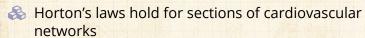
Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Blood networks:



Measuring such networks is tricky and messy ...

Vessel diameters obey an analogous Horton's law.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

0	C	0	N	u	TS	1
						G 55

Network	R_n	R_r	R_ℓ	$-rac{\ln\!R_r}{\ln\!R_n}$	$-rac{{\sf In}R_\ell}{{\sf In}R_n}$	α
						4
West <i>et al.</i>	-	-	-	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
,						
cat (PAT) ^[11]	3.67	1.71	1.78	0.41	0.44	0.79
,						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
2.29 ()				5.55		
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
P.0 (L. (D)	3.31		2.02	0.15	0.50	0.00
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.42	0.33	0.94
Hullian (FAT)	5.50	1.50	1.43	0.57	0.55	0.54

Introduction Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

COCONUTS

Observations:

Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_{ℓ} 1.5 - 3.0

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

Horton's ratios vary:

3.0-5.0 R_n R_a 3.0-6.0 R_{ϱ} 1.5 - 3.0

No accepted explanation for these values.

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

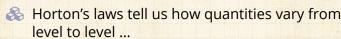
COCONUTS

Observations:

Horton's ratios vary:

 R_n 3.0-5.0 R_a 3.0-6.0 R_ℓ 1.5-3.0

No accepted explanation for these values.



...but they don't explain how networks are

Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Observations:

Horton's ratios vary:

3.0-5.0 R_n R_a 3.0-6.0 R_{ℓ} 1.5 - 3.0

- No accepted explanation for these values.
- Horton's laws tell us how quantities vary from level to level ...
- ...but they don't explain how networks are structured.

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
 - Focus: describe how streams of different orders connect to each other.
 - Tokunaga's law is also a law of averages.

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- Representation of the second o

Tokunaga's law is also a law of averages.

ntroduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- Tokunaga (1968) identified a clearer picture of network structure [8, 9, 10]
- As per Horton-Strahler, use stream ordering.
- & Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

 $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

 $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

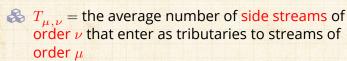
 $\Leftrightarrow \mu, \nu = 1, 2, 3, ...$

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References



 $\Leftrightarrow \mu, \nu = 1, 2, 3, ...$

 $\Leftrightarrow \mu \geq \nu + 1$

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- $T_{\mu,\nu}=$ the average number of side streams of order ν that enter as tributaries to streams of order μ
- & μ , ν = 1, 2, 3, ...
- $\Leftrightarrow \mu \geq \nu + 1$
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu-1$

These generating streams are not considered side streams.

Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

- $T_{\mu,\nu}=$ the average number of side streams of order ν that enter as tributaries to streams of order μ
- & μ , ν = 1, 2, 3, ...
- $\Leftrightarrow \mu \geq \nu + 1$
- Recall each stream segment of order μ is 'generated' by two streams of order $\mu 1$
- These generating streams are not considered side streams.

Introduction
Definitions
Allometry
Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Property 1: Scale independence—depends only on difference between orders:

Property 2: Number of side streams grows exponentially with difference in orders:

We usually write Tokunaga's law as:

 $(R_T)^{k-1}$ where $R_T\simeq 2$

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu\,,\nu}=T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

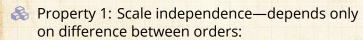
COCONUTS

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law



$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1(R_T)^{\mu-\nu-1}$$

We usually write Tokunaga's law as:

$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

COcoNuTS

ntroduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Tokunaga's law—an example:

 $T_1 \simeq 2$ $R_T \simeq 4$ COCONUTS

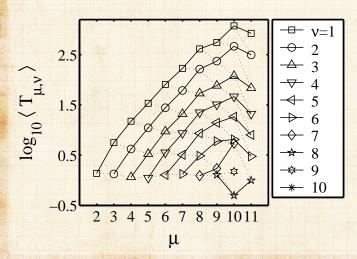
Introduction Definitions Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

A Tokunaga graph:



Introduction Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Branching networks show remarkable self-similarity over many scales.

There are many interrelated scaling laws

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Tokunaga's laws neatly describe network architecture.

Branching networks exhibit a mixed hierarchical structure.

Horton and Tokunaga can be connected analytically.

Surprisingly

 $R = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$

ntroduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

There are many interrelated scaling laws.

Laws

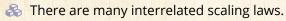
Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

Nutshell:

Branching networks show remarkable self-similarity over many scales.



Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Tokunaga's laws neatly describe network architecture.

Branching networks exhibit a mixed hierarchical structure.

Horton and Tokunaga can be connected analytically.

Surprisingly

 $(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}$

COcoNuTS *

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

A Horton's laws reveal self-similarity.

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

There are many interrelated scaling laws.

Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.

Horton's laws reveal self-similarity.

Horton's laws can be misinterpreted as suggesting a pure hierarchy.

Tokunaga's laws neatly describe network architecture.

Branching networks exhibit a mixed hierarchical structure.

Horton's Laws Tokunaga's Law Nutshell

References

Stream Ordering

Nutshell:

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically.

Surprisingly:

COcoNuTS

ntroduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell References

Nutshell:

- Branching networks show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- & Horton and Tokunaga can be connected analytically.
- Surprisingly:

$$R_n = \frac{(2+R_T+T_1)+\sqrt{(2+R_T+T_1)^2-8R_T}}{2}$$

COCONUTS

ntroduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Crafting landscapes—Far Lands or Bust ♂:

COCONUTS

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

- [1] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf
- [2] W. S. Glock.
 The development of drainage systems: A synoptic view.

The Geographical Review, 21:475–482, 1931. pdf♂

[3] J. T. Hack.
Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45-97, 1957. pdf♂

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

References II

[4] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945. pdf 2

- [5] I. Rodríguez-Iturbe and A. Rinaldo.
 Fractal River Basins: Chance and
 Self-Organization.
 Cambridge University Press, Cambrigde, UK,
 1997.
- [6] S. A. Schumm.
 Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
 Bulletin of the Geological Society of America, 67:597-646, 1956. pdf

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

63:1117-1142, 1952.

[7] A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography.

Bulletin of the Geological Society of America,

[8] E. Tokunaga. The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966. pdf

[9] E. Tokunaga. Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978. pdf Introduction

Definitions

Allometry

Laws

Stream Ordering
Horton's Laws

Tokunaga's Law

Nutshell

[10] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71-77, 1984.

[11] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998. pdf

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

